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Approximations in Population Processes with high carrying capacity K .

Outline

A population model, AK
t , t ≥ 0, (Markov, can be vector or

measure valued)
with parameters (reproduction, lifespan) dependent on K and the
state of the population (say density, |At |/K ).
Bare Bones Evolution model in view
Population (s) are in “equilibrium” near carrying capacity (s), then
a new mutant appears that out competes in the beginning, then
may co-exist or take over.
Example: Binary splitting with

p =
K

K + |A|
.

1. Initial conditions are in the vicinity of K (say |AK
0 | = dK )

2. Initial conditions do not depend on K (say |AK
0 | = 1)
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Outline

Approximations

If parameters stabilize as K →∞, and if there is smooth
dependence on initial conditions, then we have
AK
0 → A0, implies

AK
t → At , as K →∞

(in distribution) on any finite time interval [0,T ],
where the limiting process has initial condition A0 and dynamics
determined by the limiting parameters.
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Outline

Approximations

1. Initial conditions dK

Then |AK
0 | → ∞, and the approximation on finite time intervals

does not apply.
In this case we have approximation to

1

K
AK
t ⇒ A∞t ,

LLN, or fluid approximation.
In this talk we show this for one type age-dependent process,
which is Markov if considered as measure-valued.
We establish the weak convergence of the measure-valued
processes { 1

K AK
t , t ≥ 0}K , in D(R+,M(R+)) the Skorokhod space

of all cadlag functions from R+ to M(R+) with its Skorokhod
topology.
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Outline

Approximations

2. Problem of small initial size

We want to model the following situation. In the beginning there is
only 1 new mutant that at first out competes the host population.
Due to exponential growth it takes time of order log K to grow to
dK , where LLN kicks in.
A feature of population model is that 0 is absorbing.
LLN gives convergence to the limiting process, that starts at 0,
which is always 0.
The original approximation is also on finite times, but we need
intervals [0,TK ] with TK →∞.
In the literature, people treat the process in two steps, rather than
one.
Here we propose the time change that looks like log K + t, or
perhaps a random time of order log K plus t.
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Outline

Approximations

An abstract problem of approximation of dynamical system with
unstable fixed point, where the initial conditions converge to that
fixed point.
Picture here.
Example.
The differential equation

ẋεt = xεt , xε0 = ε.

has solution
xεt = εet .

So that on any time interval [0,T ]

xεt → 0, as, ε→ 0.

But for Tε = − log ε+ t, xεTε
= et .

Hence it satisfies same dynamics but with a different initial
condition.

ẋ = x , x0 = 1.
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Description of the model with ages

Age-dependent model
Population of particles, who give birth during lifetime, then die
after a random time. Upon death they leave a random number of
offspring.
Parameters of the model:

I the death rate=hazard function h = G ′/(1− G )
(G is a lifespan distribution)

I reproduction rate b

I offspring distribution at splitting, mean offspring m, variance
v2.

Population is described at time t by the ages of all the particles,
At = (a1t , a

2
T , . . . , a

Zt
t ), Zt = |At |.

parameters h, b, m etc dependent on A.
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Description of the model with ages

Measure-valued Markov process of ages

A collection of individuals with ages (a1, . . . , az) = A.
To deal with varying dimension, look at A as a measure, for a set
B (of ages), A(B) counts the number of particles with ages in B,

A(B) =
z∑

i=1

δai (B),

where δa(B), the point measure at a.
When there are no births and deaths the population is changing
only by ageing.
When a particle is born a point mass appears at zero.
When a particle dies its point mass disappears and offspring
number of point masses at zero appear.
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Description of the model with ages

Measure-valued Markov process of ages

3. The generator of At

We use notations
M(R+) the space of finite, positive measures on R+, equipped
with weak topology.
For A ∈M(R+)
(f ,A) =

∫
f (x)A(dx)

If A is concentrated on points

(f ,A) =
z∑

i=1

f (ai ).

For At = (a1t , . . . , a
zt
t ) the population size Zt = (1,At).

The class of functions we use is of the form F ((f ,A)), where F is
a function on R.
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Description of the model with ages

Measure-valued Markov process of ages

3 cont. The generator of At

Theorem. [JK00] For a bounded differentiable function F on R
and a continuously differentiable function f on R+, the following
limit exists

lim
t→0

1

t
EA

{
F ((f ,At))− F ((f ,A))

}
= GF ((f ,A)),

where
GF ((f ,A)) = F ′((f ,A))(f ′,A)

+
z∑

j=1

bA(aj){F (f (0) + (f ,A))− F ((f ,A))}

+
z∑

j=1

hA(aj){EA[F (Y (aj)f (0) + (f ,A)− f (aj))]− F ((f ,A))},

and Y (a) denotes the number of children at death of a mother,
dying at age a.
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Description of the model with ages

Measure-valued Markov process of ages

4. Itô’s formula

Consequently, Itô’s formula holds: for a bounded C 1 function F on
R and a C 1 function on R+

F ((f ,At)) = F ((f ,A0)) +

∫ t

0
GF ((f ,As))ds + MF ,f

t ,

where MF ,f
t is a local martingale〈

MF ,f ,MF ,f
〉
t

=

∫ t

0

[
GF 2((f ,As))ds − 2F ((f ,As))GF ((f ,As))

]
ds.



Approximations in Population Processes with high carrying capacity K .

Description of the model with ages

Measure-valued Markov process of ages

Itô’s formula for (f ,At)
By taking F (u) = u and u2 (justification by stopping), for
f ∈ C 1(R+)

(f ,At) = (f ,A0) +

∫ t

0
(LAs f ,As)ds + M f

t ,

where the linear operators LA are defined by

LAf = f ′ − hAf + f (0)(bA + mAhA),

and M f
t is a local square integrable martingale with

〈
M f ,M f

〉
t

=

∫ t

0

(
f 2(0)v2

As
hAs + hAs f

2 − 2f (0)mAs hAs f ,As

)
ds.

mA(u) is the mean and vA(u) is the second moment of the
offspring-at-splitting distribution when population is A.
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Description of the model with ages

Measure-valued Markov process of ages

6. Itô’s formula with a true martingale.

Theorem. [JK00] if f ≥ 0 satisfies the (linear growth) condition
(H1)

|(LAf ,A)| ≤ C (1 + (f ,A)) (H1)

for some C > 0 and any A, and if (f ,A0) is integrable, then (f ,At)
is integrable and

E[(f ,At)] ≤
(
E[(f ,A0)] + Ct

)(
1 +

1

C
eCt
)
.

Moreover, M f
t is a martingale.

Proof. Gronwall with localization.
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Description of the model with ages

Measure-valued Markov process of ages

7. Sufficient conditions for (H1)
A set of functions is uniformly bounded if the set of all functions
vales is bounded.
Corollary. If the birth and death intensities, bA, hA and the mean
at splitting mA, are all uniformly bounded and the functions f and
f ′ are bounded, then the growth condition (H1) is satisfied. Call
this condition (C0).
In particular, the function identically 1 satisfies condition (H1) so
that

E[|At |] ≤
(
E[|A0|] + Ct

)(
1 +

1

C
eCt
)
.

Further, if the vA,A ∈M(R+)) are uniformly bounded, then M f
t is

a square integrable martingale with quadratic variation〈
M f ,M f

〉
t
≤ C

∫ t

0
|As |ds.
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Description of the model with ages

Measure-valued Markov process of ages

8. Processes with carrying capacity K

Now the carrying capacity K enters and we consider processes
{AK

t , t ≥ 0}K , where K is a parameter, as a collection of
measure-valued processes. Parameters of the processes (the
functions hK

AK , bK
AK , mK

AK ) may also depend upon K .

Then, AK
t is a random function on R+ with values in M(R+), the

space of finite, positive measures on R+, equipped with its weak
topology.
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Description of the model with ages

Measure-valued Markov process of ages

9. Weak convergence

I D(R+,M(R+)) is the Skorokhod space of all cadlag
functions from R+ to M(R+) with its Skorokhod topology.

I We establish the weak convergence of the measure-valued
processes { 1

K AK
t , t ≥ 0}K , writing bar ĀK

t = 1
K AK

t in
D(R+,M(R+)).

I We show that their distributions, which are the corresponding
measures on D(R+,M(R+)), say QK , converge to a limit
measure Q.

I Q corresponds to (non-random) limit A∞.
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Description of the model with ages

Measure-valued Markov process of ages

10. Establishing weak convergence

Weak convergence, by definition is convergence of the expectations
of bounded and continuous functionals. Since practically it is
impossible to check,
one way to establishing weak convergence of measures is to show

SC Sequential compactness. From every sequence can extract a
convergent subsequence.

U The limit is unique.

To show SC, in turn tightness is established.
By Prokhorov’s theorem,
a collection of probability measures (on a separable metric space)
is tight if and only if it is sequentially compact.
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Description of the model with ages

Measure-valued Markov process of ages

12. Establishing Tightness

Theorem [Hamza Jagers K. 12]

Suppose that parameters are uniformly bounded. Suppose also that
the expected total mass of 1

K AK
0 is bounded, supK E[ 1

K |A
K
0 |] <∞.

Then the family { 1
K AK

t , t ≥ 0}K in D(R+,M(R+)) is tight.
Proof
uses Jakubowski’s criteria.
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Description of the model with ages

Measure-valued Markov process of ages

13. Jakubowski’s criteria

A sequence µK of D(R+,M(R+))-valued random elements is
tight if and only if the following two conditions are satisfied.
J1. (Compact Containment) For each T > 0 and η > 0 there
exists a compact set CT ,η ∈M(R+) such that

lim inf
K→∞

P(µKt ∈ CT ,η ∀t ∈ [0,T ]) > 1− η.

J2. (Coordinate Tightness) There exists a family F of real
continuous functions F on M(R+) that separates points in
M(R+) and is closed under addition such that for every F ∈ F,
the sequence {F (AK

t ), t ∈ [0,∞)}, is tight in D(R+,R).
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Description of the model with ages

Measure-valued Markov process of ages

14. Proof of Compact Containment

Note that for for metric spaces compactness and sequential
compactness are equivalent. Since weak convergence is metrizable
(Levy-Prokhorov metric), it is enough to have SC.
For each T > 0 and η > 0 let

CT ,η = {µ ∈M(R+) : µ((T ,∞)) < jη},

where jη = supK E[ 1
K |A

K
0 |]/η.

First note that by the Portmanteau Theorem, if µn ∈ CT ,η and
µn ⇒ µ then lim inf µn((T ,∞)) ≥ µ((T ,∞)). Therefore µ ∈ CT ,η.
Since the space is metric, sequential compactness implies
compactness.



Approximations in Population Processes with high carrying capacity K .

Description of the model with ages

Measure-valued Markov process of ages

Proof of Compact Containment
Second, observe that if an individual at time t ≤ T has an age
greater than T , it must have been present at time 0. In other
words, for all t ≤ T AK

t ((T ,∞)) ≤ |AK
0 |. Hence,

P
(

AK
t

K
∈ CT ,η ∀t ∈ [0,T ]

)
= P

(
AK
t ((T ,∞))

K
< jη ∀t ∈ [0,T ]

)

≥ P
(
|AK

0 |
K

< jη

)
= 1− P

(
|AK

0 |
K
≥ jη

)
by Chebyshev’s ineq. and choice of jη = supK E[ 1

K |A
K
0 |]/η

≥ 1− sup
K

E[
|AK

0 |
K

]/jη ≥ 1− η.
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Description of the model with ages

Measure-valued Markov process of ages

15. Proof of Coordinate Tightness

Consider the family of real-valued functions F on M(R+), by

F = {F : ∃f ∈ C 1
b (R+) with f ′ bounded : F (µ) = (f , µ)}.

Every function in F is continuous with respect to the weak
topology on M(R+), the class F is trivially closed with respect to
addition, and it separates points in M(R+).
Enough to show that for any f ∈ F, the sequence of real valued
processes XK

t = (f , 1
K AK

t ) is tight in the D(R+,R).
This is a standard problem for semimartingales and
is done by use of Aldous’s criterion for tightness in D(R+,R).
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Description of the model with ages

Measure-valued Markov process of ages

16. Aldous’s criterion

For any T > 0 and stopping time τ (actually τK , but the
dependence upon K implicit) and any bounded f ≥ 0, it must be
checked that

lim
j→∞

lim sup
K

P(XK
T > j) = 0,

and

lim
δ→0

lim sup
K

sup
τ<T−δ

P(sup
t≤δ
|XK
τ+t − XK

τ | > ε) = 0, ∀ε > 0.

This is done by using the basic integral representation for the
process and bounds.
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Description of the model with ages

Measure-valued Markov process of ages

Assumption on stabilization of parameters: demographical
smootheness
C1) Assume that there is a Lipschitz continuous function m∞

defined on M(R+), such that

mK
A = m∞1

K
A
,

|m∞A −m∞B | ≤ Cρ(A,B),

where ρ(A,B) is the Levy-Prokhorov distance.
There are functions h∞, and b∞ defined on M(R+)× R+ which
are Lipschitz continuous in the first argument, s.t.

hK
A (u) = h∞1

K
A

(u), bK
A (u) = b∞1

K
A

(u),

‖ h∞A − h∞B ‖≤ Cρ(A,B), ‖ b∞A − b∞B ‖≤ Cρ(A,B).

C2) Initial populations stabilise, 1
K AK

0 ⇒ Ā0, and
supK E[|AK

0 |]/K <∞.
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Description of the model with ages

Measure-valued Markov process of ages

Fluid limit (LLN).

Theorem [Hamza Jagers K. 12] Assume conditions C0, C1 and C2.
Then the processes 1

K AK converge weakly in D(R+,M(R+)). The
limiting measure Ā∞t , displays no randomness beyond that possibly
in Ā∞0 . For any test function f , and any t > 0, it satisfies the
integral equation

(f ,At) = (f , Ā∞0 ) +

∫ t

0
(L∞As

f ,As)ds, (1)

where
L∞A f = f ′ − h∞A f + f (0)(b∞A + h∞A m∞A ).

Further, Ā∞t is absolutely continuous with respect to Ā0 + δ0, the
latter being a mass point at zero. If Ā0 has a density with respect
to Lebesgue measure on (0,∞), then so has Ā∞t .
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Description of the model with ages

Measure-valued Markov process of ages

18. Remarks

Remark. The limit equation is the weak form of the
McKendrick-von Foerster equation for the density of At , a(t, x)

(
∂

∂t
+
∂

∂u
)a(t, u) = −a(t, u)hAt (u), a(t, 0) =

(∫ ∞

0

mAt hAt (u)a(t, u)du
)
.

Of course, smoothness of the density must also be proved.
Remark.
For the birth-and-death case with a fixed birth rate b, Tran gives
an argument for absolute continuity building upon a relation
(φ,At) ≤ (φ(t + ·),A0) +

∫ t
0 (φ(t − s)b,As)ds.
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Description of the model with ages

Measure-valued Markov process of ages

19. Proof of convergence

Thanks to the Lipschitz assumption on the demographic
parameters and Gronwall’s inequality, the equation for the limit has
a unique solution.
Since we already established tightness, it follows that any
subsequence converges to the same limit, hence the whole
sequence converges.
If f ≥ 0 but f ′ ≤ 0, then a solution of (1) satisfies

(f ,At) ≤ (f ,A0)+f (0)

∫ t

0
(bAs +hAs mAs ,As)ds ≤ (f ,A0)+C (f , δ0).

Since this is true for all such f , it follows that At is absolutely
continuous with respect to A0 + δ0. If the former has a density
with respect to Lebesgue measure on (0,∞), then so has At .
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Description of the model with ages

Measure-valued Markov process of ages

Change of time

The population size will reach a level dK after time of order log K ,
due to exponential growth (unless of course it dies out). Let
TdK = inf{t; Zt ≥ dK}.

Theorem (HJK-2012)

If |AK
0 | = 1 and previous conditions on parameters hold then

ĀTdK+t converges to a limit that satisfies the same equation but
with a different initial condition.
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Bare Bones Stochastic Equations

The resident population, which assumed to be around its carrying
capacity, evolves as a binary splitting process with probability of
successful reproduction (division) dependent on the size of that
population Z 1 and also the size of the new mutant population Z 2.
The mutant populations also evolves as a binary splitting with
initially very high probabilities of successful division. These
probabilities are given below. Here ξ1 and ξ2 denote the generic
random variables representing offspring distribution of the resident
and the mutant populations. The population size is denoted by
Z = (Z 1,Z 2).
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Bare Bones Stochastic Equations

P
(
ξ(1) = 0 |Z

)
=

Z (1) + γZ (2)

a1K + Z (1) + γZ (2)
,

P
(
ξ(1) = 2 |Z

)
=

a1K

a1K + Z (1) + γZ (2)
,

and

P
(
ξ(2) = 0 |Z

)
=

γZ (1) + Z (2)

a2K + γZ (1) + Z (2)
,

P
(
ξ(2) = 2 |Z

)
=

a2K

a2K + γZ (1) + Z (2)
.
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Bare Bones Stochastic Equations

birth-death formulation

In a corresponding birth-death process the probability splitting into
two gives the birth rate, and the complimentary probability the
death rate. Hence individual death and birth rates are

µ1(z1, z2) = C1(z1 + γz2) , λ1(z1, z2) = C1a1K ,

µ2(z1, z2) = C2(γz1 + z2) , λ2(z1, z2) = C2a2K ,

where C1,C2 are constants. There is no unique translation to
continuous time, but if we replace the unit of discrete time by the
exponential waiting time with rate 1, then the birth and death rates
add up to one. In this way the birth rate is exactly the splitting
probability and the death rate is its complimentary probability.
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Bare Bones Stochastic Equations

birth-death formulation

Hence in the first population individual birth and death rates are

λ1(z1, z2) =
a1K

a1K + z(1) + γz(2)
, µ1(z1, z2) =

z(1) + γz(2)

a1K + z(1) + γz(2)
.

The rates in the whole populations are

z1λ1(z1, z2) and z1µ1(z1, z2).

For the second population it is similar.
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Bare Bones Stochastic Equations

birth-death formulation

If X (t) is a Markov jump process with a positive holding time
parameter a(x), the jump from x with mean m(x) and second
moment v(x) then

X (t) = X (0) +

∫ t

0
a(X (s))m(X (s))ds + M(s),

where M(s) is a martingale with predictable quadratic variation

〈M,M〉s =

∫ t

0
a(X (s))v(X (s))ds.

In a Birth-Death process the holding parameter is
a(x) = λ(x) + µ(x), where λ(x) and µ(x) are birth and death
rates of the population at x , i.e. at x the process stays for an
exponentially distributed time with parameter a(x) then jumps to
the state x + ξ(x), where

ξ(x) =

{
1, with prob λ(x)/a(x)

−1, with prob µ(x)/a(x).

a(x) = λ(x) + µ(x)

and the first two moments of the jump ξ(x) are

m(x) := Eξ(x) =
λ(x)− µ(x)

λ(x) + µ(x)
, v(x) := Eξ2(x) = 1.

For a BD process the following equations hold in terms of
population rates

X (t) = X (0) +

∫ t

0

(
λ(X (s))− µ(X (s))

)
ds + M(t), (2)

where M(t) is a martingale with predictable quadratic variation

〈M,M〉t =

∫ t

0

(
λ(X (s)) + µ(X (s))

)
ds.
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Bare Bones Stochastic Equations

birth-death formulation

Therefore we have the following representation for Z 1 (for Z 2 is
similar)

Z 1
t = Z 1

0 +

∫ t

0

a1K − Z 1
s − γZ 2

s

a1K + Z
(1)
s + γZ

(2)
s

Z 1
s ds + M1

t

Z 2
t = Z 2

0 +

∫ t

0

a2K − γZ 1
s − Z 2

s

a2K + γZ
(1)
s + Z

(2)
s

Z 2
s ds + M2

t , (3)

where

〈M1,M1〉t =

∫ t

0
Z 1
s ds, 〈M2,M2〉t =

∫ t

0
Z 2
s ds.

Note that these processes are indexed by K , which is implicit, but
when it is necessary we make it explicit. We would like to give an
approximation for Z for large values of K .
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Bare Bones Stochastic Equations

Fluid approximation

Let X i
t = Z i

t/K . Then X i
t has representation as dynamics plus a

small noise for large K . Classical fluid approximation is given by a
result of Kurtz (1970) [?].

Theorem
If X i

0 → x i
0 then (X 1

t ,X
2
t ) converges in sup norm on any finite time

interval [0,T ] to (x1, x2) defined a solution to the following system
of equations

x1
t = x1

0 +

∫ t

0

a1 − x1
s − γx2

s

a1 + x
(1)
s + γx

(2)
s

x1
s ds,

x2
t = x2

0 +

∫ t

0

a2 − γx1
s − x2

s

a2 + γx
(1)
s + x

(2)
s

x2
s ds. (4)
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Bare Bones Stochastic Equations

Fluid approximation

Fixed points of the deterministic system
The system (4) has four fixed points, obtained by solving the
system

(x1
t )′ = 0, (x2

t )′ = 0.

They are: (0, 0), (0, a2), (a1, 0) and

(x∗1 , x
∗
2 ) =

(a1 − γa2
1− γ2

,
a2 − γa1
1− γ2

)
. (5)

The parameters are chosen in such a way that ai > 0, 0 < γ < 1,
a1 − γa2 > 0 and a2 − γa1 > 0, so that the last point is the only
one in the positive quadrant.
The first three fixed points are unstable, and (x∗1 , x

∗
2 ) is stable, and

we shall see that solutions converge to it from any positive initial
condition.
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Bare Bones Stochastic Equations

Fluid approximation

Convergence to unstable fixed point.

In the Evolution model the initial number of new mutants is one,
Z 2
0 = 1, while the initial number of the resident population is

around its carrying capacity K . Thus X 2
0 = 1/K and its limit as

K →∞ is x2
0 = 0.

Thus it follows from Theorem 2 that the fluid approximation for
the Evolution Model on any fixed time interval is the unstable fixed
point (a1, 0).
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Bare Bones Stochastic Equations

Fluid approximation

Pictures
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Bare Bones Stochastic Equations

Fluid approximation

Let TK = inf{t : x2
t = α}.

The change of time is
TK + t.
We need to show that x1(TK + t) converges as K →∞.
This is done by writing x1 as a function of x2 (these are
monotone), and showing that solution to these equations converge.
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Bare Bones Stochastic Equations

Fluid approximation

Differential equations for the time changed system
τx = (x2)−1(x)
For any t in the range of x2, t ∈ [1/K , x∗2 )

x2(τt) = t,

dependence on K only in the range of x2, x2([0,∞)) = [1/K , x∗2 ).
yK (t) = x1(τt) is given by

(yK )′(t) = F (t, yK (t)), 1/K ≤ t < x∗2 , yK (
1

K
) = x1(0) = a1,

(6)
with

F (t, y) =
(a1 − tγ − y)y(a2 + t + γy)

t(a1 + tγ + y)(a2 − t − γy)
. (7)
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Theorem (Hamza Kaspi K)

The sequence yK (t) on [0, d ] converges as K →∞ to the unique
solution of the differential equation

y ′(t) = F (t, y(t)), t > 0, y(0) = a1. (8)

This equation is extended to t = 0 by defining F (0, a1) by
continuity.

F (0, a1) =
−γ(a2 + γa1)

2(a2 − γa1)
.
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Proof
The key is to decompose F as follows

F (t, y) = H(t, y)Π(t, y), (9)

H(t, y) =
(a1 − y − γt)

t
, (10)

Π(t, y) =
y(a2 + t + γy)

(a1 + γt + y)(a2 − γy − t)
. (11)

Π is bounded, Lipschitz, all the nasties are in H. But H is linear,
so can solve explicitly.
For a fixed small d > 0 (d < a2 − γa1), there are two positive
constants C̄ and C such that for all 0 ≤ t ≤ d

C ≤ Π(t, yK (t)) ≤ C̄ ,
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Hence we obtain that yK is bounded by solutions of linear
differential equation: for 1/K ≤ t ≤ d

a1 + C̄

∫ t

1/K
H(s, yK (s))ds ≤ yK (t) ≤ a1 + C

∫ t

1/K
H(s, yK (s))ds.
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Lemma
Let y(t) solve the ode on [t0, d ],

y ′(t) = c
a− y(t)− γt

t
, y(t0) = a.

Then the only solution is given by the function

y(t) = a− cγ

c + 1

(
t −

tc+1
0

tc

)
.

When t0 = 0, y(t) is linear.
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Next show that yK (t) is sequentially compact. As the functions
yK (t) are monotone and bounded, existence of a convergent
subsequence is assured by the Helly-Bray lemma. The limit
function y(t) is monotone and has at most countably many jump
discontinuities. Write the integral equation for yK (t)

yK (t) = a1 +

∫ t

0
1[ 1

K
,d ](s)F (s, yK (s))ds. (12)

Uniqueness is shown also using corresponding linear equation (by
taking y1 − y2 not |y1 − y2| !)
The same as in

y ′ = −y

t
, y(0) = 0.
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The system with the new time is given by

xK (TK + t) = xK (0) +

∫ TK+t

0
G(xK (s))ds,

with

xK (0) =

(
a1
1
K

)
,

G(x) is a vector function of two variables G(x) =

(
g1(x)
g2(x)

)
.

Change variable s = u + TK , for the time changed system

xK (TK + t) = xK (0) +

∫ TK

0
G(xK (s))ds +

∫ t

0
G(xK (TK + u))du

=

(
xK (TK )

α

)
+

∫ t

0
G(xK (τK (u)))du.

Thus the time-changed system satisfies the same dynamics G with
different initial conditions x1(TK ) and x2(TK ) = α.
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Corollary.
For the deterministic system there exists

lim
K→∞

xK (TK + t) = xα(t),

that uniquely solves

xα(t) =

(
y(α)
α

)
+

∫ t

0
G(xα(u))du.

this system converges to the stable fixed point.
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Let X i
t = Z i

t/K . Denote this process by XK
t and its martingale by

MK
t , and by xKt the solution of the corresponding deterministic

system with same initial conditions.

XK
TK+t = XK

TK
+

∫ t

0
G(XK

TK+s)ds +
1

K

(
MK

TK+t −MK
TK

)
.

By looking at quadratic variation the martingale term vanishes in
the limit.

Theorem (Hamza Kaspi K.)

The sequence of processes XK
TK+t converges in probability in sup

norm as K →∞, on any finite time interval [0,T ], to the unique
solution x(t) of the deterministic system

x(t) =

(
W1

W2

)
+

∫ t

0
G(x(u))du,

with Wi = limK→∞
1
K Z i

TK
.
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Sketch of proof.
The main work is in proving convergence of XK

TK
= 1

KZK
TK

.
Use that for the BD processes with such rates, as t →∞, there is
convergence a.s. and in L2 (Kle on growth of processes with
asymptotically linear rate of change, JAP, 1994).

W K
t = e−tZK

t →W K , t →∞.

Write equation for W K
t (using by parts) and put t = TK

From eq. (3) the drift term Λ(z) = z + D(z) with

D1(z) = − 2(z1+γz2)
a1K+z1+γz2

, D2 similar

W K
TK

= W K
0 +

∫ TK

0
e−sD(ZK

s )ds +
1

K

∫ TK

0
e−sdMK

s .
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