Contour processes, Coalescent point processes and applications

Amaury Lambert

CIRM, Luminy, le 12 juin 2012
Jumping contour of a tree

a) Binary tree with edge lengths and b) Jumping contour process of its truncation below time t.
Retrieving information from the contour

The depths of the excursions of the JCP away from T are the coalescence times of consecutive extant individuals at time T.

- $H_i =$ coalescence time between individuals $i - 1$ and i
 = depth of i-th excursion of the contour process

- $A_i =$ age of individual i
 = undershoot of last jump of...

- $R_i =$ residual lifetime of individual i
 = overshoot of last jump of...
Splitting trees

A (time-inhomogeneous) splitting tree (Geiger & Kersting 97) is a random tree model (genealogy, epidemic, phylogeny,...), where:

- particles reproduce singly and independently
- the birth rate $\lambda(t)$ may depend on absolute time t (only)
- lifetime distributions can be general and may also depend on birth time: example of a death rate $\mu(t, a)$ depending on absolute time t and age a of particles.

The population size process $(N_t; t \geq 0)$ is a binary Crump–Mode–Jagers process (with age-independent birth point process).
Theorem (L. (2010))

The jumping contour process of a splitting tree truncated below T is a strong Markov process.

In the time-homogeneous case, it has the same law as a compound Poisson process X with Lévy measure $\lambda P(V \in \cdot)$, without negative jumps and drift -1, reflected below T and killed upon hitting 0.
Outline

1. Contour
2. Coalescent
3. Bottlenecks
4. Mutations
5. Epidemics
6. Phylogenies
Coalescent point process

\(H^T \) := depth of an excursion of the JCP away from \(T \).

Corollary

The coalescent tree (or reconstructed tree) seen from \(T \) of a splitting tree, is a coalescent point process: the coalescence times form a sequence of i.i.d. r.v. distributed as \(H^T \), killed at its first value larger than \(T \).

⇒ Notation:

\[
F_T(s) := \frac{1}{P(H^T \geq s)}.
\]

Figure: Illustration of a coalescent point process showing the coalescence depths H_1, \ldots, H_6 for each of the 6 consecutive pairs of tips. The depth H_7 is the first one larger than T.
Three special cases

1. Time-homogeneous case (L. 2010) \(\equiv \lambda \) and \(\mu(a) \) do NOT depend on \(t \) ...And then \(F_T \) does not depend on \(T \)...

2. Markovian case (Nee, May & Harvey 1994) \(\equiv \mu(t) \) does NOT depend on \(a \)

\[
F_T(t) = 1 + \int_{T-t}^{T} dx \lambda(x) e^{\int_x^T dy r(y)},
\]

where \(r(t) := \lambda(t) - \mu(t) \) (instantaneous growth rate).

3. Time-homogeneous + Markov (Rannala, 1997) \(\equiv \lambda \) and \(\mu \) are constant \(\equiv \) linear birth–death process

\[
F_T(t) = 1 + \frac{\lambda}{r} (e^{rt} - 1).
\]
Outline

1 Contour
2 Coalescent
3 Bottlenecks
4 Mutations
5 Epidemics
6 Phylogenies
Bottleneck : definition

- Start with a coalescent point process
- add a bottleneck with survival probability ε at time s backwards, i.e., all lineages crossing this time section are independently deleted with probability $1 - \varepsilon$
- Set $B_T^\varepsilon :=$ coalescence time between two consecutive survivors,
- so that $s = 0$ corresponds to sampling.
Figure: A coalescent point process with a bottleneck at time $T - s$ from present time. All lineages crossing this time are independently deleted with probability $1 - \epsilon$.
Bottleneck : result

- With probability \(P(H^T < s) \), \(B_\varepsilon^T \) is distributed as \(H^T \) conditional on \(H^T < s \)
- With probability \(P(H^T \geq s) \),

\[
B_\varepsilon^T \overset{(d)}{=} \max\{A_1, \ldots, A_K\},
\]

where the \(A_i \)'s are i.i.d. distributed as \(H^T \) conditional on \(H^T \geq s \)

and

\[
\mathbb{P}(K = j) = \varepsilon (1 - \varepsilon)^{j-1}.
\]

- This yields

\[
F_\varepsilon(t) := \frac{1}{P(B_\varepsilon^T \geq t)} = \begin{cases}
F_T(t) & \text{if } t < s \\
\varepsilon F_T(t) + (1 - \varepsilon) F_T(s) & \text{if } t \geq s
\end{cases}
\]
More bottlenecks

Start with a coalescent point process and add extra bottlenecks with survival probabilities $\varepsilon_1, \ldots, \varepsilon_k$ at times $T - s_1 > \ldots > T - s_k$ (where $s_1 \geq 0$ and $s_k < T$).

Proposition (L. (2012))

Conditional on survival, the new reconstructed tree is again a coalescent point process with inverse tail distribution F_ε given by

$$F_\varepsilon(t) = \varepsilon_1 \cdots \varepsilon_m F_T(t) + \sum_{j=1}^{m} (1 - \varepsilon_j) \varepsilon_1 \cdots \varepsilon_{j-1} F_T(s_j) \quad t \in [s_m, s_{m+1}],$$

*for each $m \in \{0, 1, \ldots, k\}$, with $s_0 := 0$ and $s_{k+1} := T$.***
Outline

1 Contour
2 Coalescent
3 Bottlenecks
4 Mutations
5 Epidemics
6 Phylogenies
Neutral, Poissonian mutations

- **Supercritical**, time-homogeneous, splitting tree
- $N_t :=$ population size at time t
- $\alpha :=$ Malthusian parameter $= \lim_{t \to \infty} \frac{1}{t} \log N_t$
- $\theta :=$ mutation rate on lineages.

Goal. Characterize the allelic partition under the **infinitely-many alleles model**.
In (L. 2009) and (Champagnat & L. 2012a), we have characterized the clonal coalescent point process to give an explicit expression for the expectation, conditional on N_t, of

$$A(k, t, y) := \text{number of alleles of age in } (y, y + dy) \text{ and carried by } k \text{ alive individuals at time } t.$$

= expected allele frequency spectrum for small families.
Clonal coalescent point process

\[B_i^\theta = \text{distances between consecutive virgin lineages} \]

\[H_i^\theta = \max \text{ of branch lengths between consecutive virgin lineages} \]

\(\implies \) \((B_i^\theta, H_i^\theta) \) are i.i.d.
Largest or oldest families at time t

Proposition (Champagnat & L. 2012b)

Assume $\alpha \leq \theta$. The following results hold in expectation.

- If $\alpha < \theta$, there are explicit constants b and $\beta := \theta/(\theta - \alpha)$, such that largest families have sizes $b(\alpha t - \beta \log(t)) + c$ and they all have age $\sim \frac{\log(t)}{\theta - \alpha}$.

 Oldest families have ages $\gamma t + a$ and tight sizes, where $\gamma := \alpha/\theta$.

- If $\alpha = \theta$, there are explicit constants b and $\beta := 1/(2\alpha)$, such that largest families have sizes $b(\alpha t - \beta \log(t) + c)^2$ and they all have age $\sim t/2$.

 Oldest families have ages $t - \gamma \log(t) + a$ and tight sizes, where $\gamma := 1/\alpha$.

If $\alpha > \theta$, largest families have sizes $ce^{(\alpha-\theta)t}$ and are also the oldest ones (born at times $O(1)$).
Largest or oldest families at time t

Proposition (Champagnat & L. 2012b)

Assume $\alpha \leq \theta$. The following results hold in expectation.

- If $\alpha < \theta$, there are explicit constants b and $\beta := \theta / (\theta - \alpha)$, such that largest families have sizes $b(\alpha t - \beta \log(t)) + c$ and they all have age $\sim \frac{\log(t)}{\theta - \alpha}$. Oldest families have ages $\gamma t + a$ and tight sizes, where $\gamma := \alpha / \theta$.

- If $\alpha = \theta$, there are explicit constants b and $\beta := 1/(2\alpha)$, such that largest families have sizes $b(\alpha t - \beta \log(t) + c)^2$ and they all have age $\sim t/2$. Oldest families have ages $t - \gamma \log(t) + a$ and tight sizes, where $\gamma := 1/\alpha$.

If $\alpha > \theta$, largest families have sizes $ce^{(\alpha-\theta)t}$ and are also the oldest ones (born at times $O(1)$).
Convergence in distribution (1)

ASSUME $\alpha < \theta$.

Take the coalescent point process at time t, choose s_t such that $s_t \to \infty$, and set

$$N'_{t-s_t} := \text{number of subtrees } (\mathcal{T}_i) \text{ grafted on branch lengths } \geq s_t$$
Convergence in distribution (2)

Set

\[X_t^{(k)} := \text{size of the } k\text{-th largest family in the whole population} \]

\[Y_i := \text{size of the largest family in subtree } \mathcal{T}_i. \]

With \(s_t := \log(t) / (\theta - \alpha) \), we have

- \(N_{t-s_t}' \to \infty \)
- \((X_t^{(1)}, \ldots, X_t^{(k)}) = \text{first } k \text{ order statistics of } \{Y_1, \ldots, Y_{N_t'-s_t}\} \) W.H.P.
- With \(L_t(x) := \text{number of families larger than } x \text{ at time } t \),

\[\mathbb{P}(Y \geq x_t + c) = \mathbb{P}(L_{s_t}(x_t + c) \geq 1) \sim \mathbb{E}(L_{s_t}(x_t + c)). \]
Convergence in distribution (3)

\[X_t^{(k)} := \text{size of the } k\text{-th largest family in the whole population} \]

Theorem (Champagnat & L. 2012b)

There is an explicit constant \(c \in (0, 1) \), such that

\[(X_t^{(k)} - b(\alpha t - \beta \log(t)); k \geq 1) \text{ converge (fdd) to the (ranked) atoms of a mixed Poisson point measure with intensity} \]

\[\mathcal{E} \sum_{j \in \mathbb{Z}} c^j \delta_j, \]

where \(\mathcal{E} \) is some exponential r.v.
Convergence in distribution (4)

\[A_t^{(k)} := \text{age of the } k\text{-th oldest family in the whole population} \]

Theorem (Champagnat & L. 2012b)

The sequence \((A_t^{(k)} - (\alpha t / \theta); k \geq 1) \) converges (fdd) to the (ranked) atoms of a mixed Poisson point measure with intensity

\[\mathcal{E} e^{-\theta a} da, \]

where \(\mathcal{E} \) is some exponential r.v.
Outline

1. Contour
2. Coalescent
3. Bottlenecks
4. Mutations
5. Epidemics
6. Phylogenies
Epidemic model

- Epidemics modelled by a splitting tree, where birth = transmission (rate λ) and lifetime = period of infectiousness
- each patient can be detected to be a carrier only after an independent exponential clock with parameter δ running from the beginning of her infection (medical exam or symptoms);
- $T :=$ detection time = first time when one these clocks rings.
Splitting tree with exponential clocks

⇒ Each individual is equipped with an exponential clock with parameter δ initialized at birth.

$$T := \text{first time when one of these clocks rings.}$$
Let $X^{(T)}$ be the JCP of the splitting tree truncated below the detection time T.

Theorem (L. & Trapman 2012)

For any $n \geq 1$, for any $t > 0$, for any càdlàg path e,

$$
P\left(N_T = n, T \in dt, X^{(T)} \in de\right) = \frac{\delta}{b} e^{-\delta V(e)} P\left(-I_n \in dt, Y'_n \in de\right),$$

where $V(e)$ denotes the total lifetime of a path e, Y_n is the concatenation of n i.i.d. excursions of a Lévy process, I_n is its infimum and Y'_n is its Vervaat transform.
Vervaat transformation

\[H(Y_n) \]

\[V(Y_n) \]

\[V(Y_n) - H(Y_n) \]
Methicillin–resistant *Staphylococcus aureus*

- patients have i.i.d lengths of stay in the hospital, all distributed as some r.v. K (such that $E(K) < \infty$);
- **Conditional** on infection, the length of stay of a patient is a size-biased version of K;
- At detection time T, all patients in the hospital are screened and identified.
Notation

For individual i, set

- $U_i :=$ time elapsed from entrance of the hospital up to infection
- $A_i :=$ time elapsed from infection up to T
- $R_i :=$ residual lifetime in the hospital after T.

Set $m := \mathbb{E}(K)$ and let ϕ denote the inverse of the convex function

$$x \mapsto x - \frac{\lambda}{m} \int_{(0, \infty]} (1 - e^{-xy}) \mathbb{P}(K > y) \, dy.$$
Inference from hospital data

Proposition (L. & Trapman 2012)

Conditional on $N_T = n$, the triples (U_i, A_i, R_i) of the n (randomly labelled) carriers at time T are i.i.d., distributed as the r.v. (U, A, R) (independent of n), where

$$\mathbb{E}(f(U, A, R)) = \frac{\lambda}{m} \frac{\phi(\delta)}{\phi(\delta) - \delta} \int_0^\infty du \int_0^\infty da \int_{u+a}^\infty \mathbb{P}(K \in dz) e^{-\phi(\delta)a} f(u, a, z-u-a),$$

In particular, the times $J_i = U_i + A_i$ spent in the hospital up to time T are i.i.d., distributed as the r.v. J

$$\mathbb{P}(J \in dy) = \frac{\lambda / m}{\phi(\delta) - \delta} \mathbb{P}(K > y) \left(1 - e^{-\phi(\delta)y}\right) dy.$$
Temporally-spaced epidemiological data
(with Tanja Stadler)

- A sampled individual immediately leaves the infective population.
- $S_i :=$ sampling time of individual i
- $R_i :=$ coalescence time between individuals $i - 1$ and i.

By the contour technique, the (S_i, R_i) is a Markov chain with explicit transitions.
\Rightarrow inference of model parameters from viral phylogenies (HIV, flu).
Splitting tree with exponential clocks (2)

Black dots = sampling/detecting
Phylogenetic tree models
(with H. Morlon, R.S. Etienne, B. Haegeman)

...(statistical) work in progress...

1. **Protracted speciation** (Etienne & Rosindell 2011): New born species are **incipient**, and turn **good** after a random time.

2. **Speciation by genetic differentiation** and point mutation: two individuals are in the same species if their MRCA belongs to a geodesic without mutation.

⇒ **Infer parameters** of diversification dynamics from real phylogenetic tree shapes.
Acknowledgements

• **Stochastics & Biology group**
 ⊂ Laboratoire de Probabilités et Modèles Aléatoires
 ⊂ UPMC University Paris 06

• **Stochastic Models for the Inference of Life Evolution (SMILE)**
 ⊂ Center for Interdisciplinary Research in Biology
 ⊂ Collège de France

• **ANR Modèles Aléatoires eN Écologie, Génétique, Évolution (MANEGE)**