On the usefulness of genealogical trees

N. Barton, A.M. Etheridge, A. Véber and friends.

CIRM - 13/06/2012
Evolution in a continuum

Aim: Model the evolution of the genetic composition of a geographically structured population. Space is continuous (and in 2 dimensions, most of the time).
Main characteristics

- Reproduction happens more or less locally;
- At ‘stationarity’, local population sizes are regulated;
- Individuals have a finite pool of potential parents (⇒ multiple mergers in the genealogies);
- Rare but severe bottlenecks can occur and affect potentially large regions.
Main characteristics

▶ Reproduction happens more or less locally;
▶ At ‘stationarity’, local population sizes are regulated;
▶ Individuals have a finite pool of potential parents (⇒ multiple mergers in the genealogies);
▶ Rare but severe bottlenecks can occur and affect potentially large regions.

Questions of interest

▶ Behaviour under the hypothesis of neutrality?
▶ Spatial decay of correlations between local genetic diversities?
▶ Signature of a deviation from “local rep. + neutrality”?
 ◄ large but rare extinction/recolonisation events;
 ◄ selection and selective sweeps;
And also...

- Which are the quantities summarizing the evolution?
- How can we infer them from data?
- Can we detect deviations from neutrality?
Remarks

- Already well-studied: Wright’s *island model*, the *stepping-stone model*.
 - We shall obtain equivalent results in continuous space, under equivalent assumptions;
 - But we can accommodate many other scenarii than the ‘classical ones’.

- For the rest of the talk, imagine a population of plants.
An event-based model

- Fix $\lambda > 0$ and a measure $\xi(dr, du)$ on $(0, \infty) \times [0, 1]$.
- **Reproduction events:** given by a Poisson point process on $[0, \infty) \times \mathbb{R}^2 \times (0, \infty) \times [0, 1]$ with intensity measure $dt \otimes dx \otimes \xi(dr, du)$.

In words, we define a random sequence $\{(t_i, x_i, r_i, u_i), i \in I\}$ of times, centres, radii and impacts.
An event-based model

- Fix $\lambda > 0$ and a measure $\xi(dr, du)$ on $(0, \infty) \times [0, 1]$.
- Reproduction events: given by a Poisson point process on $[0, \infty) \times \mathbb{R}^2 \times (0, \infty) \times [0, 1]$ with intensity measure $dt \otimes dx \otimes \xi(dr, du)$.

In words, we define a random sequence $\{(t_i, x_i, r_i, u_i), i \in \mathcal{I}\}$ of times, centres, radii and impacts.

We start from a Poissonian cloud of indv. At the time t_i of an event, if $B(x_i, r_i)$ is empty, then do nothing. Otherwise, within the ball

1. Choose a parent uniformly at random;
2. Each indv. within the ball dies with proba u_i, indep. of each other;
3. Add a Poissonian cloud of new indv. with density λu_i. All of them have the same allele as the parent.
In pictures
In pictures
In pictures
In pictures
A few comments

- **Objectives met:** In a populated region, each individual reproduces rarely ⇒ sort of *logistic* regulation. Other characteristics included as well.

- **A flexible framework:** replace the balls by Gaussian kernels, or any mechanism preserving the average local density of indv.

- **Berestycki, Etheridge & Hutzenthalier (2010):** If λ is large enough, the population survives and has a stationary distribution.

- **But:** Genealogies are not easy to describe, since the presence of an individual gives us information on the past (not a simple time reversal). Forwards-in-time model not very tractable either.

To cope with the last issue, we let the density λ tend to infinity.
⇒ In the limit, the population covers the whole plane \mathbb{R}^2.
The spatial \(\Lambda \)-Fleming-Viot process

Type/allele space: \(K \) compact.

Population at time \(t \): Measure \(M_t \) on \(\mathbb{R}^d \times K \) whose first marginal is Lebesgue measure (uniform density of indv.). That is,

\[
M_t(dx, dk) = dx \rho_t(x, dk).
\]

A possible interpretation: The ‘real’ population is a Poisson point process with (random) intensity measure \(M_t \) (Wakolbinger & V., 2012).
The spatial Λ-Fleming-Viot process

Type/allele space : K compact.

Population at time t : Measure M_t on $\mathbb{R}^d \times K$ whose first marginal is Lebesgue measure (uniform density of indv.). That is,

$$M_t(dx, dk) = dx \rho_t(x, dk).$$

A possible interpretation: The ‘real’ population is a Poisson point process with (random) intensity measure M_t (Wakolbinger & V., 2012).

Evolution : same Poisson point process of events. If t_i is the time of an event, the reproduction event occurs within $B(x_i, r_i)$.

- A parent is chosen uniformly at random from $B(x_i, r_i)$ [location z, type κ];
- For every $y \in B(x_i, r_i)$, $\rho_{t_i}(y, dk) = (1 - u_i)\rho_{t_i-}(y, dk) + u_i\delta_\kappa$.
Duality relations

- The genealogical process $((\{\xi_1^s, \ldots, \xi_{N^s}^s\})_{s \geq 0})$ is a system of \textit{a priori} correlated (symmetric) jump processes that coalesce when they are affected by the same event.

- Take $K = \{0, 1\}$ and $w_t(x) := \rho_t(x, \{1\})$. Then, we have: for every $j \geq 1$ and $\psi \in C_c((\mathbb{R}^d)^j)$,

$$
\mathbb{E}_{w_0} \left[\int_{(\mathbb{R}^d)^j} \psi(x_1, \ldots, x_j) \left\{ \prod_{i=1}^j w_t(x_i) \right\} dx_1 \cdots dx_j \right]
= \int_{(\mathbb{R}^d)^j} \psi(x_1, \ldots, x_j) \mathbb{E}_{\{x_1, \ldots, x_j\}} \left[\prod_{i=1}^{N_t} w_0(\xi_t^i) \right] dx_1 \cdots dx_j.
$$

In particular,

$$
\mathbb{E}_{w_0} \left[\prod_{i=1}^j w_t(x_i) \right] = \mathbb{E}_{\{x_1, \ldots, x_j\}} \left[\prod_{i=1}^{N_t} w_0(\xi_t^i) \right], \quad \text{Lebesgue-a.e.}
$$
A first application: large-scale behaviour

Initial configuration:

Simulations by H. Saadi. Fixed radius, $u \equiv 1$.
A first application: large-scale behaviour

After 2×10^6 events:

Simulations by H. Saadi. Fixed radius, $u \equiv 1$.
A first application: large-scale behaviour

After 3×10^6 events:

Simulations by H. Saadi. Fixed radius, $u \equiv 1$.
A first application: large-scale behaviour

After 4×10^6 events:

Simulations by H. Saadi. Fixed radius, $u \equiv 1.$
A first application: large-scale behaviour

After 5×10^6 events:

Simulations by H. Saadi. Fixed radius, $u \equiv 1$.
Geographical space: \mathbb{R}^d, Type space: $\{0, 1\}$

- **Case 1: Fixed radii**
 We fix $R > 0$ and $u \in (0, 1]$. All events have radius R and impact u.
 - Most natural first case...
 - Asymptotic behaviour equivalent to that of the nearest-neighbour stepping-stone model.
Large-scale evolution (with N. Berestycki & A.E.)

Geographical space: \mathbb{R}^d, Type space: $\{0, 1\}$

► **Case 1: Fixed radii**
We fix $R > 0$ and $u \in (0, 1]$. All events have radius R and impact u.

\leftarrow Most natural first case...
\leftarrow Asymptotic behaviour equivalent to that of the nearest-neighbour stepping-stone model.

► **Case 2: Radii with an α-stable distribution**
We fix an impact $u \in (0, 1]$, $\alpha \in (1, 2)$ and take as a measure on radii

$$\mu(dr) = \frac{1_{\{r>1\}}}{rd^{d+1+\alpha}}dr.$$

\leftarrow Allows very large but very rare events.
\leftarrow Rescaled ancestral lineages are well-understood.
Case 1: Fixed radius and impact
Case 2: Fixed impact and intensity of radii $r^{-(d+\alpha+1)} dr$

Set $\alpha = 2$ in case 1, and for all $n \geq 1$,

$$w_t^n(x) := \frac{w_{nt}(n^{1/\alpha} x)}{\alpha}.$$
Case 1: Fixed radius and impact
Case 2: Fixed impact and intensity of radii $r^{-(d+\alpha+1)} \, dr$

Set $\alpha = 2$ in case 1, and for all $n \geq 1$,

$$w_t^n(x) := w_{nt}(n^{1/\alpha} x).$$

Initial condition: $w_0(x) = 1_H(x)$, where $H = \{x_{(1)} \leq 0\}$.

Questions: What does w_t^n look like when n is large? Width of the interface? Pattern of genetic diversity? Roughness of the interface?
Answer for fixed radius, $d = 1$

(a)

(b)

(c)

$u = 0.8$, $r = 0.033$ and $n = 10^3$. Initial condition, after 10^5 events, after 10^7 events.

(Simulations by J. Kelleher)
That is...

Theorem 1 [Berestycki, Etheridge & V. (2012)]

- There exists a measure valued process \((M_t^{(2)}, t \geq 0) \) such that
 \[
 M^n \xrightarrow{\text{fdd's}} M^{(2)}, \quad \text{as } n \to \infty.
 \]

- Moreover, one can find \(\tilde{\sigma}^2 > 0 \) such that, if \(X \) denotes BM and
 \[
 p_t^{(2)}(x) := \mathbb{P}[X_{u\tilde{\sigma}^2 t} \in H],
 \]
 then
That is...

Theorem 1 [Berestycki, Etheridge & V. (2012)]

- There exists a measure valued process \((M_t^{(2)}, t \geq 0)\) such that
 \[
 M^n \xrightarrow{\text{fdd's}} M^{(2)}, \quad \text{as } n \to \infty.
 \]

- Moreover, one can find \(\tilde{\sigma}^2 > 0\) such that, if \(X\) denotes BM and
 \[
 p_t^{(2)}(x) := \mathbb{P}[X_{u\tilde{\sigma}^2} \in H],
 \]
 then
 \[
 \mathbb{E}[w_t^{(2)}(x)] = p_t^{(2)}(x).
 \]

 If \(d = 1\) : for every \(t > 0\), \(w_t^{(2)}\) is a random field of correlated Bernoulli r.v.'s with
That is...

Theorem 1 [Berestycki, Etheridge & V. (2012)]

There exists a measure valued process \((M_i^{(2)}, \, t \geq 0)\) such that

\[
M^n \xrightarrow{fdd's} M^{(2)}, \quad \text{as } n \to \infty.
\]

Moreover, one can find \(\tilde{\sigma}^2 > 0\) such that, if \(X\) denotes BM and

\[
p_t^{(2)}(x) := \mathbb{P}[X_{u\tilde{\sigma}^2 t} \in H],
\]

If \(d = 1\) : for every \(t > 0\), \(w_t^{(2)}\) is a random field of correlated Bernoulli r.v.'s with

\[
\mathbb{E}[w_t^{(2)}(x)] = p_t^{(2)}(x).
\]

If \(d \geq 2\) : for every \(t \geq 0\), \(w_t^{(2)}(x) = p_t^{(2)}(x)\) Lebesgue-a.e.
Case of stable radii, $d = 1$

$a = 0.8$, $\alpha = 1.3$ and $n = 10^4$.

(a) Initial condition, (b-c) after 100 events, (d-e) after 10^6 events.
Case of stable radii, $d = 2$

$u = 0.8$, $\alpha = 1.3$ and $n = 10^3$. After 10^5, 10^6 and 10^7 events.
Asymptotic behaviour in the presence of large events

Theorem 2 [Berestycki, Etheridge & V. (2012)]

There exists a measure valued process \((M_t^{(\alpha)}, t \geq 0)\) such that

\[
M^n \xrightarrow{(fdd's)} M^{(\alpha)}, \quad \text{as } n \to \infty.
\]

Moreover, there exists a symmetric \(\alpha\)-stable process \(X^{(\alpha)}\) such that, if

\[
p_t^{(\alpha)}(x) := \mathbb{P}[X_{ut}^{(\alpha)} \in H]
\]

then in any dimension, for every \(t > 0\), \(w_t^{(\alpha)}\) is a random field of correlated Bernoulli r.v.'s with

\[
\mathbb{E} [w_t^{(\alpha)}(x)] = p_t^{(\alpha)}(x).
\]
Conclusions

- **No coexistence of types** unless \(d \geq 2 \) and reproduction is ‘purely local’.

- The impact \(u \) appears only in the **limiting speed** of evolution (same pattern of allele frequencies for all \(u \in (0, 1] \));

- The correlations between local frequencies are given by the genealogical process. **Correlation length:**
 - \(\sqrt{n} \) when only small events,
 - \(n^{1/\alpha} \) when mixture of events.

- Since \(n^{1/\alpha} \gg \sqrt{n} \), this neutral model can explain the **correlation lengths much larger than expected** in certain pops.

 ⇒ Large but rare extinction/recolonization can have a significant impact on the genetic diversity of a population.
Idea of the proof

By duality, for every $j \geq 1$ and $\psi \in C_c((\mathbb{R}^d)^j)$,

$$
\mathbb{E} w^n_0 \left[\int_{(\mathbb{R}^d)^j} \psi(x_1, \ldots, x_j) \left\{ \prod_{i=1}^{j} w^n_t(x_i) \right\} dx_1 \cdots dx_j \right]
$$

$$
= \int_{(\mathbb{R}^d)^j} \psi(x_1, \ldots, x_j) \mathbb{E}_{\{x_1, \ldots, x_j\}} \left[\prod_{i=1}^{N_t} w^n_0(\xi^n_{t,i}) \right] dx_1 \cdots dx_j,
$$

where

$$
w^n_0 = 1_H \quad \text{and} \quad \xi^n_{t,i} = n^{-1/\alpha} \xi_{nt}.
$$

These test functions characterize the law of each M_t.

\Rightarrow Understanding the limit of ξ^n gives the limit of w^n.
Idea of the proof

By duality, for every $j \geq 1$ and $\psi \in C_c(\mathbb{R}^d_j)$,

$$
\mathbb{E}_{w_0^n} \left[\int_{\mathbb{R}^d_j} \psi(x_1, \ldots, x_j) \left\{ \prod_{i=1}^j w^n_t(x_i) \right\} dx_1 \cdots dx_j \right]
$$

$$
= \int_{\mathbb{R}^d_j} \psi(x_1, \ldots, x_j) \mathbb{E}_{x_1, \ldots, x_j} \left[\prod_{i=1}^{N_t} w_0^n(\xi_t^{n, i}) \right] dx_1 \cdots dx_j,
$$

where

$$w_0^n = 1_H \quad \text{and} \quad \xi_t^{n, i} = n^{-1/\alpha} \xi_{nt}^i.$$

These test functions characterize the law of each M_t.

⇒ Understanding the limit of ξ^n gives the limit of w^n.

Correlations:

$$
\mathbb{E}_{w_0^n} \left[\prod_{i=1}^j w^n_t(x_i) \right] = \mathbb{P}_{x_1, \ldots, x_j} \left[\xi_t^{n, i} \in H, \ 1 \leq i \leq N_t^n \right].
$$
Genealogies in the limit

Under local events:

1 lineage After rescaling, an ancestral line jumps at rate $\mathcal{O}(n)$ at distance $\mathcal{O}(1/\sqrt{n})$

\Rightarrow A single lineage converges to Brownian motion, with speed $\sigma^2 = u\tilde{\sigma}^2$.

More lineages Two lineages

\leftrightarrow move independently when at distance $> 2R/\sqrt{n}$,
\leftrightarrow may coalesce only when at distance $\leq 2R/\sqrt{n}$.

\Rightarrow The ancestral process converges to a system of independent Brownian motions which coalesce upon meeting.

Under mixed events:
The ancestral process converges to a system of coalescing symmetric α-stable processes. A finite sample reaches its MRCA in finite time a.s.
Genealogies in the limit

Under local events:

1 lineage After rescaling, an ancestral line jumps at rate $\mathcal{O}(n)$ at distance $\mathcal{O}(1/\sqrt{n})$

⇒ A single lineage converges to Brownian motion, with speed $\sigma^2 = u\tilde{\sigma}^2$.

More lineages Two lineages

⇒ move independently when at distance $> 2R/\sqrt{n}$,
\[\Leftrightarrow\] may coalesce only when at distance $\leq 2R/\sqrt{n}$.

⇒ The ancestral process converges to a system of independent Brownian motions which coalesce upon meeting.

Under mixed events: The ancestral process converges to a system of coalescing symmetric α-stable processes. A finite sample reaches its MRCA in finite time a.s.
Under the assumption of local reproduction, the evolution over large scales depends only on σ^2.

Cannot be the case when we consider small to intermediate geogr.- and time-scales (coalescence is not instantaneous, e.g.).

⇒ Other quantities summarizing the local evolution?

Even when large but rare bottlenecks occur, they will not be seen over sufficiently small scales (genealogies ‘resolved’ in a few hundred generations only).
The Wright-Malécot formula

As in the stepping-stone model, let us set

\[F_\mu(|x - y|) := \mathbb{E}_{\{x,y\}}[e^{-2\mu T_c}] \]

When reproduction is purely local and \(\mu \ll 1 \), \(F_\mu \) is well-approximated by the Wright-Malécot formula:

\[F_\mu(|x - y|) \approx K_0 \left(\frac{|x - y|}{\ell \mu} \right) N + \log \left(\frac{\ell \mu}{\kappa} \right) \]

where

- \(\ell \mu = \sigma / \sqrt{2 \mu} \gg 1 \) is a characteristic length;
- \(\kappa \) is a local scale given by the precise local dynamics;
- \(N \) measures the number of potential parents of an individual (\(\propto 1/u \) here).
The Wright-Malécot formula

As in the stepping-stone model, let us set

$$F_\mu(|x - y|) := \mathbb{E}_{\{x,y\}}[e^{-2\mu T_c}].$$

When reproduction is purely local and $\mu \ll 1$, F_μ is well-approximated by the Wright-Malécot formula:

$$F_\mu(|x - y|) \approx \frac{K_0(|x - y|/\ell_\mu)}{\mathcal{N} + \log(\ell_\mu/\kappa)}, \quad |x - y| > \kappa$$

where

- $\ell_\mu = \sigma/\sqrt{2\mu} \gg 1$ is a characteristic length;
- κ is a local scale given by the precise local dynamics;
- \mathcal{N} measures the number of potential parents of an individual ($\propto 1/u$ here).
Fit between F_μ (plain lines) and the Wright-Malécot formula (dashed lines).

Left: local rep. only; **Right**: 2 types of events. (Figures by J. Kelleher)
Frequency-based inference

- σ^2, \mathcal{N} and κ summarize the local evolution of genetic diversities.
- Assume mutation occurs at rate $\mu \ll 1$ and maintains an average heterozygosity H_μ over some intermediate spatial scale.
- Using the duality formula, we obtain

$$\frac{\text{Cov}(\rho(x), \rho(y))}{H_\mu} \approx \mathbb{E}\left[e^{-2\mu T_c}\right] \approx \frac{K_0(|x - y|/\ell_\mu)}{\mathcal{N} + \log(\ell_\mu/\kappa)}.$$
Frequency-based inference

- \(\sigma^2, \mathcal{N}\) and \(\kappa\) summarize the local evolution of genetic diversities.

- Assume mutation occurs at rate \(\mu \ll 1\) and maintains an average heterozygosity \(H_\mu\) over some intermediate spatial scale.

- Using the duality formula, we obtain

\[
\frac{\text{Cov}(\rho(x), \rho(y))}{H_\mu} \approx \mathbb{E}\left[e^{-2\mu T_c}\right] \approx \frac{K_0(|x - y|/\ell_\mu)}{\mathcal{N} + \log(\ell_\mu/\kappa)}.
\]

- **A basis for inference:** Call \(\bar{H}\) the average heterozygosity in a sample taken from nearby sites \(x_1, \ldots, x_n\). If \(x_i \neq x_j\),

\[
\frac{\text{Cov}(\rho(x_i), \rho(x_j))}{\bar{H}} \approx \frac{K_0(|x_i - x_j|/\ell_\mu)}{\mathcal{N}}
\]

(1)

- Assuming the frequencies are Gaussian fluct. around their mean, (1) yields a maximum likelihood scheme [Barton et al, 2012].
Correlations across loci
Correlations across loci

▶ **Question**: We understand well the genealogies at 1 locus, what about more than 1? A whole genome?

▶ **Main characteristic**: Two recombinants may coalesce again quickly, for ex. due to the next event which overlaps them.

⇒ Creates potentially strong correlations between the allele frequencies at neighbouring loci.
Correlations across loci

▶ **Question**: We understand well the genealogies at 1 locus, what about more than 1? A whole genome?

▶ **Main characteristic**: Two recombinants may coalesce again quickly, for ex. due to the next event which overlaps them.

⇒ Creates potentially strong correlations between the allele frequencies at neighbouring loci.

▶ **Sub-questions**:

← Are there regimes of parameters for which decorrelation between the ancestral lineages of an individual at two (or more) loci can occur? What are the local mechanisms maintaining some correlations?

← Influence of the presence of large extinction/recolonization events?

← Difference with the pattern left behind by a selective sweep? by recurrent global bottlenecks?
On the scale of the whole population

Geographical space: \mathbb{R}^2, Type space: $K_1 \times K_2$ (2 loci)

Again, 2 types of events:

Small ev. Each site is hit at rate $\mathcal{O}(1)$ by an event of size $\mathcal{O}(1)$.

- A random number of parents is chosen;
- A fraction u_s of the local population is killed.
- A fraction r_n of the offspring are *recombinants* (i.e., inherit their types k_1, k_2 from different parents)
On the scale of the whole population

Geographical space: \mathbb{R}^2, Type space: $K_1 \times K_2$ (2 loci)

Again, 2 types of events:

Small ev. Each site is hit at rate $\mathcal{O}(1)$ by an event of size $\mathcal{O}(1)$.

- A random number of parents is chosen;
- A fraction u_s of the local population is killed.
- A fraction r_n of the offspring are recombinants (i.e., inherit their types k_1, k_2 from different parents)

Large ev. Each site is hit at rate ϕ_n^{-1} by an event of size $\mathcal{O}(n^\alpha)$, where $\alpha > 0$. A fraction u_B of the local pop. is replaced, and we assume no recombination for simplicity.

Regime $1 \ll \phi_n \ll n^{2\alpha}$ as $n \to \infty$, and $(r_n)_{n \geq 1}$ is nonincreasing.
On the scale of the whole population

Geographical space: \mathbb{R}^2, **Type space:** $K_1 \times K_2$ (2 loci)

Again, 2 types of events:

Small ev. Each site is hit at rate $O(1)$ by an event of size $O(1)$.

\hookleftarrow A random number of parents is chosen;
\hookleftarrow A fraction u_s of the local population is killed.
\hookleftarrow A fraction r_n of the offspring are *recombinants* (i.e., inherit their types k_1, k_2 from different parents)

Large ev. Each site is hit at rate ϕ_n^{-1} by an event of size $O(n^\alpha)$, where $\alpha > 0$. A fraction u_B of the local pop. is replaced, and we assume no recombination for simplicity.

Regime $1 \ll \phi_n \ll n^{2\alpha}$ as $n \to \infty$, and $(r_n)_{n \geq 1}$ is nonincreasing.

Sample 2 individuals at distance $x_n \gg n^\alpha$.

\Rightarrow Joint distribution of the coal. time at the two loci, as $n \to \infty$?
Theorem [Etheridge & V. (2012)]

- If we sample 2 individuals at distance \(x_n \gg n^\alpha \), the genealogy at each locus is Kingman’s coalescent when considered on the timescale

\[
\phi_n n^{2(t-\alpha)}, \ t > \alpha.
\]
Patterns of correlations across loci

Theorem [Etheridge & V. (2012)]

- If we sample 2 individuals at distance $x_n \gg n^\alpha$, the genealogy at each locus is Kingman’s coalescent when considered on the timescale
 $$\phi_n n^{2(t-\alpha)}, \ t > \alpha.$$

- In addition, there exists a critical distance
 $$D_n^* \approx n^\alpha \sqrt{1 + \frac{\log \phi_n}{\log r_n \phi_n}}$$

such that when n is large,
 - If $x_n \gg D_n^*$, the ancestries at the two loci are independent,
 - If $x_n \ll D_n^*$, there is a decorrelation threshold before which the genealogies are completely correlated, and after which they become approximately independent.
Conclusions

\[\left(\frac{\phi_n}{n^{2\alpha}} \right) n^{2t} \ll n^{2t}, \]

\Rightarrow \text{Large events generate a faster coalescence, and so (again) much larger correlation lengths between allele frequencies.}

\Rightarrow \text{The second result gives us the sampling distance at which we should expect to see a decorrelation between the variations in allele freq. at the two loci, with or without large events.}

\Rightarrow \text{Comparison with the effect of sweeps possible.}

\Rightarrow \text{But sampling distances must be very large. Locally, the probability of decorrelation is very small.}

\Rightarrow \text{Consider instead many loci (or a long continuous genome).}
Length of regions identical in state

- Assume only **local reproduction** (but robust to rare large events);
- **Many loci**, with recombination rate r between 2 neighbours;
Length of regions identical in state

- Assume only **local reproduction** (but robust to rare large events);
- **Many loci**, with recombination rate r between 2 neighbours;
- Sample 2 individuals at **small/medium distance** δ.
- Consider the regions of the genetic map where the two individuals are **identical in state**, in particular the large blocks generated by **early** coalescence.
Length of regions identical in state

- Assume only **local reproduction** (but robust to rare large events);
- **Many loci**, with recombination rate r between 2 neighbours;
- Sample 2 individuals at **small/medium distance** δ.
- Consider the regions of the genetic map where the two individuals are **identical in state**, in particular the large blocks generated by **early** coalescence.

- **Early coalescence** means on a timescale of order $(\delta/\sigma)^2$, where σ^2 is the variance of the motion of a lineage.

 ⇒ for some $\beta > 0$, set

 $$\mu(\beta, \delta) = \frac{\sigma^2}{2\beta \delta^2} \quad \text{and} \quad T_\mu \sim \text{Exp}(2\mu).$$

 A coalescence at locus j is **early** if $T^j_c \leq T_\mu$.
An approximation

Theorem [Barton et al. (2012)]

Let X be the length of a given region of identity in state generated by an early coal., when the two indv. are sampled at distance δ.

Then X follows approximately a geometric distribution with parameter $\gamma(\delta)$ given by

$$\gamma(\delta) = \frac{r_{\text{eff}}}{r_{\text{eff}} + \mu} \left(1 - \frac{K_0(1/\sqrt{\beta})}{N + \log(\sqrt{\beta} \delta / \kappa)} \right),$$

where

- κ and N come from the Wright-Malécot approx.,
- $r_{\text{eff}} = r \psi(\delta)$ is an effective recombination rate,
- $\psi(\delta)$ is the escape probability of two recombinant lineages.
CDF of long conserved blocks, (left) from a single sim. and (right) from 200 sim.

\(R = 1, u = 0.75, r = 10^{-5}, \delta = 10 \) and 50k loci.

Heavy solid line: empirical; **Dashed line:** Geom(\(\gamma(\delta)\)); **Solid line:** Geom(\(\hat{p}\)).
Still a lot of work...

- The parameter $\gamma(\delta)$ depends ‘only’ on σ^2, \mathcal{N} and κ.
 \Rightarrow Another route to inference?
Still a lot of work...

- The parameter $\gamma(\delta)$ depends ‘only’ on σ^2, N and κ.
 \Rightarrow Another route to inference?

- Several problems:
 - The empirical CDF overestimates the probability of large regions (genealogies are embedded in the same pedigree).
 - Not easy to relate regions of identity in state between the 2 genomes, and regions of early coalescence. In particular, which β should we take?
Further questions
Natural selection

We bias the choice of the parent, by giving a weight $1 + s$ to type 1 individuals, and weight 1 to type 0 indv.

\Rightarrow Dual available, but branches as well (potential selection events).
Natural selection

We bias the choice of the parent, by giving a weight $1 + s$ to type 1 individuals, and weight 1 to type 0 indv.

\[\Rightarrow \textbf{Dual available}, \text{ but branches as well (potential selection events)}. \]

- Large neighbourhood size: when the impact u_n and the selection strength s_n tend to 0 appropriately,

 \[\leftrightarrow \textbf{In 1d and with only local rep.}, \text{ the frequency of type 1 individuals (suitably rescaled) converges to the solution to} \]

 \[dw = \frac{1}{2} \Delta w \, dt + \tilde{s}w(1 - w) \, dt + \sqrt{\frac{1}{N_e}} \, w(1 - w) \, B(dt, dx), \]

 where $B(dt, dx)$ is a space-time white noise.

 \[\leftrightarrow \textbf{In higher dim.}, \text{ no noise in the limit}. \]

 \[\leftrightarrow \text{Equivalent results when large-scale bottlenecks occur, and only the motion is affected (still a local selection pressure and local coalescence)}. \]

 \[(\textit{Work in progress with A. Etheridge and F. Yu.}) \]
Natural selection

We bias the choice of the parent, by giving a weight $1 + s$ to type 1 individuals, and weight 1 to type 0 indv.

⇒ Dual available, but branches as well (potential selection events).

▶ Large neighbourhood size: when the impact u_n and the selection strength s_n tend to 0 appropriately,

\leftarrow In 1d and with only local rep., the frequency of type 1 individuals (suitably rescaled) converges to the solution to

$$dw = \frac{1}{2} \Delta w \, dt + \tilde{w}(1 - w) \, dt + \sqrt{\frac{1}{N_e}} \, w(1 - w) B(dt, dx),$$

where $B(dt, dx)$ is a space-time white noise.

\leftarrow In higher dim., no noise in the limit.

\leftarrow Equivalent results when large-scale bottlenecks occur, and only the motion is affected (still a local selection pressure and local coalescence).

(Work in progress with A. Etheridge and F. Yu.)

▶ Small neighbourhood size: The pattern produced is very different (cf. Nick’s presentation).
Range expansion

Extreme case of selection: only type 1’s reproduce.

Expanding population of Pseudomonas aeruginosa (courtesy of Kevin Foster), and a simulation of the modified SLFV, by J. Kelleher.

(Work in progress with A. Etheridge and J. Kelleher)
Thank you!