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The need of mathematical models, inference
and model selection tools in epidemiology

Epidemiological model since 1927
Partially observed and noisy data

Accounting for the characteristics of the dynamics:
non linearity and non stationarity

More and more need of predictive tools in Public
Health

One needs adapted tools for parameter inference,
to test hypothesis and to make model selection



Classical Epidemiological Models



Classical Epidemiological Models

Classical models are known as SIR models and are
based on the immune status of the population
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Classical Epidemiological Models

Classical models are known as SIR models and are
based on the immune status of the population
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Classical Epidemiological Models

Classical models are known as SIR models and are
based on the immune status of the population
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Classical Epidemiological Models

= Based on this simple concept different models are
possible:
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Stochastic Epidemiological Models

We define a possible state of the system as a triplet {S, /, R}
of random variables. The evolution of the state of the system
IS led by two transition events:

- Infection of a susceptible by an infective {S,i} — {S —1,i+ 1}

« Removal of an infective {S,i} — {S,i — 1}

Each event is associated with a transition rate:

. I
si)=p.—.8
& N

« For infection T(s-1,i+1

S,1) =Y.

» For recovery and immunity T'(s,i—1



Stochastic Epidemiological Models

We introduce P (t) as the probability to be in the state 6 ={s, i}.
The evolution of the probablllty distribution P ,(t) over the state

space E = {{S i(}EN*s+is< N} is governed by the general
master equation:

dl)s,i(t)= (i—1)
dt P N

(s+DP,, . ()+y(i+DP ., (¢)- (ﬁﬁs+yz)P (1)

dP
dt

QP

where Q is called the transition matrix (size nxn, n=E is the
number of possible states) and P, is a vector of size N that
contains the probabilities for all the states at time t. For our SIR
model, n = %2 (N+1)(N+2).



Stochastic Epidemiological Models

To solve the non-linear stochastic equations of the stochastic
epidemiological models different methods can be used:

Monte-Carlo methods: The Gillespie method

Van Kampen approximation of the master equation
(Kurtz approximation for mathematician!)



Stochastic Epidemiological Models

Van Kampen approximation of the master equation

Make the assumption that P depends on N and the random variables are
rewritten as the sum of a macroscopic deterministic variable and a

mesoscopic random variable:
S=N¢()+~/Nn,
I =NO(t)+Nn,

The objective of this approximation is then to extract, from the master
equation, the deterministic evolution of ¢(t) and 0(t) and the probability
distribution of n; and n,.

One obtains a system of ordinary differential equations governing the
deterministic variables ¢(t) and O(t): d¢

— =—Pp(1)0(r)
ot

% _ BHIO) — (1)



Stochastic Epidemiological Models

Van Kampen approximation of the master equation

One obtains a system of ordinary differential equations governing the
deterministic variables ¢(t) and O(t): 3¢

a_ =—-pp(1)0(1)

— = Bo(1)0(t)-yO(t)
ot

And a Fokker-Planck equation for the probability distribution of 1, and n,:

2 2
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Stochastic Epidemiological Models

Van Kampen approximation of the master equation
And a Fokker-Planck equation on the probability distribution of n; and n,:

2

771772_ E (77] 771772 1iBJaP771772
,j=1 877] 2 i,j=1 a’?ian]’

Then we are able to compute the two first moments of this distribution:
2
1
—— = 2B0E|n; |-2B(0)E [, ]+ BH1)O()

= 2(BP(t)-)E[m; |+ 2BO)E[nm, ]+ Be(t)0(t) +y6(t)

35[771772]

= BOE [ |- BOWE[; [+ (B(9(0)~6(1) ~E[nmn] - B0



Stochastic Epidemiological Models

Van Kampen approximation of the master equation

One has to solve a system of ordinary differential equations for the
deterministic variables ¢(t) and O(t) and for the evolution of the moments

of the distribution of their fluctuations:

9% _ _ppno)
ot

% = Bo(DO(1) - y0(1)
oE 12 2
7] = -2B0E|n; |- 2¢(t)E [, ]+ Bo(1)6()

ot

OE|n; :
g? ] = 2(9(1)- V)E[Uz ] T 2ﬁ6(t)E[771772] + Po(1)0(1) +y0(1)

OF
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Stochastic Epidemiological Models

To validate the Van Kampen approximation, we have
used a numerical integration of the master equation:

dP
t=0.P
dt Q-F

This equation is linear in P then:
P, =exp(Q1)F,

Expokit* has been used to numerically solve this equation. The essential
advantage of this algorithm lies in the use of Krylov basis that permits the
computation without stocking in memory the matrix transition Q.

Then, one has a numerical estimation of P (t) for each state 6 ={s, i}.

"Sidje, R., 1998. Expokit: a software package for computing matrix exponentials. ACM Transactions on
Mathematical Software (TOMS).



Validation of the van Kampen Approximation
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Validation of the van Kampen Approximation

95% Confidence interval ----- Macroscopic value
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Validation of the van Kampen Approximation

95% Confidence interval ---- - Macroscopic value
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Validation of the van Kampen Approximation

95% Confidence interval ----- Macroscopic value
T T T T 1
B=166
)/ = O 44 e 0.01
N — 763 g 0.001
; : 0.0001
=1 .'
-100 At ] 1 1 = 1e-05
0 5 10 15 20 25
Time (days)
. oL Comparison of the distribution
Probability of extinction
1.0 H
2 08
B
8
9 06 7
a
5 £
X =
0 gz r 3
0.0
T T T | T T
0 5 10 15 20 25

Time (days)

120 155| - T T T 393 432 471 510 549 6z )
. dayb day 23



Validation of the van Kampen Approximation

95% Confidence interval ---- - Macroscopic value
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Validation of the van Kampen Approximation

95% Confidence interval ----- Macroscopic value
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Validation of the van Kampen Approximation

Concluding remarks about the estimation of the variability
due to demographic stochasticity:

When the population is small and the model is
simple: Expokit

W
Gi
W

nen the population is intermediate (< 10°):
lespie’ s algorithm.

nen the population is large (> 10°): analytical

approximations of the master equation as the
Van Kampen approximation



Likelithood-Based Inference



Likelithood-Based Inference
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Rate per 100 000 population

Likelithood-Based Inference
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Likelithood-Based Inference

For a given time series: y1.7 = (Y1,Y2, ..o, Y1)
and a state space model completely specified by:

[ f(z¢|zs_1,0) the conditional transition density
f(yt|ze,0) the conditional distribution
of the observation process
\ f(xo|@) the initial density

the likelihood is given by the identity:

T
f(y1.7|6) =H (yt|ly1:t—1,6

where z; is the unobserved Markov process, 6 is the unknown vector
of parameters and f(.|.) is a generic density specified by its arguments



Incidence per 10 000 hab

For

Likelithood-Based Inference

Maximum likelihood via lterated
Filtering (lonides et al. 2006)
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Likelithood-Based Inference

Maximum likelihood via lterated
Filtering (lonides et al. 2006)
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Likelithood-Based Inference

Maximum likelihood via lterated
Filtering (lonides et al. 2006)
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Likelithood-Based Inference

Maximum likelihood via lterated
Filtering (lonides et al. 2006)
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Likelithood-Based Inference

Maximum likelihood via lterated
Filtering (lonides et al. 2006)
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Explaining rapid reinfections in multiple-
wave influenza outbreaks



Explaining rapid reinfections in multiple-
wave influenza outbreaks

Tristan da Cunha (1971)
a two-wave flu epidemic
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Landing Max 1rst Wave End 1rst Wave Max 2nd Wave End of 2nd Wave



Explaining rapid reinfections in multiple-
wave influenza outbreaks

Tristan da Cunha (1971)
a two-wave flu epidemic

e )
50 ] Attack rates:

* Infection : 95%
40- * Reinfection : 30%

w
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_ Objectives: Disentangling between
6 biological mechanisms to explain
rapid influenza reinfection

Incidence

N
o
|

\. J
i H‘m WMH’-’h-HL | I‘rl
o) = H H—m 0 =
T T T T T
August 13 August 19 August 28 September 13 October 10

Landing Max 1rst Wave End 1rst Wave Max 2nd Wave End of 2nd Wave



Explaining rapid reinfections in multiple-
wave influenza outbreaks

A simple mechanistic approach

* A= I/N mass-action

*1/¢ : mean latent period
*1/v : mean infectious period
*1/y : mean removed period

Long-term
Immunity

U J




Explaining rapid reinfections in multiple-
wave influenza outbreaks

H1: the virus mutated during the first epidemic-
wave (Mut)




Explaining rapid reinfections in multiple-
wave influenza outbreaks

H1: the virus mutated during the first epidemic-
wave (Mut)




Explaining rapid reinfections in multiple-
wave influenza outbreaks

H1: the virus mutated during the first epidemic-
wave (Mut)

* 0 € [0,1] : cross-immunity
e 2-strain history-based model (Rios-Doria & Chowell 2009)




Explaining rapid reinfections in multiple-
wave influenza outbreaks

H2: intra-host recrudescence of infection (InH)

a: the probability to clear the viral load

& J




Explaining rapid reinfections in multiple-
wave influenza outbreaks

H3: window-of-reinfection (Win)

1/1. the mean duration of the window of
susceptibility before developing immunity

U J




Explaining rapid reinfections in multiple-
wave 1nfluenza outbreaks
Exploring the likelihood surface




Explaining rapid reinfections in multiple-
wave influenza outbreaks
Log-likelihood profile

projection
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Explaining rapid reinfections in multiple-
wave influenza outbreaks

Model selection: Akaike information criterion

AIC. = -2L(OpmLE) + 2k + ;kik;__li with k& = ||0]]
Model Win Mut In-Host
k 9 10 9
Log-Like -112.52 -115.20 -117.50
AAIC, 0 8.27 9.96

Camacho et al, 2011: PRSB



Explaining rapid reinfections in multiple-
wave influenza outbreaks

Model selection: Akaike information criterion

AIC. = -2L(OpmLE) + 2k + ;kik;__li with k& = ||0]]
Model Win Mut In-Host
k 9 10 9
Log-Like -112.52 -115.20 -117.50
AAIC, 0 8.27 9.96
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Explaining rapid reinfections in multiple-

. . wave Influenza outbreaks
Dynamics comparison

8 -

<9

- .
. Win = InH
c
8 ®°
g
> g
©
a

e

<o

I | | | 1 | ] 1 1

o 7 14 21 28 pay 35 42 43 56 ®
— | InH>Win ,?
go © %
= A}

8

Camacho et al, 2011: PRSB



Explaining rapid reinfections in multiple-

wave influenza outbreaks

Dynamics comparison
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Explaining rapid reinfections in multiple-
wave influenza outbreaks

A stochastic formulation is essential to capture
demographic stochasticity induced by small populations.

Heterogeneity among hosts is a significantly more likely
explanation for 1971’ s two-wave than viral
heterogeneity.

Studies assuming that the immune response always
provides a long-term humoral protection should
overestimate the amount of immune escape required to
sequential influenza variants to cause rapid reinfection.



Accounting for immunodynamics in
epidemiological models



Accounting for immunodynamics in
epidemiological models

There is two main immunological responses:

(i) The cellular immune response with the Cytotoxic T Lymphocytes that can
eliminate infected cells and then prevent viral release

(i) The humoral response with T cells that can neutralize the virus.

Temporary 1 Efficient
immunity 2 Delayed Long-term immunity
* _ Infectious S 3 No

_Exposed/Latent

[
>

A

~_ Susceptible

cellular
response

Humoral
response

>
Time Time since infection

infection

Mechanistic modelling of the primary immune response to influenza. A: schema-
tized dynamics of the viral load as well as the innate and adaptive immune responses



Accounting for immunodynamics in
epidemiological models

(1-a) y

a. : probability of developing an humoral response
1/y : the mean duration in the cellular protected stage
1/w : the mean duration of the window of susceptibility

eefore developing humoral immunity y




Accounting for immunodynamics in
epidemiological models

number of reported cases
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Accounting for immunodynamics in
epidemiological models

Symbol Description Estimate 95% CI
Ry = B/v Dbasic reproduction number 11.78 7.70 — 25.50
1/e mean latent period (days) 2.18 1.53 —2.96
1/v mean infective period (days) 2.32 0.70 — 5.03
1/7 mean temporary removed period (days) 13.37  10.37 —16.31
1/w mean duration of the reinfection window (days) 2.75 0—6.03

e probability to develop long-term immunity 0.83 049 -1

p reporting rate for observation 0.71 0.62 — 0.82
Iy number of initially infective individuals 1 1-3

So number of initially susceptible individuals 277 275 — 280

() maximized log-likelihood -112.19 —




proportion of individuals

N
I

Accounting for immunodynamics in
epidemiological models

infected protected by CTLs protected by antibodies unprotected

- days post-'i:;rifection



" Accounting for immunodynamics 1n
epidemiological models

. protected seroconverted
TdC 1971 UK 2009 (Baguelin et al. 2011)
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" Accounting for immunodynamics 1n
epidemiological models

Interplay between the immunological and epidemiological dynamics
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Accounting for immunodynamics in
epidemiological models

Host heterogeneity in the timely development of a
protective immunity can explain reinfection.

In TdC the reinfection wave was a natural consequence
of the exceptional contact configuration and high
susceptibility of this small and isolated community.

In larger, less mixed and partially protected populations,
reinfection alone can not generate multiple-wave
outbreaks. But, this type of model can quantify the
proportion of unprotected at the end of epidemics.



