
LECTURE 1: Single-type Galton-Watson processes

8 июня 2011 г.

LECTURE 1: Single-type Galton-Watson processes



Model:
Z(n) - the number of individuals at time n.
Initially Z(0) = 1, i.e. an individual with life-length equal to 1. Dying it
produces ξ children where

P(ξ = k) = pk.

They constitute the first generation: Z(1) = ξ
(1)
Z(0) = ξ. The newborn

particles have life-lengthes 1 and dying produce

Z(2) := ξ
(2)
1 + ...+ ξ

(2)
Z(1)

individuals in iid manner where ξ
(2)
i

d
= ξ and so on. Thus,

Z(n) = ξ
(n)
1 + ...+ ξ

(n)
Z(n−1),

where ξ
(n)
i

d
= ξ are iid.
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One may consider Z(0) = k ∈ {1, 2, ...} or even as a random variable. In
view of the branching property

{Z(n)|Z(0) = k1 + k2}
d
= {Z(n)|Z(0) = k1} + {Z(n)|Z(0) = k2}.
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Classification

m = Eξ = E [Z(1)|Z(0) = 1].

The process is called subcritical if m < 1, critical, if m = 1 and
supercritical, if m > 1.

Lemma

If m := Eξ <∞, then

E [Z(n)|Z(0) = 1] = mn.

If σ2 := Varξ <∞, then

Var [Z(n)|Z(0) = 1] =







σ2m
n−1(mn−1)
m−1 , if m 6= 1,

σ2n, if m = 1.
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Generating functions
Let

f(s) = E[sξ] =

∞
∑

k=0

P(ξ = k)sk =

∞
∑

k=0

pks
k, 0 ≤ s ≤ 1

be the generating function of the random variable ξ with nonnegative
integer values.
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Generating functions
Let

f(s) = E[sξ] =
∞
∑

k=0

P(ξ = k)sk =
∞
∑

k=0

pks
k, 0 ≤ s ≤ 1

be the generating function of the random variable ξ with nonnegative
integer values.
We have

Eξ = f ′(1), Eξ(ξ − 1) = f ′′(1),

and

Varξ = Eξ2 − (Eξ)2 = Eξ(ξ − 1) + Eξ − (Eξ)2

= f ′′(1) + f ′(1) − (f ′(1))2.

LECTURE 1: Single-type Galton-Watson processes



Generating functions
Let

f(s) = E[sξ] =
∞
∑

k=0

P(ξ = k)sk =
∞
∑

k=0

pks
k, 0 ≤ s ≤ 1

be the generating function of the random variable ξ with nonnegative
integer values.
We have

Eξ = f ′(1), Eξ(ξ − 1) = f ′′(1),

and

Varξ = Eξ2 − (Eξ)2 = Eξ(ξ − 1) + Eξ − (Eξ)2

= f ′′(1) + f ′(1) − (f ′(1))2.

Iterations
f0(s) = s, fn+1(s) = fn(f(s)).
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Let

F (n, s) =

∞
∑

k=0

P (Z(n) = k|Z(0) = 1) sk.
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Let

F (n, s) =

∞
∑

k=0

P (Z(n) = k|Z(0) = 1) sk.

Given Z(0) = 1 we have

F (n, s) : = EsZ(n) = E

[

E

[

sZ(n)|Z(n− 1)
]]

= E

[

E

[

s
ξ
(n)
1 +...+ξ

(n)

Z(n−1)

]

|Z(n− 1)
]

= E

[

(

Esξ
)Z(n−1)

]

= F (n− 1, f(s)) = F (n− 2, f2(s)) = ... = F (0; fn(s)) = fn(s).
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Calculation of iterations for the pure geometric reproduction law
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f(s) =

∞
∑

k=0

P(ξ = k)sk =

∞
∑

k=0

qpksk =
q

1 − ps
.
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f(s) =
∞
∑

k=0

P(ξ = k)sk =
∞
∑

k=0

qpksk =
q

1 − ps
.

Clearly, f ′(1) = m = p/q and

1 − f(s) =
p(1 − s)

1 − ps

and
1

1 − f(s)
−

1

m(1 − s)
=

1 − ps

p(1 − s)
−

q

p(1 − s)
= 1.
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f(s) =

∞
∑

k=0

P(ξ = k)sk =

∞
∑

k=0

qpksk =
q

1 − ps
.

Clearly, f ′(1) = m = p/q and

1 − f(s) =
p(1 − s)

1 − ps

and
1

1 − f(s)
−

1

m(1 − s)
=

1 − ps

p(1 − s)
−

q

p(1 − s)
= 1.

Thus,

1

1 − fn(s)
−

1

m(1 − fn−1(s))
=

1

1 − f(fn−1(s))
−

1

m(1 − fn−1(s))
= 1
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Thus,

1

1 − fn(s)
= 1 +

1

m(1 − fn−1(s))
= 1 +

1

m
+

1

m2(1 − fn−2(s))
= . . . .

Hence

1

1 − fn(s)
= 1 + (1/m) + (1/m)2 + . . .+ (1/m)n−1 + 1/mn(1 − s)

=







mn−1
mn−1(m−1) + 1

mn(1−s) if m 6= 1

n+ 1
1−s if m = 1.
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Therefore,if m 6= 1 then

1 − fn(s) =
mn(m− 1)(1 − s)

m(mn − 1)(1 − s) +m− 1
. (1)

and if m = 1 then

1 − fn(s) =
1

n+ (1 − s)−1
.
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Remark If f(s) is a fractional-linear probability generating function and
h(s) is such that

g(s) := h−1(f(h(s)))

is a probability generating function then

gn(s) = h−1(fn(h(s))).

LECTURE 1: Single-type Galton-Watson processes



Remark If f(s) is a fractional-linear probability generating function and
h(s) is such that

g(s) := h−1(f(h(s)))

is a probability generating function then

gn(s) = h−1(fn(h(s))).

Example If

f(s) =
s

A− (A− 1)s
, A > 1, and h(s) = sk, k − positive integer

then
g(s) = h−1(fn(h(s))) =

s

(A− (A− 1)sk)1/k
,

and
gn(s) =

s

(An − (An − 1)sk)1/k
, n = 1, 2, . . . .
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Exercises. 1) For the processes with pgf

f(s) =
1

2 − s

and

f(s) =
2

3 − s
, f(s) =

1

4 − 3s

calculate

P (Z (10) > 0) , P (Z(10) > 0, Z(15) = 0) , P (Z (15) ≥ 3) .

2) Let

f(s) = 1 − p (1 − s)
β
, 0 < p < 1, 0 < β < 1.

Show that this is a probability generating function and find fn(s).
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Elementary properties of PGF
Let

f(s) = Esξ =

∞
∑

k=0

P (ξ = k) sk =

∞
∑

k=0

pks
k

be a PGF with p0 + p1 < 1. Then
PICTURES
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Extinction
Since

fn(s) = EsZ(n) =
∞
∑

k=0

P (Z(n) = k) sk,

we have P(Z(n) = 0) = fn(0).
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Extinction
Since

fn(s) = EsZ(n) =

∞
∑

k=0

P (Z(n) = k) sk,

we have P(Z(n) = 0) = fn(0). Hence

fn(0) = P(Z(n) = 0) ≤ P(Z(n+ 1) = 0) = fn+1(0).

Thus,
P (n) = P(Z(n) = 0) = fn(0), n = 1, 2 . . .

is a monotone increasing sequence having the limit

lim
n→∞

P (n) = P.
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Extinction
Since

fn(s) = EsZ(n) =
∞
∑

k=0

P (Z(n) = k) sk,

we have P(Z(n) = 0) = fn(0). Hence

fn(0) = P(Z(n) = 0) ≤ P(Z(n+ 1) = 0) = fn+1(0).

Thus,
P (n) = P(Z(n) = 0) = fn(0), n = 1, 2 . . .

is a monotone increasing sequence having the limit

lim
n→∞

P (n) = P.

P is the probability of extinction of the process which is the minimal
nonnegative root of the equation s = f(s).
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Asymptotic behavior of the survival probability for subcritical processes

Q(n) : = P (Z(n) > 0|Z(0) = 1) =

∞
∑

k=1

P (Z(n) = k)

≤

∞
∑

k=1

kP (Z(n) = k) = EZ(n) = mn.

Is this estimate sharp?
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Asymptotic behavior of the survival probability for subcritical processes

Q(n) : = P (Z(n) > 0|Z(0) = 1) =

∞
∑

k=1

P (Z(n) = k)

≤

∞
∑

k=1

kP (Z(n) = k) = EZ(n) = mn.

Is this estimate sharp?

Theorem

If m < 1 then

P (Z(n) > 0) = Q(n) ∼ Kmn(1 + o(1)), K > 0,

if and only if

Eξ log+ ξ = EZ(1) log+ Z(1)

=

∞
∑

k=1

pkk log k <∞.
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NOTE THAT

P(Z(n+ 1) > 0)

mn+1
=

1 − fn+1(0)

mn+1
=

1 − f(fn(0))

mn+1

≤
m(1 − fn(0))

mn+1
=

P(Z(n) > 0)

mn
.
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NOTE THAT

P(Z(n+ 1) > 0)

mn+1
=

1 − fn+1(0)

mn+1
=

1 − f(fn(0))

mn+1

≤
m(1 − fn(0))

mn+1
=

P(Z(n) > 0)

mn
.

This, in view of the theorem gives

lim
n→∞

P(Z(n) > 0)

mn
= K > 0

and
P(Z(n) > 0)

mn
≥ K

for ALL n.
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NOTE THAT

P(Z(n+ 1) > 0)

mn+1
=

1 − fn+1(0)

mn+1
=

1 − f(fn(0))

mn+1

≤
m(1 − fn(0))

mn+1
=

P(Z(n) > 0)

mn
.

This, in view of the theorem gives

lim
n→∞

P(Z(n) > 0)

mn
= K > 0

and
P(Z(n) > 0)

mn
≥ K

for ALL n.
Besides,

mn

Q(n)
=

EZ(n)

P (Z(n) > 0)
= E [Z(n)|Z(n) > 0] ≈ K−1, n→ ∞.
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Practical estimates for the survival probability

Lemma

If ξ ≥ 0 with probability 1 and is not identical to zero then

P (ξ > 0) ≥
(Eξ)

2

Eξ2
.

Proof. EXERCISE
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We have

P (Z(n) > 0) ≥
(EZ(n))

2

EZ2(n)
=

(EZ(n))
2

VarZ(n) + (EZ(n))
2

=
mn+1(1 −m)

σ2(1 −mn) +mn+1 (1 −m)
.
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We have

P (Z(n) > 0) ≥
(EZ(n))

2

EZ2(n)
=

(EZ(n))
2

VarZ(n) + (EZ(n))
2

=
mn+1(1 −m)

σ2(1 −mn) +mn+1 (1 −m)
.

Therefore, for any fixed n

P (Z(n) > 0)

mn
≥ lim

l→∞

P (Z(l + n) > 0)

ml+n
= K

≥ lim
l→∞

m(1 −m)

σ2(1 −ml) +ml+1 (1 −m)
=
m(1 −m)

σ2
.

LECTURE 1: Single-type Galton-Watson processes



Set

PN (Z(n) > 0) = P(Z(n) > 0|Z(0) = N), EN [Z(n)] = E[Z(n)|Z(0) = N ].

By Markov inequality

PN (Z(n) > 0) = P(Z(n) ≥ 1|Z(0) = N) ≤ EN [Z(n)] = Nmn,

where N is the number of founders of the population.
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Theorem

Consider a subcritical Galton-Watson process, initiated by Z(0) = N
individuals. Then

NP1(Z(n) > 0) (1 − P1(Z(n) > 0))
N−1

≤ PN (Z(n) > 0)

≤ NP1(Z(n) > 0).

If the reproduction variance σ2 <∞, then

Nmn ×
(1 −m)m

σ2
(1 −mn)N−1 ≤ PN (Z(n) > 0 ) ≤ Nmn.
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Survival probability for the North Atlantic right whales
A female right whale may produce 0, 1, or 2 females the following year. It
is assumed that the death of a parent results in the death of a calf in the
first year.
Thus, a female at time n produces no offspring if she dies before n+ 1,
one offspring (herself) if she survives without reproducing female
offspring and two offspring (herself and her calf) if she survives and gives
birth to a female calf. Generation length is then one year.
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Survival probability for the North Atlantic right whales
A female right whale may produce 0, 1, or 2 females the following year. It
is assumed that the death of a parent results in the death of a calf in the
first year.
Thus, a female at time n produces no offspring if she dies before n+ 1,
one offspring (herself) if she survives without reproducing female
offspring and two offspring (herself and her calf) if she survives and gives
birth to a female calf. Generation length is then one year.

Let p be the survival probability and µ be the probability of begetting a
female calf. The reproduction generating function of the process becomes

f(s) = 1 − p+ p(1 − µ)s+ pµs2

with mean
m = p(1 − µ) + 2pµ = p(1 + µ).
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The following estimates for p, µ, and, as a result, for m are known:

µ = 0.051 µ = 0.038
p = 0.94 m = 0.988 m = 0.976

Applying our results to the the data and knowing that there are now
around 150 female members of the North Atlantic right whales we get

m 0.988 0.976
survival with probability ≥ 0.99 for n years n ≈ 357 177
extinction with probability ≥ 0.99 within n years n ≈ 796 395.
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Conditional limit theorem for subcritical case

Theorem

If m < 1 then

lim
n→∞

E[sZ(n)|Z(n) > 0] = F ∗(s) =

∞
∑

k=1

rks
k,

where r1 + r2 + · · · = 1.
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Multidimensional limit theorems for subcritical case

Theorem

If m < 1 and

Nr = n1 + n2 + · · · + nr, r = 1, 2, ...

are such that n1 → ∞, nr+1 − nr → ∞, then

L(Z(N1), ..., Z(Nk+1)|Z(Nk+1) > 0) → L(Z∗
1 , ..., Z

∗
k+1),

where Z∗
1 , ..., Z

∗
k are iid with EsZ

∗

i = F ∗′(s) and are independent of
Z∗
k+1.
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The time to extinction of subcritical processes

Theorem

If m < 1 and Eξ log+ ξ <∞ then

EN [τ ] = EN [τ |Z(0) = N ] ∼
lnN

|lnm|
, N → ∞.
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The time to extinction of subcritical processes

Theorem

If m < 1 and Eξ log+ ξ <∞ then

EN [τ ] = EN [τ |Z(0) = N ] ∼
lnN

|lnm|
, N → ∞.

Proof. We know that

Kmn ≤ P1(Z(n) > 0) = P1(τ > n) ≤ mn

with
K−1 = lim

n→∞
E [Z(n)|Z(n) > 0] ,

and
PN (τ > n) ≤ Nmn.
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Set

φ (N) =
lnN

|lnm|
, ψ (N) =

ln lnN − lnK

|lnm|
≥ 0 .

Observe that
Nmφ(N) = Nm−(lnN)/ lnm = 1

and

exp
{

−KNmφ(N)−ψ(N)
}

= exp
{

−Km−ψ(N)
}

= exp {− lnN} = 1/N.
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For

EN [τ ] =

∞
∑

n=0

PN (τ > n)

we have

EN [τ ] ≤
∑

0≤n<φ(N)

PN (τ > n) +N

∞
∑

n≥φ(N)

mn

≤ φ (N) + 1 +
Nmφ(N)

1 −m
=

lnN

|lnm|
+

2 −m

1 −m
.
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For

EN [τ ] =

∞
∑

n=0

PN (τ > n)

we have

EN [τ ] ≤
∑

0≤n<φ(N)

PN (τ > n) +N

∞
∑

n≥φ(N)

mn

≤ φ (N) + 1 +
Nmφ(N)

1 −m
=

lnN

|lnm|
+

2 −m

1 −m
.

On the other hand,

EN [τ ] ≥
∑

0≤n<φ(N)−ψ(N)

PN (τ > n)

≥ (φ (N) − ψ(N) − 1)PN (τ ≥ φ (N) − ψ(N))

= (φ (N) − ψ(N) − 1) (1 − PN (τ < φ (N) − ψ(N)).
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For any n ≥ 0

PN (τ ≤ n) = P
N
1 (τ ≤ n) = (1 − P1(τ > n))N

≤ e−NP1(τ>n) ≤ e−KNm
n

where we have used the inequality 1 − x ≤ e−x, x > 0. Therefore,

PN (τ ≤ φ(N) − ψ(N)) ≤ e−KNm
φ(N)−ψ(N)

=
1

N
.
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For any n ≥ 0

PN (τ ≤ n) = P
N
1 (τ ≤ n) = (1 − P1(τ > n))N

≤ e−NP1(τ>n) ≤ e−KNm
n

where we have used the inequality 1 − x ≤ e−x, x > 0. Therefore,

PN (τ ≤ φ(N) − ψ(N)) ≤ e−KNm
φ(N)−ψ(N)

=
1

N
.

As a result we get

lnN

|lnm|

(

1 −
ln lnN − lnK + |lnm|

lnN

) (

1 −
1

N

)

≤ EN [τ ]

≤
lnN

|lnm|
+

2 −m

1 −m
.
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Example with North Atlantic right whales
The reproduction generating function of the process is

f(s) = 1 − p+ p(1 − µ)s+ pµs2

with mean
m = p(1 − µ) + 2pµ = p(1 + µ).

For the North Atlantic right whales we get the following estimates for the
expected time to extinction in the subcritical situation:

m 0.988 0.976
E [τ |Z(0) = 150] ≈ 415 206
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Supercritical processes
Consider now the situation m = Eξ > 1.
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The survival probability of a slightly advantageous mutant gene in a large
stationary population
Assume that in a homogeneous well established large population, that is
in the population where the average offspring size equals 1, a mutant
individual appears with advantageous reproduction, i.e., that one whose
the average offspring size equals m > 1.
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The survival probability of a slightly advantageous mutant gene in a large
stationary population
Assume that in a homogeneous well established large population, that is
in the population where the average offspring size equals 1, a mutant
individual appears with advantageous reproduction, i.e., that one whose
the average offspring size equals m > 1.
Let f(s) = Esξ be the offspring generating function of the mutant gene
and let Q = 1 − P be the survival probability of the corresponding
Galton-Watson process. Thus, for some θ ∈ [s, 1]

Q = 1 − f(1 −Q)

= f ′(1)Q−
f ′′(θ)

2!
Q2 ≥ f ′(1)Q−

f ′′(1)

2!
Q2.
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The survival probability of a slightly advantageous mutant gene in a large
stationary population
Assume that in a homogeneous well established large population, that is
in the population where the average offspring size equals 1, a mutant
individual appears with advantageous reproduction, i.e., that one whose
the average offspring size equals m > 1.
Let f(s) = Esξ be the offspring generating function of the mutant gene
and let Q = 1 − P be the survival probability of the corresponding
Galton-Watson process. Thus, for some θ ∈ [s, 1]

Q = 1 − f(1 −Q)

= f ′(1)Q−
f ′′(θ)

2!
Q2 ≥ f ′(1)Q−

f ′′(1)

2!
Q2.

Since E[ξ(ξ − 1)] = f ′′(1) we get

Q ≥ mQ− E[ξ(ξ − 1)]Q2/2.
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The survival probability of a slightly advantageous mutant gene in a large
stationary population
Assume that in a homogeneous well established large population, that is
in the population where the average offspring size equals 1, a mutant
individual appears with advantageous reproduction, i.e., that one whose
the average offspring size equals m > 1.
Let f(s) = Esξ be the offspring generating function of the mutant gene
and let Q = 1 − P be the survival probability of the corresponding
Galton-Watson process. Thus, for some θ ∈ [s, 1]

Q = 1 − f(1 −Q)

= f ′(1)Q−
f ′′(θ)

2!
Q2 ≥ f ′(1)Q−

f ′′(1)

2!
Q2.

Since E[ξ(ξ − 1)] = f ′′(1) we get

Q ≥ mQ− E[ξ(ξ − 1)]Q2/2.

Hence

Q ≥
2(m− 1)

E[ξ(ξ − 1)]
.
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Thus, for any Galton-Watson process with reproduction mean
m = 1 + ε > 1 and variance σ2

Q ≥
2ε

σ2 +mε
.

Exercise. Show that for the case of binary splitting,
f(s) = q+ ps2, q+ p = 1 with E[ξ] = m = 2p > 1 this estimate is sharp.

LECTURE 1: Single-type Galton-Watson processes



Thus, for any Galton-Watson process with reproduction mean
m = 1 + ε > 1 and variance σ2

Q ≥
2ε

σ2 +mε
.

Thus, there is no smaller bound valid for all Galton-Watson processes,
and it is natural to suspect that for little ε indeed

Q ≈
2ε

σ2 +mε
≈

2(m− 1)

σ2
.
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Thus, for any Galton-Watson process with reproduction mean
m = 1 + ε > 1 and variance σ2

Q ≥
2ε

σ2 +mε
.

Thus, there is no smaller bound valid for all Galton-Watson processes,
and it is natural to suspect that for little ε indeed

Q ≈
2ε

σ2 +mε
≈

2(m− 1)

σ2
.

Thus, the survival probability is proportional to the ratio between the
selective advantage of the mutant gene and variance of the offspring size.
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Theorem

Assume that the reproduction generating functions

f (ε)(s) = E[sξ
(ε)

], ε ≥ 0,

are such that E[ξ(ε)] = 1 + ε and for some ε0 > 0

sup
0≤ε≤ε0

E[(ξ(ε))3] = c3 <∞, inf
0≤ε≤ε0

E[ξ(ε)(ξ(ε) − 1)] = c2 > 0,

inf
0≤ε≤ε0

f (ε)(0) = c0 > 0.

Then

Q =
2ε

E[ξ(ε)(ξ(ε) − 1)]
+ o(ε) as ε→ 0.

If further
σ2
ε = V ar[ξ(ε)] → σ2

0 > 0,

as ε→ 0, then
Q = 2ε/σ2

0 + o(ε).
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Accumulated population size of supercritical populations which are know
to die out
It is known that supercritical populations, which are known to die out
sooner or later, behave as subcritical populations. We study only the
accumulated populations size

T (n) = Z(0) + Z(1) + · · · + Z(n− 1).

up to generation n. If Z(0) = 1, then

E [T (n)] = E [Z(0) + Z(1) + · · · + Z(n− 1)]

= E [Z(0)] + E [Z(1)] + · · · + E [Z(n− 1)]

= 1 +m+ · · · +mn.
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If m < 1 then the process dies out rapidly, the total number of
individuals ever born

T (∞) = Z(0) + Z(1) + · · · + Z(n) + · · ·

is finite and

E [T (∞)] =
∞
∑

k=0

mk =
1

1 −m
.

On the other hand, if m ≥ 1 then E [T (n)] → ∞, as n→ ∞. However, if
we condition on the event that a supercritical process dies sooner or
later and denote the extinction moment by τ , we get the following
statement.
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Theorem

If m > 1 then

E [T |τ <∞] =
1

1 − f ′(P )
,

where P = P(τ <∞) is the extinction probability of the process (check
that f ′(P ) < 1).
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Proof. We write

E [T |τ <∞] =
E [T ; τ <∞]

P(τ <∞)
.
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Proof. We write

E [T |τ <∞] =
E [T ; τ <∞]

P(τ <∞)
.

Further,

E [T ; τ <∞] =

∞
∑

n=0

E [Z(n) ;n < τ <∞] .
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Proof. We write

E [T |τ <∞] =
E [T ; τ <∞]

P(τ <∞)
.

Further,

E [T ; τ <∞] =

∞
∑

n=0

E [Z(n) ;n < τ <∞] .

Now observe that

E [Z(n) ;n < τ <∞] =

∞
∑

k=1

kP(Z(n) = k;n < τ <∞)

=

∞
∑

k=1

kP(Z(n) = k)P k,

since each of the populations stemming from the Z(n) = k individuals at
time n should die out.
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Thus, we get

E [Z(n) ;n < τ <∞] = P

∞
∑

k=1

kP(Z(n) = k)P k−1

= Pf ′
n (P ) = P (f ′ (P ))

n
.

This gives the desired statement.
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In particular, in the supercritical geometric case P = q/p = m−1 < 1 and

f
′

(P ) =
qp

(1 − pP )2
=

1

m
.

Hence,

E [T |τ <∞] =
1

1 −m−1

=
m

m− 1
= 1 +

1

m− 1
.

Note that this expectation is monotone decreasing to 1 when m increases.
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Conditional limit theorem for critical processes

Theorem

If
m = f

′

(1) = 1, f ′′(1) = 2B ∈ (0,∞) .

then

Q(n) = P (Z(n) > 0) ∼
1

Bn
, n→ ∞,

and

lim
n→∞

E

[

exp

{

−λ
Z(n)

Bn

}

|Z(n) > 0

]

=
1

1 + λ
.
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Proof. First is well known (EXERCISE). For the second:

E

[

exp

{

−λ
Z(n)

Bn

}

|Z(n) > 0

]

= 1 −
1 − fn

(

exp
{

− λ
Bn

})

Q(n)
.
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Proof. First is well known (EXERCISE). For the second:

E

[

exp

{

−λ
Z(n)

Bn

}

|Z(n) > 0

]

= 1 −
1 − fn

(

exp
{

− λ
Bn

})

Q(n)
.

Now let l = l(n) be such that

fl(0) ≤ exp

{

−
λ

Bn

}

≤ fl+1(0)

or

1 − fl(0) ≥ 1 − exp

{

−
λ

Bn

}

≥ 1 − fl+1(0)
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Proof. First is well known. For the second:

E

[

exp

{

−λ
Z(n)

Bn

}

|Z(n) > 0

]

= 1 −
1 − fn

(

exp
{

− λ
Bn

})

Q(n)
.

Now let l = l(n) be such that

fl(0) ≤ exp

{

−
λ

Bn

}

≤ fl+1(0)

or

1 − fl(0) ≥ 1 − exp

{

−
λ

Bn

}

≥ 1 − fl+1(0)

or

Q(l) ≥
λ

Bn
(1 + ε∗(n)) ≥ Q(l + 1).

where ε∗(n) → 0, n→ ∞.
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Proof. First is well known. For the second:

E

[

exp

{

−λ
Z(n)

Bn

}

|Z(n) > 0

]

= 1 −
1 − fn

(

exp
{

− λ
Bn

})

Q(n)
.

Now let l = l(n) be such that

fl(0) ≤ exp

{

−
λ

Bn

}

≤ fl+1(0)

or

1 − fl(0) ≥ 1 − exp

{

−
λ

Bn

}

≥ 1 − fl+1(0)

or

Q(l) ≥
λ

Bn
(1 + ε∗(n)) ≥ Q(l + 1).

where ε∗(n) → 0, n→ ∞. Hence,

1

Bl
∼ Q(l) ∼

λ

Bn
=

1

B (n/λ)
.
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Consequently, l ∼ [n/λ].

LECTURE 1: Single-type Galton-Watson processes



Consequently, l ∼ [n/λ]. Thus, in view of

1 − fn(fl+1(0)) ≤ 1 − fn

(

exp

{

−
λ

Bn

})

≤ 1 − fn(fl(0))

we have

1 − fn

(

exp

{

−
λ

Bn

})

∼ 1 − fn+l(0) ∼
1

B(n + l)

∼
1

Bn(1 + λ−1)
=

λ

Bn(1 + λ)
.
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Consequently, l ∼ [n/λ]. Thus, in view of

1 − fn(fl+1(0)) ≤ 1 − fn

(

exp

{

−
λ

Bn

})

≤ 1 − fn(fl(0))

we have

1 − fn

(

exp

{

−
λ

Bn

})

∼ 1 − fn+l(0) ∼
1

B(n + l)

∼
1

Bn(1 + λ−1)
=

λ

Bn(1 + λ)
.

Hence
1 − fn

(

exp
{

− λ

Bn

})

Q(n)
∼

Bnλ

Bn(1 + λ)
=

λ

1 + λ
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Consequently, l ∼ [n/λ]. Thus, in view of

1 − fn(fl+1(0)) ≤ 1 − fn

(

exp

{

−
λ

Bn

})

≤ 1 − fn(fl(0))

we have

1 − fn

(

exp

{

−
λ

Bn

})

∼ 1 − fn+l(0) ∼
1

B(n + l)

∼
1

Bn(1 + λ−1)
=

λ

Bn(1 + λ)
.

Hence
1 − fn

(

exp
{

− λ

Bn

})

Q(n)
∼

Bnλ

Bn(1 + λ)
=

λ

1 + λ

and, therefore,

lim
n→∞

E

[

exp

{

−λ
Z(n)

Bn

}

|Z(n) > 0

]

= 1 − lim
n→∞

1 − fn

(

exp
{

− λ

Bn

})

Q(n)

= 1 −
λ

1 + λ
=

1

1 + λ

proving the theorem.
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Exercise. Let Z(k, n), 0 ≤ k < n be the number of particles at moment
k which have nonempty offspring at moment n. Show that if

m = f ′(1) = 1, f ′′(1) = 2B ∈ (0,∞) ,

then

lim
n→∞

E

[

sZ(nt,n) |Z(n) > 0
]

=
s (1 − t)

1 − st

and, therefore, for any k = 1, 2, ...

lim
n→∞

P (Z(nt, n) = k |Z(n) > 0) = (1 − t)tk−1.
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Exercise 2. Show that if

m = f ′(1) = 1, f ′′(1) = 2B ∈ (0,∞) ,

then for any t ∈ (0, 1)
{

2Z(nt)

Bn
|Z(n) > 0

}

d
→ η + ζ

where η, ζ are independent exponentially distributed random variables
with parameters

1

t
and

1

(1 − t) t
.
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The Galton-Watson process with immigration:
Specified by

f(s) = Esξ, g(s) = Esη =

∞
∑

k=1

P (η = k) sk,

and

Y (n+ 1) = ξ
(n)
1 + ...+ ξ

(n)
Y (n) + η(n), η(n) d

= η, and iid.
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The Galton-Watson process with immigration:
Specified by

f(s) = Esξ, g(s) = Esη =

∞
∑

k=1

P (η = k) sk,

and

Y (n+ 1) = ξ
(n)
1 + ...+ ξ

(n)
Y (n) + η(n), η(n) d

= η, and iid.

We have

Φ(n+ 1, s) = E

[

sY (n+1)|Y (0) = 0
]

= E

[

sξ
(n)
1 +...+ξ

(n)

Y (n)
+η(n)

|Y (0) = 0
]

= g(s)Φ(n, f(s)) = ... =

n+1
∏

k=0

g(fk(s)).
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Exercise 3
Show that if

g′(1) = b <∞

and
f ′(1) = 1, B = f ′′(1)/2 ∈ (0,∞)

then for θ = b/B

lim
n→∞

P

(

Y (n)

Bn
≤ x

)

=
1

Γ(θ)

∫ x

0

yθ−1e−ydy.
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