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The Dualistic Context (“The Bigger Picture”)

Tradition: Modern European Empiricism (English Roots)

Internal Consistency : Aristotelean Logic(s)

Universe of Hypotheses: Popper’s Falsifiability

Empirical Resolution : n Human DNA Seqns – Data Do

Objective : Pop. Genet. Parameter Inference

Approach: Statistical Decision Theory

Prob. Models : Neutral Coalescent w/ Demography

Engineering Constraints: Resource-limited Info. Proc.

Solution: Approximate Inference from Summaries of Do
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The Wright-Fisher Model – 1
Random Mating, Constant Size, No Recombination/Selection
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The Wright-Fisher Model – 2
Random Mating, Constant Size, No Recombination/Selection
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The Wright-Fisher Model & the n-Coalescent – 1
Random Mating, Constant Size, No Recombination/Selection
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The Wright-Fisher Model & the n-Coalescent – 2
Random Mating, Constant Size, No Recombination/Selection
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The n-Coalescent for n = 3
Random Mating, Constant Size, No Recombination/Selection – The Coalescent Tree Space

One Parameter: φ := (θ) ∈ Φ, θ = 4Neµ
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Realisations from the n-Coalescent for n = 6 and n = 32
Random Mating, Constant Size, No Recombination/Selection – The Coalescent Tree Space
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The Coalescent with Exponential Growth – Model 2
Random Mating, Exponential Growth, No Recombination/Selection

Two Parameters: φ := (θ, ν) ∈ Φ, θ = 4Neµ

Figures 1-6 of M. Nordburg, Coalescent Theory, 2000
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Partially Ordered Coalescent Experiments Graph

(1) Every directed acyclic subgraph of the POEG indexes a Martingale

(2) Each node of the POEG is a tri-sequential asymptotic family of Experiments
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Likelihood

Likelihood, P(D|φ), is computed by Integrating Missing-Data:

∑

c∈Cn

∫

t∈(0,∞)n−1
P(D|c , t, φ)P(c , t|φ)dt dc

Cardinalities of the state spaces of the standard n-coalescent on Cn and
the unlabeled n-coalescent on Fn (to be seen in the sequel).

n 4 10 30 60 90
|Cn| 15 1.2× 105 8.5× 1023 9.8× 1059 1.4× 10101

|Fn| 5 42 5.6× 103 9.7× 105 5.7× 107

|Fn|/|Cn| 0.33 3.6× 10−4 6.6× 10−21 9.9× 10−55 4.0× 10−94
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Likelihood is computationally prohibitive for MSA/BIM
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A Currently Popular Alternative is ABC

PROBLEM 1: but what is approximately sufficient?
PROBLEM 2: the “epsilon-dilemma” —ABCDE Fixes 1 & 2.
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∞-many-sites M-Model: BIM v ∈ Vm
n → SFS x ∈ Xm

n
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Coalescent Tree Shape, f -Sequence and SFS
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Examples of c-sequence → f -sequence, when n = 4

Transition-Diagram Hasse-Diagram

0001

1010

0200

2100

4000

0001

1010 0200

2100

4000

Ex 1:
[ {1}, {2}, {3}, {4} ], [ {1, 2}, {3}, {4} ], [ {1, 2, 3}, {4} ], [ {1, 2, 3, 4} ] →
[ (4, 0, 0, 0), (2, 1, 0, 0), (1, 0, 1, 0), (0, 0, 0, 1) ]
Ex 2:
[ {1}, {2}, {3}, {4} ], [ {1, 2}, {3}, {4} ], [ {1, 2}, {3, 4} ], [ {1, 2, 3, 4} ] →
[ (4, 0, 0, 0), (2, 1, 0, 0), (0, 2, 0, 0), (0, 0, 0, 1) ]

Raazesh Sainudiin†′ lumped coalescent experiments



Transition Diagram for realisations in Fn (n = 4)
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Hasse Diagram of the Poset making Fn (n = 4, . . . , 9)
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Kingman’s Unlabeled n-Coalescent

Consider, the integer partitions of n with i blocks:

Fi
n ≡ {fi ≡ (fi,1, fi,2, . . . , fi,n) ∈ Zn

+ :
n∑

j=1

jfi,j = n,
n∑

j=1

fi,j = i}.

where fi,j is the number of lineages subtending j leaves at the i-th epoch.

Theorem (Kingman’s Unlabeled n-coalescent)

It is the continuous time Markov chain on Fn ≡ ∪n
i=1Fi

n, the set of
integer partitions of n, whose infinitesimal generator q(fh|fg ) for any two
states fg , fh ∈ Fn is:

q(fh|fg ) =






−i(i − 1)/2 : if fg = fh, fg ∈ Fi
n

fg,j fg,k : if fh = fg − ej − ek + ej+k , j &= k, fg ∈ Fi
n, fh ∈ Fi−1

n

(fg,j )(fg,j − 1)/2 : if fh = fg − ej − ek + ej+k , j = k, fg ∈ Fi
n, fh ∈ Fi−1

n

0 : otherwise

Initial state: fn = (n, 0, 0, . . . , 0) and absorbing state: f1 = (0, 0, . . . , 1).

Any realization of the chain is an f -sequence: f = (fn, fn−1, . . . , f1) ∈ Fn.
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Simulating f -sequences: for SFS, Shape Stats, ...
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Likelihood of a Site Frequency Spectrum
Theorem (Likelihood of SFS)

Let c, f and t be the c-sequence, f -sequence, and epoch times of tree a, then

l := (l1, . . . , ln−1) = tTf =

(
n∑

i=2

ti fi,1, . . .
2∑

i=2

ti fi,n−1

)
, l• ≡

n∑

i=2

li , l̄i ≡
li
l•

where l is lineage lengths subtending 1, 2, . . . , n − 1 leaves.Then:

P(x |φ, a) = P(x |φ, l = tTf ) = e−θl• (θl•)
S
n−1∏

i=1

l̄ xii /
n−1∏

i=1

xi !

P(x |φ, a) = P(x |φ, l = tTf ) = e−θl• (θl•)
S
n−1∏

i=1

l̄ xii /
n−1∏

i=1

xi !

P(x |φ) =
1

∏n−1
i=1 xi !

∑

f∈!c
n(x

!)

P(f )

(∫

t∈(0,∞)n−1

(
e−θl• (θl•)

S
n−1∏

i=1

l̄ xii

)
P(t|φ)

)

where, !n(x
!) ≡

⋃

{h:x!h =1}

{f ∈ Fn :
n∑

i=1

fi,h = 0}

X!(x) = x! ≡ (x!1 , . . . , x!n−1) ≡ ( 1N(x1), . . . , 1N(xn−1) ) ∈ {0, 1}n−1
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Transition diagram of {F !x!(k)}k∈[5]+

Transition diagram of {F"x! (k)}k∈[5]+
over states in Fx!n . The simplified diagram replaces the states that do

not affect the transitions, namely, x!1 and x!2 , with ∗ ∈ {0, 1}.
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Transition diagram of {F !x!(k)}k∈[5]+

((0 0 0 0 1),

(* * 0 0))

((1 0 0 1 0),

(* * 0 0))

1/2

((0 1 1 0 0),

(* * 0 0))

1/2

((2 0 1 0 0),

(* * 0 0))

2/3

((1 2 0 0 0),

(* * 0 0))

1/31/3 2/3

((3 1 0 0 0),

(* * 0 0))

1 1

((5 0 0 0 0),

(* * 0 0))

1

((0 0 0 0 1),

(* * 0 1))

1

((0 0 0 0 1),

(* * 1 0))

1/2

((1 0 0 1 0),

(* * 1 0))

1/2

1

((0 0 0 0 1),

(* * 1 1))

1

Transition diagram of {F"x! (k)}k∈[5]+
over states in Fx!n . The simplified diagram replaces the states that do

not affect the transitions, namely, x!1 and x!2 , with ∗ ∈ {0, 1}.
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An Importance Sampler over !c
n(x

")

Theorem (A Proposal over !c
n(x

!))

For a given x ∈ Xm
n , consider the following discrete time Markov chain

{F "x! (k)}k∈[n]+ on the augmented state space Fn × {0, 1}n−1 ) (fh, zh):

P∗((fh, zh)|(fg , zg )) =
{
P(fh|fg )/Σ(fg , zg ) : if (fh, zh) ≺f ,z (fg , zg ),

0 : otherwise

where,
Σ(fg , zg ) =

∑

(j,k)∈H(fg ,zg )

P(fg − ej+k + ej + ek |fg ),

H(fg , zg ) = {(j , k) : fg,j+k > 0, 1 ≤ j ≤ max{min{ĝ , j + k − 1}, ,
j + k

2
-} ≤ k ≤ j + k − 1},

ĝ = max{i : zg,i = 1},
(fh, zh) ≺f ,z (fg , zg ) ⇔ fh = fg + ej + ek − ej+k , zh = zg − 1{1}(zg,j ) ej − 1{1}(zg,k ) ek

where, the initial state is (f1,X!(x)) = ((0, 0, . . . , 1), x!) and the final absorbing
state is (fn, (0, 0, . . . , 0)) = ((n, 0, . . . , 0), (0, 0, . . . , 0)).
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On Dangers of Topology-free Genome Scans
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Computational Commutative Algebra – another 1/2
Population Genetic Fibers from Markov bases of polytopes in SFS lattices
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Summary
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The End
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Approximate Sufficiency

For the Full Story See:

R. Sainudiin, K. Thornton, J. Harlow, J. Booth, M. Stillman, R. Yoshida, R.
Griffiths, G. McVean and P. Donnelly Experiments with the Site Frequency
Spectrum, Bulletin of Mathematical Biology, Algebraic Biology Special Edition,
pp. 1-44, 2010. http://www.springerlink.com/content/0748966716753484/.

R. Sainudiin, K. Thornton, J. Harlow and B. Bycroft, LCE: a C++ Class Library
for Lumped Coalescent Experiments, GPL licensed, available from
http://www.math.canterbury.ac.nz/~r.sainudiin/codes/lce, 2010.

Raazesh Sainudiin†′ lumped coalescent experiments

http://www.springerlink.com/content/0748966716753484/
http://www.math.canterbury.ac.nz/~r.sainudiin/codes/lce

