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Example: SIRS-model

SIRS (susceptible, infective, removed, susceptible)-model
without demography
S =# of susceptible individuals, I = # of infective ind.,
R = # of removed/immune ind., N = S + I + R population size
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ODE representation

S′ = −βSI
N

+ δR

l ′ = β
SI
N
− γI

R′ = γI − δR

(1)

Equation (1) has a unique solution satisfying
0 ≤ S, I,R ≤ S + I + R = N
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ODE and equilibria

We are interested in the long-term behavior of the model
Does the disease become extinct or endemic?

Find equilibria of the ODE (1)
A disease-free equilibrium (I = 0) of (1) exists (R = 0, S = N)
R0 = β

γ = basic reproduction number
= “# of cases one case generates in its infectious period”
R0 < 1⇒ the equilibrium is asymptotically stable
R0 > 1⇒ the disease-free equilibrium is unstable
A stable endemic equilibrium exists
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Equilibria of the ODE

Reduction of dimension
s = S/N = 1− i − r = proportion of susceptible individuals
β = 1.5, γ = 1, δ = 1, R0 = 1.5

i = I/N proportion of infectives

1

1

r = R/N = proportion of removed

c
0

c
disease-free equilibrium

endemic equilibrium
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Stochastic models

Stochastic model corresponding to the deterministic model
Replace the deterministic rates by (independent)
non-homogenous Poisson processes

An individual of type S becomes of type I at the jump time of
the respective processes
Jump rates are constant in-between jumps
e.g. SIRS: infection rate (at time t): β S(t)I(t)

N = Nβs(t)i(t)

Questions
What is the difference between the two processes for large N?
Endemic situation (R0 > 1): can the disease die out?
(and vice versa)
When does this happen?
For which population size N is it possible/probable?
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Poisson models

Z N(t) := x +
1
N

k∑
j=1

hjPj

(∫ t

0
Nβj(Z N(s))ds

)
(2)

= x +

∫ t

0
b(Z N(s))ds +

1
N

∑
j

hjMj

(∫ t

0
Nβj(Z N(s))ds

)
d = number of compartments (susceptible individuals, ...)
N = “natural size” of the population
Z N

i (t) = proportion of individuals in compartment i at time t
A = domain of process (compact)
Pj (j = 1, . . . , k ): independent standard Poisson processes
Mj (t) = Pj (t)− t : compensated Poisson processes
hj ∈ Zd : jump directions
βj : A→ R+: jump intensities
b(x) =

∑
j hjβj (x)
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Law of large numbers

Deterministic model

φ(t) := x +

∫ t

0
b(φ(s))ds = x +

∫ t

0

k∑
j=1

hjβj(φ(s))ds (3)

Theorem (Kurtz)

x ∈ A, T > 0, βj : A→ R+ Lipschitz. Then,

Z N −→ φ

almost surely uniformly on [0,T ].

A rate of convergence can be computed
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Rare events

Despite the LLN, a (large) deviation of Z N from the ODE
solution φ is possible (even for large N, cf. Campillo and Lobry
(2012))

T > 0 fixed, D([0,T ]; A) := {φ : [0,T ]→ A|φ càdlàg}
Quantify

P[Z N ∈ G], P[Z N ∈ F ]

for G ⊂ D open, F ⊂ D closed (N large)
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Diminishing rates

Standard literature is not applicable (e.g., Shwartz and Weiss
(1995), Dupuis and Ellis (1997), Feng and Kurtz (2006))
Problem: some rates diminish as the process approaches the
boundary

e.g. SIRS model: βx1(1− x1 − x2)→ 0 as x1 → 0

Large deviations principle (LDP) with diminishing rates
by Shwartz and Weiss (2005)

Modifications are required
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Legendre-Fenchel transform

Legendre-Fenchel transform
x ∈ A position, y ∈ Rd direction of movement

L(x , y) := sup
θ∈Rd

`(θ, x , y)

for `(θ, x , y) = 〈θ, y〉 −
∑

j

βj(x)(e〈θ,hj〉−1)

L(x , y) ≥ L
(
x ,
∑

j βj(x)hj
)

= 0

L(x , y) <∞ iff
∃µ ∈ Rk

+ s.t. y =
∑

j µjhj and µj > 0⇒ βj(x) > 0
e.g. SIRS: x1 = 0, y1 6= 0⇒ L(x , y) =∞
“Local measure” for the “energy” required for a movement
from x in direction y
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Rate function

Rate function (x ∈ A)

Ix ,T (φ̃) :=

{∫ T
0 L(φ̃(t), φ̃′(t))dt for φ̃(0) = x and φ̃ is abs. cont.

∞ else

Ix ,T (φ) = 0 iff φ solves (3) on [0,T ]

Interpretation of Ix ,T (φ̃): the “energy” required for a deviation
from φ
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Large deviations principle

Ã = “set where the process Z N gets stuck” ⊂ ∂A
e.g. SIRS: Ã = {x ∈ A|x1 = 0}
Ix,T (φ̃) =∞ if φ(s) ∈ Ã, φ(t) 6∈ Ã for s < t

For appropriate assumptions (which are, e.g., satisfied for the
SIRS-model)

Theorem

x ∈ A, G ⊂ D([0,T ]; A) open, F ⊂ D([0,T ]; A) closed with
dist(φ, Ã) > η (φ ∈ G ∪ F) for some η > 0.

lim inf
N→∞

1
N

logP[Z N ∈ G] ≥ − inf
φ̃∈G

Ix ,T (φ̃),

lim sup
N→∞

1
N

logP[Z N ∈ F ] ≤ − inf
φ̃∈F

Ix ,T (φ̃).

Peter Kratz: Applications of large deviations in epidemiology Aix Marseille Université



Required modifications

We can only consider sets G,F with positive distance to Ã

Approximate functions by shifting them inside via a finite
number of vectors vi (cf. Shwartz and Weiss (2005))

@
@

@
@

@

@
@

@
@I

?

-h1 (infection)

h2 (recovery)

h3 (loss of immunity)

HH
HHY
v

x = (1, 0)>

v = µ2h2 + µ3h3, µ1 = 0, µ2, µ3 > 0

Z̃ N(t) = x +
∑

j
hj
N Pj
(
N
∫ t

0 µ̃j(Z̃ N(s))ds
)

µj(z) =

{
0 if hj “points outside” at z ∈ ∂A

µj else

φ̃(t) = x + tv

Show LLN: Z̃ N → φ̃ a.s. uniformly (with appropriate rate of
convergence)
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Exit from domain

O = domain of attraction of stable equilibrium x∗; x ∈ O
relatively open with respect to A
e.g. SIRS: endemic equilibrium, O = {z ∈ A|z1 > 0}

When does Z N exit from O?
τN := inf{t > 0|Z N(t) ∈ A \ O}
e.g. SIRS: when does the disease become extinct?

T > 0, y , z ∈ A.

V (y , z,T ) := inf
φ:φ(0)=y ,φ(T )=z

Iy ,T (φ)

V (y , z) := inf
T>0

V (y , z,T )

V̄ := inf
z∈∂̃O

V (x∗, z)

The minimal energy required to go from y to z in [0,T ],
respectively from y to z, respectively form x∗ to the boundary
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Time of exit

For appropriate assumptions (e.g. satisfied for the SIRS
model):

Theorem

x ∈ O, δ > 0.

lim
N→∞

P[τN < eN(V̄+δ)] = 1, lim
N→∞

P[τN > eN(V̄−δ)] = 1.

For N large τN ≈ eNV̄
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Approximation by smaller domains

The LDP does not hold for all open/closed sets G/F
Approximate by exit times τN,x ,η of domains Oη, Oη ↑ O,
for z ∈ Oη, dist(z, ∂̃O) > η

Proportion of infectives

1

1

Proportion of removed

0

cendemic equilibrium
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SIS-model

N = population size, S =# of susceptibles, I = # of infectives,
s = S/N = proportion of susceptibles, i = I/N = proportion
of infectives

�

-

s i
βsi
(infection rate)

(recovery rate)
γi

A = [0, 1], i ′ = βsi − γi = β(1− i)i − γi, s = 1− i

R0 = β
γ ; R0 > 1: the endemic equilibrium i = β−γ

β is stable

0 = (0, 1], Ã = {0}, no “problematic points”
When does the disease become extinct?
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A model with vaccination

SIV model by Kribs-Zaleta and Velasco-Hernández (2000)
S =# of susceptibles, I = # of infectives,
V = # of vaccinated, N = S + I + V population size

�
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S I

V

βSI/N
(infection rate)

cI
(recovery rate)

φS
(vaccination rate)

θV
(loss of vaccination)

µN
(birth rate)

µS
(death rate)

µI

σβVI/N (σ ∈ [0, 1])
(infection of vaccinated)

µV
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Equilibria

Find equilibria of the ODE

A disease-free equilibrium (I = 0) of (1) exists
R0 < 1⇒ the equilibrium is asymptotically stable

R̃0 = basic reproduction number without vaccination
R̃0 > 1⇒ the disease-free equilibrium is unstable

R0 < 1 < R̃0 (and appropriate parameter choice)
⇒ two endemic equilibria (I > 0) exist
one is asymptotically stable, one is unstable
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Equilibria

s = S/N = 1− i − v = proportion of susceptibles

i = I/N proportion of infectives

1

1

v = V/N = proportion of vaccinated

d0.86

0

d0.59

0.18

d0.46

0.31

disease-free equilibrium

stable endemic equilibrium

unstable endemic equilibrium
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Exit from domain

Despite the demography, we assume constant population size
(by synchronizing birth and death)

O= domain of attraction of the stable endemic equilibrium
When does the process leave O?
Ã = {x ∈ A|x1 = 0}; despite dist(O, Ã) > η > 0 we have to
approximate by Oη as ∂̃O is the “characteristic boundary” (i.e.
for x ∈ ∂̃O, limt→∞ φ(t) 6= x∗)

x ∈ A \ Ō: When does the disease become endemic?
A modification of the model is required in order to achieve
Ã = ∅

Introduce (small) immigration of infective individuals
The “disease-free” equilibrium then satisfies i ≈ 0 but i > 0.

Peter Kratz: Applications of large deviations in epidemiology Aix Marseille Université



Overview

1 Motivation and setup
Deterministic compartmental models
Stochastic models
General setup

2 Large deviations
Rate function
Large deviations principle (LDP)
Exit from domain

3 Applications
SIS-model
A model with vaccination

4 Outlook
Place of exit
Unbounded processes

Peter Kratz: Applications of large deviations in epidemiology Aix Marseille Université



Overview

1 Motivation and setup
Deterministic compartmental models
Stochastic models
General setup

2 Large deviations
Rate function
Large deviations principle (LDP)
Exit from domain

3 Applications
SIS-model
A model with vaccination

4 Outlook
Place of exit
Unbounded processes

Peter Kratz: Applications of large deviations in epidemiology Aix Marseille Université



Place of exit

Conjecture:
C ⊂ ∂̃O, infz∈C V (x∗, z) > V̄

lim
N→∞

P[Z N(τN) ∈ C] = 0

If ∃z∗ ∈ ∂̃O with V (x∗, z∗) < V (x∗, z) ∀z 6= z∗, then for δ > 0,

lim
N→∞

P[|Z N(τN)− z∗| < δ] = 1

Problem: ∂̃O is the characteristic boundary and/or Ã = ∂̃O
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Unbounded processes

Models with demography: constant (or bounded) population
size is artificial (e.g. through synchronized birth/death,
immigration/emigration)

e.g. model with vaccination: A = {x ∈ R2|x1, x2 ≥ 0}
For the deterministic model, population size (can) remain
constant

The LDP of Shwartz and Weiss (2005) can be transferred to
unbounded A if the rates grow at most linearly

This result can be transferred directly to our setting
Usually in epidemiology: rates grow quadratically
(e.g. βs(t)i(t))

The place of exit should be in a bounded set

Once the place of exit result is proven, unbounded domains
can be treated
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