Continuous optimization, an introduction

Assessment
(3rd January 2017)

Exercise I

We recall that for a convex function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$,

$$
\operatorname{prox}_{\tau f}(x)=\arg \min _{y} f(y)+\frac{1}{2 \tau}\|y-x\|^{2}
$$

Evaluate $\operatorname{prox}_{\tau f}(x)$ for $\tau>0$, and

1. $X=\mathbb{R}, f(x)=-\ln x$ for $x>0,+\infty$ for $x<0$.
2. $f(x)=\psi(\|x\|)$ where $\psi: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$ is a convex, even (paire) function with $\psi(0)=0$. Show first that f is a convex function, then evaluate $\operatorname{prox}_{\tau f}$ in terms of $\operatorname{prox}_{\tau \psi}$.
3. $f(x)=\|x\|^{3} / 3$.

Exercise II

We consider X a Hilbert space and a strictly convex lower-semicontinuous (lsc) function $\psi: X \rightarrow \mathbb{R} \cup\{+\infty\}$ such that the interior of dom ψ, denoted D, is not empty, $\bar{D}=\operatorname{dom} \psi, \psi \in C^{1}(D) \cap C^{0}(\bar{D})$, and $\partial \psi(x)=\emptyset$ for all $x \notin D$. In other words, $\partial \psi(x)$ is either \emptyset (if $x \notin D$), or a singleton $\{\nabla \psi(x)\}$ (if $x \in D$). We also assume that

$$
\lim _{\|x\| \rightarrow \infty} \psi(x)=+\infty
$$

We define the "Bregman distance associated to ψ ", denoted $D_{\psi}(x, y)$, as, for $y \in D$ and $x \in X$,

$$
D_{\psi}(x, y):=\psi(x)-\psi(y)-\langle\nabla \psi(y), x-y\rangle
$$

1. Show that $D_{\psi}(x, y) \geq 0$, and that $D_{\psi}(x, y)=0 \Rightarrow y=x$. What other estimate can we write if in addition ψ is strongly convex? Why is D_{ψ} not a distance in the classical sense?
2. Express D_{ψ} in case $D=X, \psi(x)=\|x\|^{2} / 2$. In case $\left.X=\mathbb{R}^{n}, D=\right] 0,+\infty\left[^{n}\right.$, $\psi(x)=\sum_{i=1}^{n} x_{i} \ln x_{i}$.
3. Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ a proper, convex, lsc function. Let $\bar{x} \in D$. We assume that there exists $x \in D$ with $f(x)<+\infty$. Show that there exists a unique point $\hat{x} \in X$ such that

$$
\begin{equation*}
f(\hat{x})+D_{\psi}(\hat{x}, \bar{x}) \leq f(x)+D_{\psi}(x, \bar{x}) \quad \forall x \in X \tag{1}
\end{equation*}
$$

4. Explain why $\partial(f+\psi)=\partial f+\partial \psi$. Write the first order optimality condition for \hat{x}. Deduce that $\hat{x} \in D$.
5. Show (from the first order optimality condition) that for all $x \in X$,

$$
\begin{equation*}
f(x)+D_{\psi}(x, \bar{x}) \geq f(\hat{x})+D_{\psi}(\hat{x}, \bar{x})+D_{\psi}(x, \hat{x}) . \tag{2}
\end{equation*}
$$

A "nonlinear" descent algorithm. We consider a minimisation problem

$$
\begin{equation*}
\min _{x \in \bar{D}} f(x)+g(x) \tag{P}
\end{equation*}
$$

for f, g convex, lsc, proper functions, where f is C^{1} in D and g is "simple" in the following sense: one assume that one knows how to solve

$$
\min _{x} g(x)+\langle p, x\rangle+\frac{1}{\tau} D_{\psi}(x, y)
$$

for any $\tau>0, p \in X$ and $y \in D$. We suppose in addition that there exists $L>0$ such that for any $y \in D, x \in X$

$$
\begin{equation*}
D_{f}(x, y) \leq L D_{\psi}(x, y) \tag{3}
\end{equation*}
$$

(Here $D_{f}(x, y)=f(x)-f(y)-\langle\nabla f(y), x-y\rangle$. .) We assume that the minimisation problem has a solution. We denote $F(x)=f(x)+g(x)$.
6. Show that if ψ is 1 -convex (strongly convex with parameter 1) and f has L-Lipschitz gradient, then (3) is true.

Given $\bar{x} \in D, \tau>0$, we now define the following operator: we let $\hat{x}=T_{\tau}(\bar{x})$ be the solution of the minimisation problem

$$
\begin{equation*}
\min _{x \in D} f(\bar{x})+\langle\nabla f(\bar{x}), x-\bar{x}\rangle+g(x)+\frac{1}{\tau} D(x, \bar{x}) . \tag{4}
\end{equation*}
$$

7. Explain why this problem is easy to solve. Show that if τ is small enough, one has the following descent rule: for all $x \in X$,

$$
F(x)+\frac{1}{\tau} D_{\psi}(x, \bar{x}) \geq F(\hat{x})+\frac{1}{\tau} D_{\psi}(x, \hat{x}) .
$$

8. We define the following algorithm: we choose $x^{0} \in D$, and for all $k \geq 0$, let $x^{k+1}=T_{\tau} x^{k}$, where $\tau \leq L$ is fixed. Show that for all $k \geq 0, F\left(x^{k+1}\right) \leq F\left(x^{k}\right)$. If x^{*} is a minimiser of F in \bar{D}, show that

$$
F\left(x^{k}\right)-F\left(x^{*}\right) \leq \frac{1}{k \tau} D_{\psi}\left(x^{*}, x^{0}\right) .
$$

9. We assume that $F(x) \rightarrow+\infty$ when $\|x\| \rightarrow+\infty$. Why can we find $\tilde{x} \in \bar{D}$ and extract a subsequence $x^{k_{l}}$ such that $x^{k_{l}} \rightarrow \tilde{x}$ as $l \rightarrow \infty$? Why is \tilde{x} a solution of (P) ?

Application: minimisation in the unit simplex. One considers the case where $X=\mathbb{R}^{d}$,

$$
\Sigma=\left\{x \in X: x_{i} \geq 0 \forall i=1, \ldots, d ; \sum_{i=1}^{d} x_{i}=1\right\}
$$

is the unit simplex and

$$
g(x)= \begin{cases}0 & \text { if } x \in \Sigma \\ +\infty & \text { else }\end{cases}
$$

We choose $\psi(x)=\sum_{i=1}^{d} x_{i} \ln x_{i}$ and $\left.D=\right] 0,+\infty\left[{ }^{d}\right.$.
10. Give the expression of $D_{\psi}(x, y)$ for $x \in \Sigma, y \in \Sigma \cap D$.
11. Show that the algorithm described in the previous part is implementable: express in detail the computation of the iterations. Hint: introduce the Lagrange multiplier for the constraint $\sum_{i} x_{i}=1$.

Exercise III

We consider a maximal monotone operator A in a (real) Hilbert space X. We consider also a "metric" M, that is, a continuous, coercive, and symmetric operator:

$$
\|M x\| \leq\|M\|\|x\| \forall x \in X, \quad\langle M x, x\rangle \geq \delta\|x\|^{2}, \quad\langle M x, y\rangle=\langle x, M y\rangle
$$

for all $x, y \in X$, where $\delta>0$.

1. Show that $(x, y) \mapsto\langle M x, y\rangle=:\langle x, y\rangle_{M}$ defines a scalar product which is equivalent to the scalar product $\langle\cdot, \cdot\rangle$. Show that for all $y \in X$, the problem

$$
\min _{x} \frac{1}{2}\|x\|_{M}^{2}-\langle y, x\rangle
$$

has a unique solution. Deduce that M is invertible. We have denoted $\|\cdot\|_{M}$ the Hilbertian norm induced by the M-scalar product.
2. Show that $\left(M^{-1} A\right)$ is a maximal monotone operator in the M-scalar product. Deduce from Minty's theorem that for any $y \in X$, there exists a unique x such that

$$
M(x-y)+A x \ni 0
$$

3. We consider A, B two maximal monotone operators and $K \in \mathcal{L}(X, X)$ a continuous, linear operator in X. We define in $X \times X$ the metric, for $\tau, \sigma>0$,

$$
M:=\left(\begin{array}{cc}
\frac{I}{\tau} & -K^{*} \\
-K & \frac{I}{\sigma}
\end{array}\right) .
$$

Here $I \in \mathcal{L}(X, X)$ is the identity operator. Show that if $\tau \sigma<1 /\|K\|^{2}, M$ is continuous and coercive in $X \times X$.
4. Deduce that (for such τ, σ) one can define the following algorithm: we let $\left(x^{0}, y^{0}\right) \in X \times X$ and define for each $k \geq 0$ the new point $\left(x^{k+1}, y^{k+1}\right)$ as follows:

$$
M\binom{x^{k+1}-x^{k}}{y^{k+1}-y^{k}}+\left(\begin{array}{cc}
0 & K^{*} \\
-K & 0
\end{array}\right)\binom{x^{k+1}}{y^{k+1}}+\binom{A x^{k+1}}{B^{-1} y^{k+1}} \ni 0
$$

Express this as a first iteration defining x^{k+1} from x^{k}, y^{k} and then an iteration defining y^{k+1} from x^{k}, x^{k+1}, y^{k}.
5. In what case does $\left(x^{k}, y^{k}\right)$ converge? (and in what sense?) In this case, what does the limit (\bar{x}, \bar{y}) satisfy? Write, in particular, an equation for \bar{x}.
6. We now consider a maximal monotone operator $C x$ and the new iterative scheme:

$$
M\binom{x^{k+1}-x^{k}}{y^{k+1}-y^{k}}+\left(\begin{array}{cc}
0 & K^{*} \\
-K & 0
\end{array}\right)\binom{x^{k+1}}{y^{k+1}}+\binom{A x^{k+1}}{B^{-1} y^{k+1}} \ni\binom{C x^{k}}{0}
$$

Under which condition on τ, σ, C will this iterative scheme be converging? To which limit?

