Continuous optimization, an introduction
Exercises (22th Nov. 2016)

1. We recall that for a convex function \(f : X \to \mathbb{R} \),
 \[
 \text{prox}_\tau f(x) = \arg \min_y f(y) + \frac{1}{2\tau} \|y - x\|^2.
 \]

 Evaluate \(\text{prox}_\tau f(x) \) for \(\tau > 0 \), and
 • \(x \in \mathbb{R}^N, f(x) = \frac{1}{2} \|x - x^0\|^2 \): what does Moreau’s identity give in this case, for \(x^0 = 0 \)?
 • \(x \in \mathbb{R}^N, f(x) = \delta_{\{\|x\| \leq 1\}}(x) + \varepsilon \|x\|^2/2 \).
 • \(x \in \mathbb{R}^N, f(x) = \langle p, x \rangle - \sum_i g_i \log x_i \) if \(x_i > 0 \) for all \(i = 1, \ldots, n \) and \(f(x) = +\infty \) else.
 • \(x \in \mathbb{R}^N, f(x) = \delta_{\{|x_i| \leq 1: i = 1, \ldots, N\}}(x) \).

2. Evaluate the convex conjugate of:
 • \(f(x) = \delta_{\{|x_i| \leq 1: i = 1, \ldots, N\}}(x) + \varepsilon \|x\|^2/2, x \in \mathbb{R}^N \);
 • \(f(x) = \sum_{i=1}^N x_i \log x_i, x \in \mathbb{R}^N \), where \(x \mapsto x \log x \) is \(+\infty \) for \(x < 0 \) and extended by continuity (that is, with the value 0) in \(x = 0 \);
 • \(f(x) = \sqrt{1 + \|x\|^2}, x \in \mathbb{R}^N \).

In each case of the three cases above, describe \(\partial f \) and \(\partial f^* \).

3. Show that if \(\|x\| \) is a norm and \(\|y\|^\circ = \sup_{\|x\| \leq 1} \langle x, y \rangle \) is the polar or dual norm, then
 \[
 \| \cdot \|^\circ(y) = \delta_{B_{1+\varepsilon}(0,1)}(y) = \begin{cases} 0 & \text{if } \|y\|^\circ \leq 1, \\ +\infty & \text{else.} \end{cases}
 \]

Hint: write \(\sup_x \langle x, y \rangle - \|x\| \) as \(\sup_{t>0} \left(\sup_{\|x\| \leq t} \langle x, y \rangle \right) - t \).

What is \(\| \cdot \|^\circ\circ \)?

4. (Schatten norms) Let \(X \in \mathbb{R}^{n \times p} \) be a matrix.
 a. Show that \(X^T X \) and \(XX^T \) are a symmetric \(p \times p \) and \(n \times n \) (respectively) matrix and that they have the same nonzero eigenvalues \((\lambda_1, \ldots, \lambda_k) \) \((k \leq \min\{p, n\}) \). The values \(\mu_i = \sqrt{\lambda_i} \) are the “singular values” of \(X \).
 b. Show that if \((e_1, \ldots, e_p) \) is an orthonormal basis of eigenvectors of \(X^T X \) (associated to the eigenvalues \(\lambda_i \), or 0 if \(i > k \)), then \((Xe_i) \) are orthogonal. Show that one can write, for \(\mu_i > 0 \), \(Xe_i = \mu_i f_i \) where \(f_i \) are also orthonormal. Completing \(f_i \) into an orthonormal basis of \(\mathbb{R}^n \), deduce that
 \[
 X = \sum_{i=1}^k \mu_i f_i \otimes e_i = V D^T U
 \]

\(\delta_C(x) = 0 \) if \(x \in C \), \(+\infty \) if \(x \notin C \)
where U is the column vectors $(e_i)_{i=1}^p$, V the column vectors $(f_i)_{i=1}^n$, D is the $n \times p$ matrix with $D_{ii} = \mu_i$, $i = 1, \ldots, k$, $D_{ij} = 0$ for all other entries (just evaluate $Xx = X(\sum_{i=1}^p \langle x, e_i \rangle e_i)$, etc.) What type of matrices are the matrices U, V? This is called the "singular value decomposition" (SVD) of X (one usually orders the μ_i by nonincreasing values).

c. One defines the p-Schatten norm of X, $p \in [1, \infty]$, as $\|X\|_p = \sum_{i=1}^k \mu_i^p$, $\|X\|_\infty = \max_i \mu_i$. Show that

$$\|X\|_2^2 = \sum_{i,j} x_{i,j}^2 = \text{Tr}(XX^t); \quad \|X\|_\infty = \sup_{\|x\| \leq 1} \|Xx\|,$$

(where in the latter $\|x\|$ is the 2-norm). $\| \cdot \|_\infty$ is called the spectral norm or operator norm.

d. [Exercise 3. is necessary for this question.] Why do we have that

$$\{X : \|X\|_1 \leq 1\} = \text{conv}\{f \otimes e : f \in \mathbb{R}^n, e \in \mathbb{R}^p, \|f\| \leq 1, \|e\| \leq 1\}?$$

Deduce that

$$\|X\|_\infty = \sup_{\|Y\|_1 \leq 1} \langle Y, X \rangle$$

where we use the Frobenius (or Hilbert-Schmidt) scalar product $\langle Y, X \rangle = \sum_{i,j} Y_{i,j} X_{i,j} = \text{Tr}(Y^tX)$. Deduce that

$$\|X\|_1 = \sup_{\|Y\|_\infty \leq 1} \langle Y, X \rangle.$$

(One can also show that $\| \cdot \|_0 = \| \cdot \|_p, 1/p + 1/p' = 1$.)

e. We want to compute

$$\bar{Y} = \arg \min_{\|X\|_\infty \leq 1} \|X - \bar{Y}\|_2^2 = \text{prox}_{\delta_1 \{X, X \} \leq 1} (Y).$$

Show first that it is equivalent to estimate $\min_{\|X\|_\infty \leq 1} \|X - D\|_2^2$ where $Y = VD^tU$ is the SVD decomposition of Y. Show that the matrix X which optimizes this last problem is diagonal, and satisfies $X_{i,i} = \max\{D_{i,i}, 1\}$. Deduce the solution \bar{Y} of (P_∞).

Deduce the proximity operator $\text{prox}_{\delta_1 \{X, X \} \leq 1}.$

f. A company rents movies and has a file of clients $X_{i,j} \in \{-1, 0, 1\}$ which states for each client $i = 1, \ldots, p$ whether he/she has already rented the film $j = 1, \ldots, n$ (otherwise $X_{i,j} = 0$) and has liked it ($X_{i,j} = 1$), or not ($X_{i,j} = -1$). It wants to determine a matrix of “tastes” for all the clients $Y \in \{-1, 1\}^p \times ^n$. Assuming that the clients can be grouped into few categories, this matrix should have low rank. One could look therefore for an approximation of Y by minimising

$$\min_Y \|Y\|_1 + \frac{\lambda}{2} \sum_{i,j : X_{i,j} \neq 0} (X_{i,j} - Y_{i,j})^2 + \frac{\varepsilon}{2} \sum_{i,j : X_{i,j} = 0} Y_{i,j}^2$$

where $\lambda >> \varepsilon > 0$ are parameters.

Design an iterative algorithm to solve this problem.