#### Continuous (convex) optimisation

A. Chambolle

## Mann's convergence

Averaged operators
Krasnoselskii-Mann
convergence theore
Extensions
Examples

Convex analysis and monotone operators.

Convex analysis
Separation and duality

Fenchel-Rockafe

### Continuous (convex) optimisation M2 - PSL / Dauphine / S.U.

#### Antonin Chambolle, CNRS, CEREMADE

Université Paris Dauphine PSL

Oct.-Dec. 2021

Lecture 2: fixed point iterations; convexity.

#### Contents

Continuous (convex) optimisation

A. Chamboll

Krasnoselski Mann's convergence theorem

Averaged operators Krasnoselskii-Mann's convergence theoren Extensions Examples

analysis and monotone operators. Convex analysis Separation and duality Fenchel-Rockafellar duality

- Krasnoselskii-Mann's convergence theorem
  - Averaged operators
  - Krasnoselskii-Mann's convergence theorem
  - Extensions
  - Examples
- Convex analysis and monotone operators.
  - Convex analysis
  - Separation and duality
  - Fenchel-Rockafellar duality

Let  $T: \mathcal{X} \to \mathcal{X}$  ( $\mathcal{X}$  is a Banach or Hilbert space) which is "nonexpansive" or 1 Lipschitz:

$$|Tx - Ty| \le |x - y| \quad \forall \ x, y \in \mathcal{X}.$$

We consider the problem of finding a fixed point Tx = x.

If in addition it is  $\rho$ -Lipschitz with  $\rho < 1$ , then Picard's classical fixed point theorem shows that the iterates  $x^k = T^k x^0$ ,  $k \ge 1$ , form a Cauchy sequence and therefore converge to a fixed point, necessarily unique. (This relies on the fact that the space is complete.)

If  $\rho = 1$ , then the iterations may, or may not, converge. For instance, if Tx = -x, then T0 = 0 but  $x^k = (-1)^k x_0$  will never converge unless  $x_0 = 0$ .

#### Definition: Averaged operator

A nonexpansive operator is averaged if it is of the form

$$(1-\theta)I + \theta T$$

where  $\theta \in [0,1)$  and T is 1-Lipschitz.

**Remark:** for  $\theta = 0$ , it is I, which is averaged but not very interesting.

**Example:**  $x \mapsto x - \tau \nabla f(x)$  where f is convex, with L-Lipschitz gradient, and

$$0 \le \tau < 2/L$$
.

Continuous (convex) optimisation

A. Chamboll

Mann's convergence theorem

Averaged operators Krasnoselskii-Mann's

convergence theorem
Extensions

Convex analysis and monotone

Convex analysis
Separation and duality
Fenchel-Rockafell

Setting: T a nonexpansive operator in a Hilbert space  $\mathcal{X}$ .

$$F = \{x \in \mathcal{X} : Tx = x\} \neq \emptyset. \ T_{\theta} := (1 - \theta)I + \theta T.$$

#### **Theorem**

Let 
$$x_0 \in \mathcal{X}$$
,  $0 < \theta < 1$ , and for  $k \ge 1$ ,  $x^k = T_{\theta}^k x_0$ . Then there exists  $x \in F$ ,  $x^k \rightharpoonup x$ .

Proof: Step 1.: We remark that  $x^* \in F$  if and only if  $T_\theta x^* = x^*$ . In particular,

 $|x^{k+1} - x^*| = |T_\theta x^k - T_\theta x^*| \le |x^k - x^*|$ . We say that the sequence  $(x^k)$  is "Fejér"-monotone with respect to the set F. Then there exists, for any  $x^* \in F$ ,  $m(x^*) = \inf_k |x^k - x^*| = \lim_k |x^k - x^*|$ . If  $m(x^*) = 0$  for some  $x^*$  we are done, hence we may assume  $m(x^*) > 0$  for all  $x^* \in F$ .

Step 2: We show that  $x^{k+1} - x^k \to 0$ : the operator  $T_\theta$  is said to be "asymptotically regular". It follows from the "parallelogram identity". One has

$$x^{k+1} - x^* = (1 - \theta)(x^k - x^*) + \theta(T_1 x^k - x^*).$$

Hence for all k:

$$|x^{k+1} - x^*|^2 = (1 - \theta)|x^k - x^*|^2 + \theta|T_1x^k - x^*|^2 - \theta(1 - \theta)|T_1x^k - x^k|^2$$

$$\leq |x^k - x^*|^2 - \frac{1 - \theta}{\theta}|x^{k+1} - x^k|^2$$

from which one deduces that  $\sum_{k} |x^{k+1} - x^k|^2 < \infty$ , hence the result.

Continuous (convex) optimisation

A. Chamboll

Krasnoselsk Mann's convergence theorem

Krasnoselskii-Man convergence theor Extensions Examples

monotone operators. Convex analysis Separation and duality **Remark:** rate. In addition, one observes that the sequence  $\frac{1-\theta}{\theta}|x^{k+1}-x^k|^2$  (which is nonincreasing) is controlled in the following way:

$$\frac{1-\theta}{\theta}(k+1)|x^{k+1}-x^k|^2 \le \frac{1-\theta}{\theta} \sum_{i=0}^k |x^{i+1}-x^i|^2 \le |x^0-x^*|^2 - |x^{k+1}-x^*|^2.$$

As  $x^{k+1} - x^k = \theta(T_1 x^k - x^k)$  we obtain a rate for the error  $T_1 x^k - x^k$ , in the Hilbertian setting, given by:

$$|T_1 x^k - x^k| \le \frac{|x^0 - x^*|}{\sqrt{\theta(1-\theta)}\sqrt{k+1}}.$$

In fact, Cominetti-Soto-Vaisman showed recently (2014) that in any normed space

$$|x^k - Tx^k| \le \frac{1}{\sqrt{\pi}} \frac{|x^0 - x^*|}{\sqrt{\sum_{i=1}^k \theta_i (1 - \theta_i)}}$$

(if  $\theta$  is allowed to vary at each step, and assuming there exists a fixed point  $x^*$ , their result is a bit more general).

Continuous (convex) optimisation

A. Chambol

Mann's convergence theorem

Averaged operators Krasnoselskii-Mann's convergence theorem Extensions

Extension

analysis and monotone operators. Convex analysis Separation and duality Fenchel-Rockafel Step 3 relies on:

#### Opial's lemma

If in a Hilbert space  $\mathcal{X}$  the sequence  $(x_n)_n$  is weakly convergent to  $x_0$  then for any  $x \neq x_0$ ,

$$\liminf_{n} |x_n - x| > \liminf_{n} |x_n - x_0|$$

Proof:

$$|x_n - x|^2 = |x_n - x_0|^2 + 2\langle x_n - x_0, x_0 - x \rangle + |x_0 - x|^2.$$

Since  $\langle x_n - x_0, x_0 - x \rangle \to 0$  by weak convergence, we deduce

$$\liminf_{n} |x_n - x|^2 = \liminf_{n} (|x_n - x_0|^2 + |x_0 - x|^2) = |x_0 - x|^2 + \liminf_{n} |x_n - x_0|^2$$

and the claim follows.

Continuous (convex) optimisation

Krasnoselskii-Mann's convergence theorem

Step 3: since  $T_A$  is nonexpansive, for each k.

$$|x^{k} - \bar{x}| \ge |T_{\theta}x^{k} - T_{\theta}\bar{x}|$$
  
=  $|x^{k+1} - x^{k} + x^{k} - T_{\theta}\bar{x}| \ge |x^{k} - T_{\theta}\bar{x}| - |x^{k+1} - x^{k}|.$ 

Let  $x^{k_l}$  be a weakly converging subsequence of  $x^k$  (which is bounded by step 1). We deduce (thanks to the previous Step 2):

$$\liminf_{l} |x^{k_l} - \bar{x}| \ge \liminf_{l} |x^{k_l} - T_{\theta}\bar{x}|.$$

Opial's lemma implies that  $T_{\theta}\bar{x} = \bar{x}$ .

Continuous (convex) optimisation

Krasnoselskii-Mann's convergence theorem

Step 4: To conclude, assume that a subsequence  $(x^{m_l})_l$  of  $(x^k)_k$  converges weakly to another fixed point  $\bar{y} \neq \bar{x}$ .

Then by Opial's lemma we deduce both that  $m(\bar{x}) < m(\bar{y})$  and  $m(\bar{y}) < m(\bar{x})$ :

$$m(\bar{y}) = \liminf_{l} |x^{m_l} - \bar{y}| < \liminf_{l} |x^{m_l} - \bar{x}| = m(\bar{x}),$$

$$m(\bar{x}) = \liminf_{l} |x^{k_l} - \bar{x}| < \liminf_{l} |x^{k_l} - \bar{y}| = m(\bar{y}),$$

a contradiction. It follows that the whole sequence  $(x^k)$  must weakly converge to  $\bar{x}$ .

Continuous (convex) optimisation

A. Chamboll

Krasnoselski Mann's convergence theorem

Krasnoselskii-Mann convergence theore Extensions

analysis and monotone operators. Convex analysis Separation and duality Varying steps: One can consider more generally iterations of the form

$$x^{k+1} = x^k + \tau_k (T_1 x^k - x^k)$$

with varying steps  $\tau_k$ . Then, if  $0 < \underline{\tau} \le \tau_k \le \overline{\tau} < 1$ , the convergence still holds, with almost the same proof.

**Remark:** A sufficient condition is that  $\sum_{k} \tau_{k} (1 - \tau_{k}) = \infty$ , see (Reich, 1979).

Continuous (convex) optimisation

A. Chamboll

Mann's convergence theorem

Averaged operators Krasnoselskii-Mann' convergence theorer

Extensions
Examples

Convex analysis and monotone operators.

Convex analysis

Convex analysis Separation and duality Fenchel-Rockafella duality Assume now the sequence  $(x_k)$  is an "inexact" iteration of  $T_{\theta}$ :

$$|x^{k+1} - T_{\theta}x^k| \le \varepsilon_k.$$

Then one has the following result:

#### Theorem

If  $\sum_{k} \varepsilon_{k} < \infty$ , then  $x^{k} \to \bar{x}$  a fixed point of T (if one exists).

(The condition is quite strong. [but clearly necessary!])

Errors

Continuous (convex) optimisation

A. Chamboll

Krasnoselski Mann's convergence

Averaged operators
Krasnoselskii-Mann's
convergence theorem
Extensions

analysis and monotone operators. Convex analysis Separation and duality Fenchel-Rockafellar Proof: now,  $x^k$  is "quasi-Fejér monotone": denoting  $e_k = x^{k+1} - T_\theta x^k$  so that  $|e_k| \le \varepsilon_k$ ,

$$|x^{k+1} - x^*| = |T_{\theta}x^k - T_{\theta}x^* + e_k| \le |x^k - x^*| + \varepsilon_k$$

for all k, and any  $x^* \in F$ . Hence,  $|x^{k+1} - x^*| \le |x^0 - x^*| + \sum_{i=0}^k \varepsilon_i$  is bounded. Letting  $a_k = \sum_{i=k}^\infty \varepsilon_i$  which is finite and goes to 0 as  $k \to \infty$ , this can be rewritten

$$|x^{k+1} - x^*| + a_{k+1} \le |x^k - x^*| + a_k$$

so that once more one can define

$$m(x^*) := \lim_{k \to \infty} |x^k - x^*| = \inf_{k \ge 0} |x^k - x^*| + a_k$$

Again, if  $m(x^*) = 0$  the theorem is proved. If not, the rest of the proof follows steps 2, 3, 4 with very little changes.

Averaged operators Krasnoselskii-Manr convergence theore

Examples

Convex
analysis and
monotone
operators.
Convex analysis
Separation and
duality
Fenchel-Rockafell

It follows from this Theorem the convergence for the explicit and implicit gradient descent for convex functions.

Consider  $T_{\tau}(x) = x - \tau \nabla f(x)$  for f convex with L-Lipschitz gradient. We have that

$$T_{2/L}(x) = x - \frac{2}{L}\nabla f(x)$$

is nonexpansive. Hence if  $0 < \tau < 2/L$ , one has

$$T_{\tau}(x) = x - \frac{\tau L}{2} \frac{2}{L} \nabla f(x) = \frac{\tau L}{2} T_{2/L}(x) + \left(1 - \frac{\tau L}{2}\right) x$$

is an averaged operator with  $\theta = L\tau/2 \in ]0,1[$ .

Hence if  $x^k = T_{\tau}^k x_0$ , and  $T_{\tau}$  has a fixed point,  $x^k$  weakly converges to a fixed point. Now,  $T_{\tau}x = x$  if and only if  $\nabla f(x) = 0$ . We have  $|\nabla f(x^k)| \lesssim 1/\sqrt{k}$ .

(For the implicit descent, if f is convex, we will see that the associated operator is always 1/2-averaged.)

Composition of Averaged Operators

Continuous (convex) optimisation

Mann's convergence theorem

Krasnoselskii-Manr convergence theore Extensions

#### Examples

analysis and monotone operators. Convex analysis Separation and duality Fenchel-Rockafelli **Important remark:** Let  $T_{\theta}$ ,  $S_{\lambda}$  be averaged operators:  $T_{\theta} = (1 - \theta)I + \theta T_1$ ,  $S_{\lambda} = (1 - \lambda)I + \lambda S_1$ . Then  $T_{\theta} \circ S_{\lambda}$  is also averaged: letting  $\mu = \theta + \lambda (1 - \theta) \in ]0, 1[$ , one has

$$T_{\theta} \circ S_{\lambda} = (1 - \mu)I + \mu \frac{(1 - \theta)\lambda S_1 + \theta T_1 \circ ((1 - \lambda)I + \lambda S_1)}{\theta + (1 - \theta)\lambda}.$$

**Application:** "Forward-Backward splitting". Show that if, for g convex and f convex with L-Lipschitz gradient

$$\min_{x} f(x) + g(x)$$

has a solution  $x^*$  then

$$x^{k+1} = \arg\min_{x} \frac{|x - (x - \tau \nabla f(x))|^2}{2\tau} + g(x)$$

weakly converges to a solution if  $0 < \tau < 2/L$ .



### Convex analysis (in Hilbert spaces)

Continuous (convex) optimisation

Convex analysis

A *convex* set C in a linear space is such that  $x, y \in C \Rightarrow [x, y] \in C$  where  $[x, y] = \{tx + (1 - t)y : t \in [0, 1]\}.$ 

A convex function is a function  $f: C \to \mathbb{R}$  such that for any  $x, y \in C$ ,  $t \in [0,1]$ ,

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y).$$

#### Convex functions

#### Continuous (convex) optimisation

A. Chamboll

Mann's convergence theorem

Averaged operators
Krasnoselskii-Mann's
convergence theorem
Extensions

Convex analysis and monotone operators.

Convex analysis

Separation and duality

Fenchel-Rockafell duality

A "generalized" convex function is a function  $f: \mathcal{X} \to \mathbb{R} \cup \{-\infty, +\infty\}$  such that its epigraph

$$\operatorname{\mathsf{epi}} f := \{(x,\lambda) \in \mathcal{X} \times \mathbb{R} : \lambda \geq f(x)\}$$

is a convex set.

We define the *domain* of f as dom  $f = \{x : f(x) < +\infty\}$ . It is (clearly) a convex set.

Then, f is *proper* if it is not identically  $+\infty$  and never  $-\infty$ . In this case, again, one can say it is convex if and only if for any  $x, y \in \mathcal{X}$ ,  $t \in [0, 1]$ ,

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y).$$

where now some values here may be  $+\infty$ .

#### Convex functions

Continuous (convex) optimisation

A. Chamboll

Mann's convergence theorem

Averaged operators
Krasnoselskii-Mann's
convergence theorem
Extensions
Examples

analysis and monotone operators. Convex analysis

Separation and duality
Fenchel-Rockafelli duality

**Remark:** If there exists  $\check{x}$  with  $f(\check{x}) = -\infty$ , then for any  $x \in \text{dom } f$ , as soon as there exists  $z \in \text{dom } f$  with  $x \in [\check{x}, z]$ , one has for some  $t \in (0, 1)$ :

$$f(x) \le tf(\check{x}) + (1-t)f(z) = -\infty.$$

In particular, f is identically  $-\infty$  in the relative interior ridom f of its domain, where for a convex C, the *relative interior of* C is defined as:

ri 
$$C := \{x \in C : \forall y \in C \setminus \{x\}, \exists z \in C \setminus \{x\}, x \in [y, z]\}.$$

(In finite dimension, this is nothing but the interior of C in the subspace spanned by C.)

Hence, convex functions which take the value  $-\infty$  are not particularly interesting...

f is *strictly convex* if the inequality is strict whenever  $x \neq y$  and 0 < t < 1. If  $\mathcal X$  is a normed space, f is *strongly convex* (or  $\mu$ -convex) if in addition, there exists  $\mu > 0$  such that for all  $x, y \in \mathcal X$  and  $t \in [0,1]$ ,

$$f(tx+(1-t)y) \le tf(x)+(1-t)f(y)-\mu \frac{t(1-t)}{2}|x-y|^2.$$

[This can be used also with non-Hilbertian norms!]

Thanks to the parallelogram identity, in the Hilbertian setting, one easily checks that this is equivalent to require that  $x \mapsto f(x) - \mu/2|x|^2$  is still convex. The archetypical example of a  $\mu$ -convex function is a quadratic plus affine function  $\mu|x|^2/2 + \langle b, x \rangle + c$ .

The function f is *lower semi-continuous* (l.s.c.) if for all  $x \in \mathcal{X}$ , if  $x_n \to x$ , then

$$f(x) \leq \liminf_{n \to \infty} f(x_n).$$

It is easy to see that f is l.s.c. if and only if epi f is closed.

**Example:** An important example of a convex function the *characteristic function* or *indicator function* of a set C (often denoted  $\iota_C$ ,  $\chi_C$ , or  $\delta_C$ ):

$$\delta_C(x) = \begin{cases} 0 & \text{if } x \in C, \\ +\infty & \text{else,} \end{cases}$$

which is convex and proper as soon as C is convex and non-empty, and is l.s.c. as soon as C is closed.

#### Lemma

Let f be proper, convex.

If there exists  $B \subset \text{dom } f$  a ball with  $\sup_B f < +\infty$ , then f is locally Lipschitz in the interior of dom f.

In finite dimension, a proper convex function f is locally Lipschitz in ridom f.

*Proof:* Wlog assume  $B = B(0, \delta)$ ,  $\delta > 0$ , let  $M = \sup_B f < \infty$ .

For  $x \in B$ , by convexity  $f(x) \ge 2f(0) - f(-x) \ge 2f(0) - M$ , hence  $|f| \le M + 2|f(0)|$ .

We prove that f is Lipschitz in  $B(0, \delta/2)$ : given  $x, y \in B(0, \delta/2)$ , there is  $z \in B(0, \delta)$  such that y = (1 - t)x + tz for some  $t \in [0, 1]$ , and  $|z - x| \ge \delta/2$ .

By convexity,  $f(y) - f(x) \le t(f(z) - f(x)) \le t2(M - f(0))$ . We have t(z - x) = y - x so that  $t \le |y - x|/|z - x| \le 2|y - x|/\delta$ , so that

$$f(y) - f(x) \le \left(\frac{4(M - f(0))}{\delta}\right) |y - x|.$$

### Regularity of convex functions

the interior of dom f.

Continuous (convex) optimisation

A. Chambol

Krasnoselski Mann's convergence theorem

Averaged operators Krasnoselskii-Mann's convergence theorem Extensions Examples

Convex analysis and monotone operators.

Convex analysis
Separation and duality
Fenchel-Rockafella

Now let  $\bar{x}$  in the interior of dom f. Observe that for some  $\lambda > 1$ ,  $\lambda \bar{x} \in \text{dom } f$  hence  $B' = 1/\lambda(\lambda \bar{x}) + (1-1/\lambda)B(0,\delta) = B(\bar{x},\delta(1-1/\lambda)) \subset \text{dom } f$ ; moreover, if  $x \in B', x = 1/\lambda(\lambda \bar{x}) + (1-1/\lambda)z$  for some z with  $f(z) \leq M$  hence  $f(x) \leq 1/\lambda f(\lambda \bar{x}) + (1-1/\lambda)M$ , so that  $\sup_{B'} f < \infty$ . Hence as before f is Lipschitz in a smaller ball. This shows that f is locally Lipschitz in

In finite dimension, assume  $0 \in \text{dom } f$  and let d be the dimension of vect dom f. It means there exist  $x_1, \ldots, x_d$  independent points in dom f. Now, the d-dimensional set  $\{\sum_i t_i x_i : t_i > 0, \sum_i t_i \leq 1\}$  (the interior of the convex envelope of  $\{0, x_1, \ldots, x_d\}$ ) is an open set in vect dom f, moreover if  $x = \sum_i t_i x_i$ ,  $f(x) \leq \sum_i t_i f(x_i) + (1 - \sum_i t_i) f(0) \leq M := \max\{f(0), f(x_1), \ldots, f(x_d)\}$ . Hence we can apply the first part of the theorem, and f is locally Lipschitz in the relative interior of the domain.

### Regularity, remark

Continuous (convex) optimisation

A. Chamboll

Mann's convergence theorem Averaged operator Krasnoselskii-Man

Krasnoselskii-l convergence t Extensions Examples

Convex analysis monoto

Convex analysis
Separation and duality
Fenchel-Rockafella duality

In infinite dimension one can possibly find noncontinuous linear forms hence noncontinuous convex functions. (the typical example is a linear function defined by  $f(e_n) = n$  where  $(e_n)_{n\geq 1}$  is an independent family, which is then completed into a basis  $\mathcal{B}$ , then, one lets f(e) = 0 if  $e \in \mathcal{B} \setminus \{e_n : n \geq 1\}$ .) [Hence: such a function cannot be bounded on an open set!]

A convex proper *lower semi-continuous* function is always locally bounded in the interior of its domain, and therefore locally Lipschitz.

Indeed if 0 is an interior point and one considers the convex closed set  $C = \{x : f(x) \le 1 + f(0)\}$ , one can check that  $\bigcup_{n \ge 1} nC = \mathcal{X}$ , as if  $x \in \mathcal{X}$ ,  $t \mapsto f(tx)$  is locally Lipschitz near t = 0. Hence  $\mathring{C} \ne \emptyset$  by Baire's property: it follows that there is an open ball where f is bounded, as requested (see Ekeland-Temam, Cor. 2.5).

But in infinite dimension there are also many interesting lsc. convex functions whose domain has empty interior.

Continuous (convex) optimisation

A. Chamboll

Krasnoselski Mann's convergence theorem

Averaged operators
Krasnoselskii-Mann's
convergence theorem
Extensions

Convex analysis and monotone operators.

Convex analysis

Separation and duality Fenchel-Rockafel Convex sets are easily "separated" by hyperplanes. This is called a geometric version of Hahn-Banach's theorem. In the Hilbert settings, the proofs are quite easy, and constructive (why in more general settings, the proofs usually rely on Zorn's lemma).

Convex analysis

Separation and duality

Fenchel-Rockafell duality

Convex sets are easily "separated" by hyperplanes. This is called a geometric version of Hahn-Banach's theorem. In the Hilbert settings, the proofs are quite easy, and constructive (why in more general settings, the proofs usually rely on Zorn's lemma).

#### Separation Theorem (1st version)

Let  $\mathcal{X}$  be a (real) Hilbert space,  $\mathcal{C} \subset \mathcal{X}$  a **closed**, convex set and  $x \notin \mathcal{C}$ . Then there exists a closed hyperplane which "separates" strictly x and  $\mathcal{C}$ :  $\exists v \in \mathcal{X}, \alpha \in \mathbb{R}$  s.t.:

$$\langle \mathbf{v}, \mathbf{x} \rangle > \alpha \ge \langle \mathbf{v}, \mathbf{y} \rangle \ \forall \ \mathbf{y} \in \mathbf{C}$$

duality

*Proof:* We introduce the projection  $z = \prod_{C}(x)$  defined by  $|x - z| = \min_{y \in C} |x - y|$ .

The first order optimality condition for z is found by writing that for any  $y \in C$ ,

$$|x-z|^2 \le |x-(z+t(y-z))|^2 \quad \forall t \in (0,1].$$

Sending  $t \to 0$ , we find:

$$\langle x-z,y-z\rangle \leq 0 \ \forall \ y\in C.$$

Hence if  $v = x - z \neq 0$ ,  $y \in C$ ,

$$\langle v, x \rangle = \langle x - z, x \rangle = |x - z|^2 + \langle x - z, z \rangle \ge |x - z|^2 + \langle x - z, y \rangle = |v|^2 + \langle v, y \rangle.$$

The result follows (letting for instance  $\alpha = |v|^2/2 + \sup_{y \in C} \langle v, y \rangle$ ).

The proof can easily be extended to the situation where  $\{x\}$  is replaced with a compact convex set K not intersecting C: consider C' = C - K and  $0 \notin C'$ 

Continuous (convex) optimisation

A. Chamboll

Krasnoselski Mann's convergence theorem

Krasnoselskii-Mann' convergence theorer Extensions Examples

Convex
analysis and
monotone
operators.

Convex analysis

Convex analysis
Separation and
duality
Fenchel-Rockafell
duality

#### Corollary

In a real Hilbert space  $\mathcal{X}$ , a closed convex set C is weakly closed.

Indeed, if  $x \notin C$ , one finds v,  $\alpha$  with  $\langle v, x \rangle > \alpha \ge \langle v, y \rangle$  for all  $y \in C$  and this defines a neighborhood  $\{\langle v, \cdot \rangle > \alpha\}$  of x for the weak topology which does not intersect C: the complement of C is therefore open.

Separation and

#### Separation Theorem (2nd version)

Let  $\mathcal{X}$  be a real Hilbert space,  $\mathcal{C} \subset \mathcal{X}$  an **open** convex set and  $\mathcal{C}' \subset \mathcal{X}$  a convex set with  $C' \cap C = \emptyset$ . Then there exists a closed hyperplane which "separates" Cand C':

 $\exists v \in X, \alpha \in \mathbb{R}, v \neq 0, s.t.$ 

$$\langle v, x \rangle \ge \alpha \ge \langle v, y \rangle \ \forall \ x \in C, y \in C'$$

Continuous (convex) optimisation

A. Chamboll

Mann's convergence theorem

Averaged operators Krasnoselskii-Mann's convergence theoren Extensions

analysis and monotone operators. Convex analysis Separation and duality *Proof:* first case:  $C' = \{\bar{x}\}$  is a singleton.

The difficult case is whenever  $\bar{x} \in \overline{C} \setminus C$ , otherwise we can apply the previous theorem to separate (strictly)  $\bar{x}$  and  $\bar{C}$ .

By assumption, there exists a ball  $B = B(y, \delta) \subset C$ .

Let  $x_n = y + (1 + \frac{1}{n})(\bar{x} - y)$ , which is such that  $x_n \to \bar{x}$  as  $n \to \infty$ . Since

$$\bar{x} = \frac{n}{n+1} x_n + \frac{1}{n+1} y,$$

one has  $x_n \notin \overline{C}$ . Indeed, if  $x_n \in \overline{C}$ , there is  $x' \in C$  with  $|x' - x_n| < \frac{\delta}{2n}$ , and by convexity,  $C \supset \frac{n}{n+1}x' + \frac{1}{n+1}B(y,\delta) = B(\frac{n}{n+1}(x'-x_n) + \overline{x}, \frac{\delta}{n+1}) \ni \overline{x}$ , a contradiction.

By the previous separation Theorem, there exists  $v_n$  such that for all  $x \in \overline{C}$ ,

$$\langle v_n, x_n \rangle \leq \langle v_n, x \rangle$$

and we can assume  $|v_n|=1$ . Up to a subsequence, we may even assume that  $v_n \rightharpoonup v$  weakly in  $\mathcal{X}$ .

In the limit, (using that  $x_n \to \bar{x}$  strongly) we obtain  $\langle v, \bar{x} \rangle \leq \langle v, x \rangle \ \forall \ x \in C$ , which is our claim if  $v \neq 0$  (for instance, in finite dimension).

#### Continuous (convex) optimisation

A. Chambolle

Mann's convergence theorem

Averaged operators Krasnoselskii-Mann's convergence theorem Extensions Examples

Convex analysis and monotone operators.

Convex analysis

Separation and

Fenchel-Rockafella duality Using again the ball  $B(y, \delta) \subset C$ , one has for any  $|z| \leq 1$ 

$$\langle v_n, x_n \rangle \leq \langle v_n, y - \delta z \rangle$$

so that  $\langle v_n, y - x_n \rangle \geq \delta \langle v_n, z \rangle$ .

We consider the sup over all possible z: we find  $\langle v_n, y - x_n \rangle \geq \delta$ . In the limit we deduce  $\langle v, y - \bar{x} \rangle \geq \delta$  which shows that  $v \neq 0$ .

Continuous (convex) optimisation

A. Chamboll

Krasnoselski Mann's convergence

Averaged operators
Krasnoselskii-Mann's
convergence theorem
Extensions
Fxamples

analysis and monotone operators.

Separation and duality
Fenchel-Rockafell duality

Using again the ball  $B(y, \delta) \subset C$ , one has for any  $|z| \leq 1$ 

$$\langle v_n, x_n \rangle \leq \langle v_n, y - \delta z \rangle$$

so that  $\langle v_n, y - x_n \rangle \ge \delta \langle v_n, z \rangle$ .

We consider the sup over all possible z: we find  $\langle v_n, y - x_n \rangle \ge \delta$ . In the limit we deduce  $\langle v, y - \bar{x} \rangle \ge \delta$  which shows that  $v \ne 0$ .

Now, to show the general case, one lets  $A=C'-C=\{y-x:y\in C',x\in C\}$ : this is an open convex set and by assumption,  $0\not\in A$ . Hence by the previous part, there exists  $v\neq 0$  such that  $\langle v,y-x\rangle\leq \langle v,0\rangle=0$  for all  $y\in C',x\in C$ , which is what we wanted to show.

Consider a function  $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ .

#### Definition: Legendre-Fenchel conjugate

We define, for any  $y \in \mathcal{X}$ ,

$$f^*(y) := \sup_{x \in \mathcal{X}} \langle y, x \rangle - f(x)$$

We also define the *bi-conjugate* of  $f^*$  as  $f^{**} = (f^*)^*$ .

**Remark:** in a general vector space,  $f^*$  is defined for  $y \in \mathcal{X}^*$  (a dual space).

**Remark:**  $f^*$  is defined as a sup of continuous, linear forms. It is therefore

lower-semicontinuous (as a sup of continuous functions — including for the weak topology) and convex (as a sup of convex functions).

### Convex duality: Legendre-Fenchel conjugate

Continuous (convex) optimisation

A. Chamboll

Mann's convergence theorem

Averaged operators
Krasnoselskii-Mann's
convergence theorem
Extensions

Convex analysis and monotone operators.

Separation and duality

Fenchel-Rock duality

#### Proposition

Let  $f: \mathcal{X} \to [-\infty, +\infty]$ . Then  $f^{**} \leq f$ .

This is because, by definition, for any x, y,

$$f^*(y) \geq \langle y, x \rangle - f(x) \Leftrightarrow f(x) + f^*(y) \geq \langle y, x \rangle \Leftrightarrow f(x) \geq \langle y, x \rangle - f^*(y).$$

Taking the supremum with respect to y, we find that  $f \ge f^{**}$ .

# Convex duality: Legendre-Fenchel conjugate Biconjugate

Continuous (convex) optimisation

A. Chamboll

Krasnoselskii Mann's convergence theorem

Averaged operators Krasnoselskii-Mann's convergence theorem Extensions

Convex analysis and monotone operators.

Convex analysis
Separation and

**Remark:** Given  $y \in \mathcal{X}$ , if for any  $c \in \mathbb{R}$ , there is  $x \in \mathcal{X}$  with  $f(x) \leq \langle y, x \rangle - c$ , then  $f^*(y) = +\infty$ . On the other hand, if there exists c such that  $f(x) \geq \langle y, x \rangle - c$  for all x, then  $f^*(y) \leq c < +\infty$ .

So  $f^* \not\equiv +\infty$  if and only if f is larger than at least an affine function. If not,  $f^* \equiv +\infty$  and  $f^{**} \equiv -\infty$ .

If f is larger than at least one affine function, and  $f \not\equiv +\infty$ , then  $f^* \not\equiv +\infty$  and  $f^*(y) > +\infty$  for all y:  $f^*$  is proper. In this case, also  $f^{**}$  is proper and one has:

#### Theorem - convex bi-conjugate

Let  $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ , and assume there is an affine function below f. Then  $f^{**}$  is the largest convex, lsc. function below f.

### Convex duality: Legendre-Fenchel conjugate

Continuous (convex) optimisation

Separation and

The result will be a consequence of the following:

#### Theorem

Let  $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$  be convex, proper, lower-semicontinuous. Then  $f^{**} = f$ .

(Actually, both results are corollaries of the other.)

### Convex duality: Legendre-Fenchel conjugate

## Continuous (convex) optimisation

A. Chamboll

Mann's convergence

Averaged operators
Krasnoselskii-Mann's
convergence theorem
Extensions

Convex

analysis and

monotone

operators.

Convex analysis

Separation and

Separation and duality Fenchel-Rockafell duality The result will be a consequence of the following:

#### Theorem

Let  $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$  be convex, proper, lower-semicontinuous. Then  $f^{**} = f$ .

(Actually, both results are corollaries of the other.)

*Proof:* If not, there is  $(x,t) \in \text{epi } f^{**}$  with  $f^{**}(x) \leq t < f(x)$ , that is  $(x,t) \notin \text{epi } f$ . Since epi f is convex, closed, thanks to the first separation theorem,  $\exists (v,\lambda) \in \mathcal{X} \times \mathbb{R}, \alpha \in \mathbb{R}$ , s.t.:

$$\langle v, x \rangle - \lambda t > \alpha \ge \langle v, x' \rangle - \lambda t' \quad \forall (x', t') \in \operatorname{epi} f.$$

Since one can send  $t' \to -\infty$ , we see that  $\lambda$  must be non-negative. If  $\lambda \neq 0$ , one has, letting  $y = v/\lambda$ ,

$$\langle y, x \rangle - t > \frac{\alpha}{\lambda} \ge \langle y, x' \rangle - f(x')$$

for any  $x' \in \text{dom } f$ , so that  $\alpha/\lambda \geq f^*(y)$ . We deduce  $f^{**}(x) \leq t < \langle y, x \rangle - f^*(y)$ , which is a contradiction.

### Convex duality: Legendre-Fenchel conjugate

Continuous (convex) optimisation

A. Chamboll

Krasnoselski Mann's convergence

Averaged operators Krasnoselskii-Mann's convergence theorem Extensions

Convex
analysis and
monotone
operators.
Convex analysis
Separation and

It remains the case  $\lambda = 0$ . One has  $\langle v, x \rangle > \alpha \ge \langle v, x' \rangle$   $\forall x' \in \text{dom } f$ .

We remark that f being convex, lsc, proper, is above an affine function: indeed given a point  $\bar{x} \in \text{dom } f$ , the separation theorem applied to  $(\bar{x}, f(\bar{x}) - 1) \notin \text{epi } f$  shows that there exists  $(w, \mu)$  such that

$$\langle w, \bar{x} \rangle - \mu(f(\bar{x}) - 1) > \langle w, x' \rangle - \mu f(x')$$

for all  $x' \in \text{dom } f$ . Taking  $x' = \bar{x}$  we see that  $\mu > 0$ , hence letting  $p = w/\mu$ , we obtain  $f(x') > \langle p, x' \rangle - c$  for  $c = f(\bar{x}) - 1 - \langle p, \bar{x} \rangle$ .

Hence for t > 0, one has:

$$f^*(tv+p) = \sup_{x'} t \left\langle v, x' \right\rangle + \left\langle p, x' \right\rangle - f(x') \le t \sup_{x' \in \text{dom } f} \left\langle v, x' \right\rangle + c \le \alpha t + c,$$

so that

$$f^{**}(x) = \sup_{q} \langle q, x \rangle - f^{*}(q) \ge \sup_{t>0} \langle tv + p, x \rangle - f^{*}(tv + p) \ge \sup_{t>0} t(\langle v, x \rangle - \alpha) + \langle p, x \rangle - c = +\infty$$

which is again a contradiction since we assumed  $f^{**}(x) < f(x)$ .

### Convex duality: Legendre-Fenchel conjugate

Continuous (convex) optimisation

A. Chambol

Krasnoselski Mann's convergence theorem

Averaged operators Krasnoselskii-Mann's convergence theorem Extensions Examples

Convex analysis and monotone operators.

Convex analysis

Separation and duality

Fenchel-Rockafellar duality

Now we prove the first theorem, that is the case where f is not necessarily convex, lower-semicontinuous. In this case, we use that as before  $f^{**} \leq f$ . If  $f \equiv +\infty$  then  $f^* \equiv -\infty$  and  $f^{**} \equiv +\infty$ : the result is trivial. Otherwise  $f^{**} \leq f$  is proper.

Consider  $g \le f$  convex, lower-semicontinuous. We want to show that  $g \le f^{**}$ . We may assume g is proper, otherwise  $g \le g' = \max\{g, a\} \le f$ , where a is some affine function below f, g' is proper, and  $g' \le f^{**} \Rightarrow g \le f^{**}$ .

One has that  $g^* \ge f^*$  and  $g^{**} \le f^{**}$ . By the last theorem,  $g^{**} = g$ , so that  $g \le f^{**}$ . Hence  $f^{**}$  is the largest convex, semi-continuous function below f.

4□ → 4□ → 4 □ → 1 □ → 9 Q (~)

## Convex duality: Legendre-Fenchel conjugate

Continuous (convex) optimisation

A. Chamboll

Mann's convergence theorem

Averaged operators
Krasnoselskii-Mann's
convergence theorem
Extensions
Examples

Convex analysis and monotone operators.

Convex analysis

Convex analysis

Separation and duality

Fenchel-Rockafella duality

Remark: the following "local" version of the last result can also be useful.

### Corollary

Let f be convex, proper and assume it is lower-semicontinuous at x. Then  $f^{**}(x) = f(x)$ .

```
Proof: f(x) \leq \liminf_{y \to x} f(y), equivalently for any t < f(x), there is a ball B = B(x, \delta) with f > t in B. Hence epi f \cap (B(x, \delta) \times (-\infty, t)) = \emptyset, so that also \overline{\operatorname{epi} f} \cap (B(x, \delta) \times (-\infty, t)) = \emptyset. Being f convex, \overline{\operatorname{epi} f} = \operatorname{epi} f^{**} hence f^{**}(x) \geq t. Letting t \to f(x) we deduce f^{**}(x) \geq f(x)
```

Averaged operators
Krasnoselskii-Mann's
convergence theorem
Extensions

Convex analysis and monotone operators.

Convex analysis Separation and duality Fenchel-Rockafe

**1** 
$$f(x) = |x|^2/(2\alpha), \ \alpha > 0$$
:  $f^*(y) = \alpha |y|^2/2$ ;

② 
$$f(x) = |x|^p/p$$
:  $f^*(y) = |y|^{p'}/p'$ ,  $1/p + 1/p' = 1$ ;

- **3**  $F(f) = ||f||_{L^p}^p/p$ :  $F^*(g) = ||g||_{L^{p'}}^{p'}/p'$  (the duality is in  $L^2$ , however this is also true in the  $(L^p, L^{p'})$  duality, cf Ekeland-Temam's book);
- $f(x) = \delta_{B(0,1)}(x) = 0$  if  $x \in B(0,1)$ ,  $+\infty$  else:  $f^*(p) = |p|$ .

### Conjugate: 1-homogeneous functions

Continuous (convex) optimisation

A. Chambolle

Krasnoselskii Mann's convergence theorem

Averaged operators Krasnoselskii-Mann's convergence theorem Extensions Examples

Convex analysis and monotone operators.

Convex analysis

Separation and

duality Fenchel-Rockafe If f is positively 1-homogeneous, then

$$f^*(y) = \sup_{x} \langle y, x \rangle - f(x) = \sup_{t>0} \sup_{x} \langle y, tx \rangle - f(tx) = \sup_{t>0} tf^*(y) \in \{0, +\infty\}$$

and precisely

$$f^*(y) = \begin{cases} 0 & \text{if } \langle y, x \rangle \le f(x) \ \forall x \in \mathcal{X}, \\ +\infty & \text{if } \exists x \in \mathcal{X}, \ \langle y, x \rangle > f(x). \end{cases}$$

If f is positively 1-homogeneous, then

$$f^*(y) = \sup_{x} \langle y, x \rangle - f(x) = \sup_{t>0} \sup_{x} \langle y, tx \rangle - f(tx) = \sup_{t>0} tf^*(y) \in \{0, +\infty\}$$

and precisely

$$f^*(y) = \begin{cases} 0 & \text{if } \langle y, x \rangle \le f(x) \ \forall x \in \mathcal{X}, \\ +\infty & \text{if } \exists x \in \mathcal{X}, \ \langle y, x \rangle > f(x). \end{cases}$$

Letting  $C = \{y : \langle y, x \rangle \leq f(x) \ \forall x \in \mathcal{X}\}$  one has  $f^* = \delta_C$  (C is clearly closed and convex, and  $f^*$  convex lsc). Eventually, observe that if f is convex and lsc, then  $f^{**} = f$  which shows that in this case:

$$f(x) = \sup_{y \in C} \langle y, x \rangle.$$

Continuous (convex) optimisation

A. Chambol

Krasnoselski Mann's convergence

Averaged operators Krasnoselskii-Mann' convergence theorer Extensions Examples

analysis and monotone operators.

Convex analysis

Separation and duality

Fenchel-Rockafell duality

Conversely if  $f = \delta_C$  for some set C (f is the *support function* of C), one easily sees that  $f^*(y) = \sup_{y \in C} \langle y, x \rangle$  is convex, 1-homogeneous, and that  $f^{**} = \delta_{\overline{coC}}$  the characteristic of the closed convex envelope of C, that is the smallest closed convex set containing C.

Krasnoselski Mann's convergence theorem

Averaged operators
Krasnoselskii-Mann's
convergence theoren
Extensions

analysis and monotone operators. Convex analysis Separation and duality Conversely if  $f = \delta_C$  for some set C (f is the *support function* of C), one easily sees that  $f^*(y) = \sup_{y \in C} \langle y, x \rangle$  is convex, 1-homogeneous, and that  $f^{**} = \delta_{\overline{coC}}$  the characteristic of the closed convex envelope of C, that is the smallest closed convex set containing C.

In general for f positively  $\beta$ -homogeneous,  $1 < \beta < \infty$ , then

$$f^*(ty) = \sup_{x} \langle ty, x \rangle - f(x) = t^{\alpha} \sup_{x} \langle y, t^{1-\alpha}x \rangle - f(t^{-\alpha/\beta}x) = t^{\alpha}f^*(y)$$

if 
$$1 - \alpha = -\alpha/\beta$$
, hence if  $1/\alpha + 1/\beta = 1$ .

### Conjugate of a sum

Inf-convolutions

Continuous (convex) optimisation

A. Chamboll

Krasnoselsk Mann's convergence

Averaged operators Krasnoselskii-Mann's convergence theorem Extensions

Convex analysis and monotone

Convex analysis

Separation and duality

Fenchel-Rockafell

We consider f, g convex lsc. functions. We define their *inf-convolution* as

$$f\Box g(x) = \inf_{y} f(x - y) + g(y).$$

This defines a convex function (more generally, given G(x, y) convex in (x, y),  $x \mapsto \inf_y G(x, y)$  is also convex).

#### Lemma

If there is  $p \in \mathcal{X}$  where  $f^*$  is continuous and  $g^*$  is finite, then the inf is a "min" and  $f \square g$  is convex, lsc. In finite dimension, it is enough to have  $p \in \operatorname{ridom} f^* \cap \operatorname{ridom} g^*$ .

# Inf-convolutions: proof

Continuous (convex) optimisation

A. Chambol

Krasnoselsk Mann's convergence theorem

Averaged operators
Krasnoselskii-Mann's
convergence theoren
Extensions
Examples

analysis and monotone operators. Convex analysis Separation and duality Fenchel-Rockafel duality Proof: consider indeed  $x_n \to x$  and  $y_n$  such that

$$f\square g(x_n) \geq f(x_n - y_n) + g(y_n) - \frac{1}{n}$$

Consider a subsequence with

$$\lim_{k} f(x_{n_k} - y_{n_k}) + g(y_{n_k}) = \lim_{n} \inf f(x_n - y_n) + g(y_n) \le \lim_{n} \inf f \square g(x_n)$$

Observe that if  $f^*$  is continuous at p, then it means that there is a constant c such that

$$f^*(q) \le c + \delta_{B(0,\varepsilon)}(q-p)$$

(where  $\delta_C$  is the characteristic function of C which is zero in C and  $+\infty$  elsewhere) while  $g^*(p) < +\infty$ : so that for all z

$$f(z) = f^{**}(z) \ge \langle p, z \rangle - c + \varepsilon |z|, \quad g(z) \ge \langle p, z \rangle - g^*(p).$$

Hence,

$$f(x_{n_k} - y_{n_k}) + g(y_{n_k}) \ge \langle p, x_{n_k} - y_{n_k} \rangle - c + \varepsilon |x_{n_k} - y_{n_k}| + \langle p, y_{n_k} \rangle - g^*(p)$$

$$= \langle p, x_{n_k} \rangle + \varepsilon |x_{n_k} - y_{n_k}| - (c + g^*(p))$$

so that  $(x_{n_k} - y_{n_k})_k$  is a bounded sequence, hence there exists y and a subsequence of  $(y_{n_k})$  (not relabelled) with  $y_{n_k} \rightarrow y$ . In the limit (as, f, g are weakly lsc),

$$f\square g(x) \leq f(x-y) + g(y) \leq \liminf_{k} f(x_{n_k} - y_{n_k}) + g(y_{n_k}) \leq \liminf_{n} f\square g(x_n).$$

If the sequence  $x_n \equiv x$ , then this proves that there is a minimizer y in the definition of the inf-convolution,

Separation and

### Corollary

Let f, g be convex, lsc: if there exists  $x \in \text{dom } f \cap \text{dom } g$  such that f is continuous at x (in finite dimension,  $x \in \operatorname{ridom} f \cap \operatorname{ridom} g$ ), then  $(f+g)^* = f^* \square g^*$ ,

*Proof:* By our assumption and the previous result,  $f^* \square g^*$  is lsc, and:

$$(f^* \Box g^*)^*(x) = \sup_{p,q} \langle x, p \rangle - f^*(q) - g^*(p - q)$$
  
=  $\sup_{p,q} \langle x, q \rangle - f^*(q) + \langle x, p - q \rangle - g^*(p - q) = f(x) + g(x).$ 

Hence 
$$(f + g)^* = (f^* \Box g^*)^{**} = f^* \Box g^*$$
.

Continuous (convex) optimisation

A. Chamboll

Krasnoselski Mann's convergence theorem

Averaged operators
Krasnoselskii-Mann's
convergence theorem
Extensions
Examples

Convex analysis and monotone operators.

Convex analysis
Separation and

Fenchel-Rockafellar duality Now we consider the problem

$$\min_{x \in \mathcal{X}} f(Kx) + g(x)$$

with  $K: \mathcal{X} \to \mathcal{Y}$  is continuous linear map and f, g convex, lsc. Then:

$$(\mathcal{P}) = \min_{x} f(Kx) + g(x) = \min_{x} \sup_{y} \langle y, Kx \rangle - f^{*}(y) + g(x)$$

$$\geq \sup_{y} \inf_{x} \langle K^{*}y, x \rangle + g(x) - f^{*}(y) = \sup_{y} - (g^{*}(-K^{*}y) + f^{*}(y)) = (\mathcal{D})$$

If there is equality one says that there is "Strong duality". This is "often" true. The problem " $(\mathcal{P})$ " is usually called the *primal problem* and " $(\mathcal{D})$ " the *dual problem*.

Continuous (convex) optimisation

A. Chamboll

Mann's convergence

Averaged operators Krasnoselskii-Mann' convergence theoren Extensions Examples

Convex
analysis and
monotone
operators.
Convex analysis
Separation and
duality
Fenchel-Rockafellar

duality

The primal-dual gap

$$G(x,y) = f(Kx) + g(x) + g^*(-K^*y) + f^*(y)$$

is a measure of optimality. It vanishes at  $(x^*, y^*)$ , if and only if  $(\mathcal{P}) = (\mathcal{D})$ ,  $x^*$  is optimal in  $(\mathcal{P})$  and  $y^*$  in  $(\mathcal{D})$ ,  $(x^*, y^*)$  is a saddle point of the Lagrangian

$$\mathcal{L}(x,y) = \langle y, Kx \rangle - f^*(y) + g(x),$$

as one has

$$\mathcal{L}(x^*, y) \le \mathcal{L}(x^*, y^*) \le \mathcal{L}(x, y^*) \tag{S}$$

for all  $x \in \mathcal{X}$ ,  $y \in \mathcal{Y}$ . [Indeed, for all y, x,

$$\mathcal{L}(x^*, y) \le f(Kx^*) + g(x^*) = -f^*(y^*) - g^*(-K^*y^*) \le \mathcal{L}(x, y^*).$$

Continuous (convex) optimisation

A. Chamboll

Krasnoselski Mann's convergence

Averaged operators Krasnoselskii-Mann's convergence theorem Extensions

Extensi

Convex analysis and monotone operators.

Convex analysis
Separation and

Fenchel-Rockafellar duality The following is an example of Strong duality theorem

#### Theorem

If there exists  $\bar{x} \in \text{dom } g$  with f continuous at  $K\bar{x}$ , then  $(\mathcal{P}) = (\mathcal{D})$ . (Moreover under these assumptions,  $(\mathcal{D})$  has a solution.)

In finite dimension, it is shown in Rockafellar, (Cor 31.2.1) that Strong duality if there exists  $x \in \operatorname{ridom} g$  with  $Kx \in \operatorname{ridom} f$ , or even more generally that  $0 \in \operatorname{ri} (\operatorname{dom} f - K \operatorname{dom} g)$  (the proof is almost the same as below).

Continuous (convex) optimisation

A. Chamboll

Mann's convergence theorem

Averaged operators
Krasnoselskii-Mann's
convergence theorem
Extensions
Examples

Convex analysis and monotone operators. Convex analysis Separation and duality Fenchel-Rockafellar *Proof:* We use the so-called "perturbation method": We introduce, for  $z \in \mathcal{Y}$ ,

$$\Phi(z) := \inf_{x \in \mathcal{X}} f(Kx + z) + g(x).$$

Assume  $\Phi(0) > -\infty$  (otherwise there is nothing to prove), then by assumption, one can find M and  $\varepsilon$  such that for  $|z| < \varepsilon$ ,  $\Phi(z) \le f(K\bar x + z) + g(\bar x) \le M < +\infty$ . Being  $\Phi$  convex, we deduce that it is locally Lipschitz near 0 and in particular thanks to a previous theorem,  $\Phi(0) = \Phi^{**}(0) = \sup_y -\Phi^*(y)$ . We compute:

$$\Phi^*(y) = \sup_{z \in \mathcal{Y}} \langle y, z \rangle - \inf_{x \in \mathcal{X}} (f(Kx + z) + g(x))$$
$$= \sup_{x,z} \langle y, z + Kx \rangle - \langle K^*y, x \rangle - f(Kx + z) - g(x) = f^*(y) + g^*(-K^*y).$$

The claim follows. The subdifferentiability theory (next lecture) will also show that under these assumptions, there always is a solution to the dual problem. (One can also follow the steps of the proof of minimality of inf-convolutions, for a minimizing sequence of the dual problem.)

**Remark**: In finite dimension, if  $0 \in ri(\text{dom } f - K \text{dom } g)$ , one can show again that  $\Phi$  is lsc at 0 and proceed in the same way.

Example

Continuous (convex) optimisation

convergence theorem Averaged operator Krasnoselskii-Man convergence theore

Convex analysis and monotone operators.

Convex analysis
Separation and duality
Fenchel-Rockafellar

duality

We consider the problem

$$\min_{x} \lambda |Dx|_1 + \frac{1}{2}|x - x^0|^2 \tag{P}$$

where  $D: \mathbb{R}^n \to \mathbb{R}^m$  is a continuous operator,  $x^0 \in \mathbb{R}^n$ ,  $|\cdot|_1$  is the  $\ell^1$ -norm. One has

$$f = \lambda |\cdot|_1, \quad K = D, \quad g = \frac{1}{2} |\cdot - x^0|^2.$$

Then the Lagrangian is

$$\mathcal{L}(x,y) = \langle y, Dx \rangle - f^*(y) + g(x)$$

where  $f^*(y) = 0$  if  $|y_i| \le \lambda$  for i = 1, ..., n, and  $+\infty$  else. To find the dual problem, we compute  $g^*(z) = \langle z, x^0 \rangle + |z|^2/2$ , and we obtain

$$\max\left\{\left\langle D^*y, x^0\right\rangle - \frac{1}{2}|D^*y|^2 : |y_i| \le \lambda, i = 1, \dots, n\right\}. \tag{$\mathcal{D}$}$$

This can be rewritten as a projection problem:

$$\min_{|y_i| \le \lambda} |D^*y - x^0|^2.$$

and can be solved for instance by *implicit* gradient descent with the metric  $I/\tau - DD^*$ , for  $\tau < 1/\|D\|^2$ .