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Krasnoselskii-Mann’s convergence theorem

Let T : X → X (X is a Banach or Hilbert space) which is “nonexpansive” or 1
Lipschitz:

|Tx − Ty | ≤ |x − y | ∀ x , y ∈ X .

We consider the problem of finding a fixed point Tx = x .
If in addition it is ρ-Lipschitz with ρ < 1, then Picard’s classical fixed point
theorem shows that the iterates xk = T kx0, k ≥ 1, form a Cauchy sequence and
therefore converge to a fixed point, necessarily unique. (This relies on the fact that
the space is complete.)
If ρ = 1, then the iterations may, or may not, converge. For instance, if Tx = −x ,
then T0 = 0 but xk = (−1)kx0 will never converge unless x0 = 0.
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Definition: Averaged operator
A nonexpansive operator is averaged if it is of the form

(1 − θ)I + θT

where θ ∈ [0, 1) and T is 1-Lipschitz.

Remark: for θ = 0, it is I, which is averaged but not very interesting.
Example: x 7→ x − τ∇f (x) where f is convex, with L-Lipschitz gradient, and
0 ≤ τ < 2/L.
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Krasnoselskii-Mann’s convergence theorem

Setting: T a nonexpansive operator in a Hilbert space X .
F = {x ∈ X : Tx = x} ≠ ∅. Tθ := (1 − θ)I + θT .

Theorem
Let x0 ∈ X , 0 < θ < 1, and for k ≥ 1, xk = T k

θ x0. Then there exists x ∈ F ,
xk ⇀ x.
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Krasnoselskii-Mann’s convergence theorem

Proof: Step 1.: We remark that x∗ ∈ F if and only if Tθx∗ = x∗. In particular,
|xk+1 − x∗| = |Tθxk − Tθx∗| ≤ |xk − x∗|. We say that the sequence (xk) is “Fejér”-monotone with
respect to the set F . Then there exists, for any x∗ ∈ F , m(x∗) = infk |xk − x∗| = limk |xk − x∗|. If
m(x∗) = 0 for some x∗ we are done, hence we may assume m(x∗) > 0 for all x∗ ∈ F .

Step 2: We show that xk+1 − xk → 0: the operator Tθ is said to be “asymptotically regular”. It follows
from the “parallelogram identity”. One has

xk+1 − x∗ = (1 − θ)(xk − x∗) + θ(T1xk − x∗).

Hence for all k:

|xk+1 − x∗|2 = (1 − θ)|xk − x∗|2 + θ|T1xk − x∗|2 − θ(1 − θ)|T1xk − xk |2

≤ |xk − x∗|2 − 1−θ
θ

|xk+1 − xk |2

from which one deduces that
∑

k |xk+1 − xk |2 < ∞, hence the result.
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Krasnoselskii-Mann’s convergence theorem

Remark: rate. In addition, one observes that the sequence 1−θ
θ

|xk+1 − xk |2 (which is nonincreasing) is
controlled in the following way:

1−θ
θ

(k + 1)|xk+1 − xk |2 ≤ 1−θ
θ

k∑
i=0

|x i+1 − x i |2 ≤ |x0 − x∗|2 − |xk+1 − x∗|2.

As xk+1 − xk = θ(T1xk − xk) we obtain a rate for the error T1xk − xk , in the Hilbertian setting, given by:

|T1xk − xk | ≤
|x0 − x∗|√

θ(1 − θ)
√

k + 1
.

In fact, Cominetti-Soto-Vaisman showed recently (2014) that in any normed space

|xk − Txk | ≤
1

√
π

|x0 − x∗|√∑k
i=1 θi (1 − θi )

(if θ is allowed to vary at each step, and assuming there exists a fixed point x∗, their result is a bit more
general).
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Krasnoselskii-Mann’s convergence theorem

Step 3 relies on:

Opial’s lemma
If in a Hilbert space X the sequence (xn)n is weakly convergent to x0 then for any

x ̸= x0,
lim inf

n
|xn − x | > lim inf

n
|xn − x0|

Proof:
|xn − x |2 = |xn − x0|2 + 2 ⟨xn − x0, x0 − x⟩ + |x0 − x |2.

Since ⟨xn − x0, x0 − x⟩ → 0 by weak convergence, we deduce

lim inf
n

|xn − x |2 = lim inf
n

(|xn − x0|2 + |x0 − x |2) = |x0 − x |2 + lim inf
n

|xn − x0|2

and the claim follows.
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Krasnoselskii-Mann’s convergence theorem

Step 3: since Tθ is nonexpansive, for each k,

|xk − x̄ | ≥ |Tθxk − Tθ x̄ |

= |xk+1 − xk + xk − Tθ x̄ | ≥ |xk − Tθ x̄ | − |xk+1 − xk |.

Let xkl be a weakly converging subsequence of xk (which is bounded by step 1). We deduce (thanks to the
previous Step 2):

lim inf
l

|xkl − x̄ | ≥ lim inf
l

|xkl − Tθ x̄ |.

Opial’s lemma implies that Tθ x̄ = x̄ .
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Krasnoselskii-Mann’s convergence theorem

Step 4: To conclude, assume that a subsequence (xml )l of (xk)k converges weakly to another fixed point
ȳ ̸= x̄ .
Then by Opial’s lemma we deduce both that m(x̄) < m(ȳ) and m(ȳ) < m(x̄):

m(ȳ) = lim inf
l

|xml − ȳ | < lim inf
l

|xml − x̄ | = m(x̄),

m(x̄) = lim inf
l

|xkl − x̄ | < lim inf
l

|xkl − ȳ | = m(ȳ),

a contradiction. It follows that the whole sequence (xk) must weakly converge to x̄ .
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Krasnoselskii-Mann’s convergence theorem
Variants

Varying steps: One can consider more generally iterations of the form

xk+1 = xk + τk(T1xk − xk)

with varying steps τk . Then, if 0 < τ ≤ τk ≤ τ < 1, the convergence still holds,
with almost the same proof.
Remark: A sufficient condition is that

∑
k τk(1 − τk) = ∞, see (Reich, 1979).
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Krasnoselskii-Mann’s convergence theorem
Errors

Assume now the sequence (xk) is an “inexact” iteration of Tθ:

|xk+1 − Tθxk | ≤ εk .

Then one has the following result:

Theorem
If

∑
k εk < ∞, then xk → x̄ a fixed point of T (if one exists).

(The condition is quite strong. [but clearly necessary!])
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Krasnoselskii-Mann’s convergence theorem
Errors

Proof: now, xk is “quasi-Fejér monotone”: denoting ek = xk+1 − Tθxk so that |ek | ≤ εk ,

|xk+1 − x∗| = |Tθxk − Tθx∗ + ek | ≤ |xk − x∗| + εk

for all k, and any x∗ ∈ F . Hence, |xk+1 − x∗| ≤ |x0 − x∗| +
∑k

i=0 εi is bounded. Letting ak =
∑∞

i=k εi
which is finite and goes to 0 as k → ∞, this can be rewritten

|xk+1 − x∗| + ak+1 ≤ |xk − x∗| + ak

so that once more one can define

m(x∗) := lim
k→∞

|xk − x∗| = inf
k≥0

|xk − x∗| + ak

Again, if m(x∗) = 0 the theorem is proved. If not, the rest of the proof follows steps 2, 3, 4 with very little
changes.
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Krasnoselskii-Mann’s convergence theorem
Gradient Descent for Convex functions

It follows from this Theorem the convergence for the explicit and implicit gradient
descent for convex functions.
Consider Tτ (x) = x − τ∇f (x) for f convex with L-Lipschitz gradient. We have that

T2/L(x) = x − 2
L∇f (x)

is nonexpansive. Hence if 0 < τ < 2/L, one has

Tτ (x) = x − τL
2

2
L∇f (x) = τL

2 T2/L(x) +
(

1 − τL
2

)
x

is an averaged operator with θ = Lτ/2 ∈]0, 1[.
Hence if xk = T k

τ x0, and Tτ has a fixed point, xk weakly converges to a fixed
point. Now, Tτ x = x if and only if ∇f (x) = 0. We have |∇f (xk)| ≲ 1/

√
k.

(For the implicit descent, if f is convex, we will see that the associated operator is always 1/2-averaged.)
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Krasnoselskii-Mann’s convergence theorem
Composition of Averaged Operators

Important remark: Let Tθ, Sλ be averaged operators: Tθ = (1 − θ)I + θT1,
Sλ = (1 − λ)I + λS1. Then Tθ ◦ Sλ is also averaged: letting
µ = θ + λ(1 − θ) ∈]0, 1[, one has

Tθ ◦ Sλ = (1 − µ)I + µ
(1 − θ)λS1 + θT1 ◦ ((1 − λ)I + λS1)

θ + (1 − θ)λ .

Application: “Forward-Backward splitting”. Show that if, for g convex and f
convex with L-Lipschitz gradient

min
x

f (x) + g(x)

has a solution x∗ then

xk+1 = arg min
x

|x − (x − τ∇f (x))|2
2τ

+ g(x)

weakly converges to a solution if 0 < τ < 2/L.
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Convex analysis (in Hilbert spaces)

A convex set C in a linear space is such that x , y ∈ C ⇒ [x , y ] ∈ C where
[x , y ] = {tx + (1 − t)y : t ∈ [0, 1]}.
A convex function is a function f : C → R such that for any x , y ∈ C , t ∈ [0, 1],

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y).
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Convex functions

A “generalized” convex function is a function f : X → R ∪ {−∞, +∞} such that
its epigraph

epi f := {(x , λ) ∈ X × R : λ ≥ f (x)}

is a convex set.
We define the domain of f as dom f = {x : f (x) < +∞}. It is (clearly) a convex
set.
Then, f is proper if it is not identically +∞ and never −∞. In this case, again,
one can say it is convex if and only if for any x , y ∈ X , t ∈ [0, 1],

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y).

where now some values here may be +∞.
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Convex functions

Remark: If there exists x̌ with f (x̌) = −∞, then for any x ∈ dom f , as soon as
there exists z ∈ dom f with x ∈ [x̌ , z ], one has for some t ∈ (0, 1):

f (x) ≤ tf (x̌) + (1 − t)f (z) = −∞.

In particular, f is identically −∞ in the relative interior ri dom f of its domain,
where for a convex C , the relative interior of C is defined as:

ri C := {x ∈ C : ∀y ∈ C \ {x}, ∃z ∈ C \ {x}, x ∈ [y , z ]} .

(In finite dimension, this is nothing but the interior of C in the subspace spanned
by C .)
Hence, convex functions which take the value −∞ are not particularly interesting...
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Convex functions
More definitions

f is strictly convex if the inequality is strict whenever x ̸= y and 0 < t < 1.
If X is a normed space, f is strongly convex (or µ-convex) if in addition, there
exists µ > 0 such that for all x , y ∈ X and t ∈ [0, 1],

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y) − µ
t(1 − t)

2 |x − y |2.

[This can be used also with non-Hilbertian norms!]
Thanks to the parallelogram identity, in the Hilbertian setting, one easily checks
that this is equivalent to require that x 7→ f (x) − µ/2|x |2 is still convex. The
archetypical example of a µ-convex function is a quadratic plus affine function
µ|x |2/2 + ⟨b, x⟩ + c.
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Convex functions
More definitions and examples

The function f is lower semi-continuous (l.s.c.) if for all x ∈ X , if xn → x , then

f (x) ≤ lim inf
n→∞

f (xn).

It is easy to see that f is l.s.c. if and only if epi f is closed.

Example: An important example of a convex function the characteristic function
or indicator function of a set C (often denoted ιC , χC , or δC ):

δC (x) =
{

0 if x ∈ C ,

+∞ else,

which is convex and proper as soon as C is convex and non-empty, and is l.s.c. as
soon as C is closed.
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Regularity of convex functions

Lemma
Let f be proper, convex.
If there exists B ⊂ dom f a ball with supB f < +∞, then f is locally Lipschitz in
the interior of dom f .
In finite dimension, a proper convex function f is locally Lipschitz in ri dom f .

Proof: Wlog assume B = B(0, δ), δ > 0, let M = supB f < ∞.

For x ∈ B, by convexity f (x) ≥ 2f (0) − f (−x) ≥ 2f (0) − M, hence |f | ≤ M + 2|f (0)|.

We prove that f is Lipschitz in B(0, δ/2): given x , y ∈ B(0, δ/2), there is z ∈ B(0, δ) such that
y = (1 − t)x + tz for some t ∈ [0, 1], and |z − x | ≥ δ/2.

By convexity, f (y) − f (x) ≤ t(f (z) − f (x)) ≤ t2(M − f (0)). We have t(z − x) = y − x so that
t ≤ |y − x |/|z − x | ≤ 2|y − x |/δ, so that

f (y) − f (x) ≤
(4(M − f (0))

δ

)
|y − x |.
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Regularity of convex functions

Now let x̄ in the interior of dom f . Observe that for some λ > 1, λx̄ ∈ dom f hence
B′ = 1/λ(λx̄) + (1 − 1/λ)B(0, δ) = B(x̄ , δ(1 − 1/λ)) ⊂ dom f ; moreover, if
x ∈ B′,x = 1/λ(λx̄) + (1 − 1/λ)z for some z with f (z) ≤ M hence f (x) ≤ 1/λf (λx̄) + (1 − 1/λ)M, so
that supB′ f < ∞. Hence as before f is Lipschitz in a smaller ball. This shows that f is locally Lipschitz in
the interior of dom f .

In finite dimension, assume 0 ∈ dom f and let d be the dimension of vect dom f . It means there exist
x1, . . . , xd independent points in dom f . Now, the d-dimensional set {

∑
i ti xi : ti > 0,

∑
i ti ≤ 1} (the

interior of the convex envelope of {0, x1, . . . , xd }) is an open set in vect dom f , moreover if x =
∑

i ti xi ,
f (x) ≤

∑
i ti f (xi ) + (1 −

∑
i ti )f (0) ≤ M := max{f (0), f (x1), . . . , f (xd )}. Hence we can apply the first

part of the theorem, and f is locally Lipschitz in the relative interior of the domain.
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Regularity, remark

In infinite dimension one can possibly find noncontinuous linear forms hence
noncontinuous convex functions. (the typical example is a linear function defined by f (en) = n
where (en)n≥1 is an independent family, which is then completed into a basis B, then, one lets f (e) = 0 if
e ∈ B \ {en : n ≥ 1}.) [Hence: such a function cannot be bounded on an open set!]

A convex proper lower semi-continuous function is always locally bounded in the
interior of its domain, and therefore locally Lipschitz.
Indeed if 0 is an interior point and one considers the convex closed set
C = {x : f (x) ≤ 1 + f (0)}, one can check that ∪n≥1nC = X , as if x ∈ X ,
t 7→ f (tx) is locally Lipschitz near t = 0. Hence C̊ ̸= ∅ by Baire’s property: it
follows that there is an open ball where f is bounded, as requested (see
Ekeland-Temam, Cor. 2.5).
But in infinite dimension there are also many interesting lsc. convex functions
whose domain has empty interior.
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Separation of convex sets

Convex sets are easily “separated” by hyperplanes. This is called a geometric
version of Hahn-Banach’s theorem. In the Hilbert settings, the proofs are quite
easy, and constructive (why in more general settings, the proofs usually rely on
Zorn’s lemma).

Separation Theorem (1st version)
Let X be a (real) Hilbert space, C ⊂ X a closed, convex set and x ̸∈ C. Then

there exists a closed hyperplane which “separates” strictly x and C:
∃v ∈ X , α ∈ R s.t.:

⟨v , x⟩ > α ≥ ⟨v , y⟩ ∀ y ∈ C
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Separation of convex sets

Convex sets are easily “separated” by hyperplanes. This is called a geometric
version of Hahn-Banach’s theorem. In the Hilbert settings, the proofs are quite
easy, and constructive (why in more general settings, the proofs usually rely on
Zorn’s lemma).

Separation Theorem (1st version)
Let X be a (real) Hilbert space, C ⊂ X a closed, convex set and x ̸∈ C. Then

there exists a closed hyperplane which “separates” strictly x and C:
∃v ∈ X , α ∈ R s.t.:

⟨v , x⟩ > α ≥ ⟨v , y⟩ ∀ y ∈ C
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Separation of convex sets

Proof: We introduce the projection z = ΠC (x) defined by |x − z| = miny∈C |x − y |.
The first order optimality condition for z is found by writing that for any y ∈ C ,

|x − z|2 ≤ |x − (z + t(y − z))|2 ∀t ∈ (0, 1].

Sending t → 0, we find:
⟨x − z, y − z⟩ ≤ 0 ∀ y ∈ C .

Hence if v = x − z ̸= 0, y ∈ C ,

⟨v , x⟩ = ⟨x − z, x⟩ = |x − z|2 + ⟨x − z, z⟩ ≥ |x − z|2 + ⟨x − z, y⟩ = |v |2 + ⟨v , y⟩ .

The result follows (letting for instance α = |v |2/2 + supy∈C ⟨v , y⟩).
The proof can easily be extended to the situation where {x} is replaced with a compact convex set K not
intersecting C : consider C ′ = C − K and 0 ̸∈ C ′
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Separation of convex sets

Corollary
In a real Hilbert space X , a closed convex set C is weakly closed.

Indeed, if x ̸∈ C , one finds v , α with ⟨v , x⟩ > α ≥ ⟨v , y⟩ for all y ∈ C and this
defines a neighborhood {⟨v , ·⟩ > α} of x for the weak topology which does not
intersect C : the complement of C is therefore open.
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Separation of convex sets

Separation Theorem (2nd version)
Let X be a real Hilbert space, C ⊂ X an open convex set and C ′ ⊂ X a convex

set with C ′ ∩ C = ∅. Then there exists a closed hyperplane which “separates” C
and C ′:
∃v ∈ X , α ∈ R, v ̸= 0, s.t.:

⟨v , x⟩ ≥ α ≥ ⟨v , y⟩ ∀ x ∈ C , y ∈ C ′
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Separation of convex sets

Proof: first case: C ′ = {x̄} is a singleton.
The difficult case is whenever x̄ ∈ C \ C , otherwise we can apply the previous theorem to
separate (strictly) x̄ and C .
By assumption, there exists a ball B = B(y , δ) ⊂ C .
Let xn = y + (1 + 1

n )(x̄ − y), which is such that xn → x̄ as n → ∞. Since

x̄ = n
n+1 xn + 1

n+1 y ,

one has xn ̸∈ C . Indeed, if xn ∈ C , there is x ′ ∈ C with |x ′ − xn| < δ
2n , and by convexity,

C ⊃ n
n+1 x ′ + 1

n+1 B(y , δ) = B( n
n+1 (x ′ − xn) + x̄ , δ

n+1 ) ∋ x̄ , a contradiction.
By the previous separation Theorem, there exists vn such that for all x ∈ C ,

⟨vn, xn⟩ ≤ ⟨vn, x⟩

and we can assume |vn| = 1. Up to a subsequence, we may even assume that vn ⇀ v
weakly in X .
In the limit, (using that xn → x̄ strongly) we obtain ⟨v , x̄⟩ ≤ ⟨v , x⟩ ∀ x ∈ C , which is our
claim if v ̸= 0 (for instance, in finite dimension).
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Separation of convex sets

Using again the ball B(y , δ) ⊂ C , one has for any |z | ≤ 1

⟨vn, xn⟩ ≤ ⟨vn, y − δz⟩

so that ⟨vn, y − xn⟩ ≥ δ ⟨vn, z⟩.
We consider the sup over all possible z : we find ⟨vn, y − xn⟩ ≥ δ. In the limit we deduce
⟨v , y − x̄⟩ ≥ δ which shows that v ̸= 0.

Now, to show the general case, one lets A = C ′ − C = {y − x : y ∈ C ′, x ∈ C}: this is an
open convex set and by assumption, 0 ̸∈ A. Hence by the previous part, there exists v ̸= 0
such that ⟨v , y − x⟩ ≤ ⟨v , 0⟩ = 0 for all y ∈ C ′, x ∈ C , which is what we wanted to
show.
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Separation of convex sets

Using again the ball B(y , δ) ⊂ C , one has for any |z | ≤ 1

⟨vn, xn⟩ ≤ ⟨vn, y − δz⟩

so that ⟨vn, y − xn⟩ ≥ δ ⟨vn, z⟩.
We consider the sup over all possible z : we find ⟨vn, y − xn⟩ ≥ δ. In the limit we deduce
⟨v , y − x̄⟩ ≥ δ which shows that v ̸= 0.

Now, to show the general case, one lets A = C ′ − C = {y − x : y ∈ C ′, x ∈ C}: this is an
open convex set and by assumption, 0 ̸∈ A. Hence by the previous part, there exists v ̸= 0
such that ⟨v , y − x⟩ ≤ ⟨v , 0⟩ = 0 for all y ∈ C ′, x ∈ C , which is what we wanted to
show.
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Convex duality: Legendre-Fenchel conjugate
(Or “convex conjugate”)

Consider a function f : X → R ∪ {+∞}.

Definition: Legendre-Fenchel conjugate
We define, for any y ∈ X ,

f ∗(y) := sup
x∈X

⟨y , x⟩ − f (x)

We also define the bi-conjugate of f ∗ as f ∗∗ = (f ∗)∗.
Remark: in a general vector space, f ∗ is defined for y ∈ X ∗ (a dual space).
Remark: f ∗ is defined as a sup of continuous, linear forms. It is therefore
lower-semicontinuous (as a sup of continuous functions — including for the weak
topology) and convex (as a sup of convex functions).
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Convex duality: Legendre-Fenchel conjugate

Proposition
Let f : X → [−∞, +∞]. Then f ∗∗ ≤ f .

This is because, by definition, for any x , y ,

f ∗(y) ≥ ⟨y , x⟩ − f (x) ⇔ f (x) + f ∗(y) ≥ ⟨y , x⟩ ⇔ f (x) ≥ ⟨y , x⟩ − f ∗(y).

Taking the supremum with respect to y , we find that f ≥ f ∗∗.



Continuous
(convex)

optimisation

A. Chambolle

Krasnoselskii-
Mann’s
convergence
theorem
Averaged operators

Krasnoselskii-Mann’s
convergence theorem

Extensions

Examples

Convex
analysis and
monotone
operators.
Convex analysis

Separation and
duality

Fenchel-Rockafellar
duality

Convex duality: Legendre-Fenchel conjugate
Biconjugate

Remark: Given y ∈ X , if for any c ∈ R, there is x ∈ X with f (x) ≤ ⟨y , x⟩ − c,
then f ∗(y) = +∞. On the other hand, if there exists c such that f (x) ≥ ⟨y , x⟩ − c
for all x , then f ∗(y) ≤ c < +∞.
So f ∗ ̸≡ +∞ if and only if f is larger than at least an affine function. If not,
f ∗ ≡ +∞ and f ∗∗ ≡ −∞.

If f is larger than at least one affine function, and f ̸≡ +∞, then f ∗ ̸≡ +∞ and
f ∗(y) > +∞ for all y : f ∗ is proper. In this case, also f ∗∗ is proper and one has:

Theorem - convex bi-conjugate
Let f : X → R ∪ {+∞}, and assume there is an affine function below f . Then f ∗∗

is the largest convex, lsc. function below f .
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Convex duality: Legendre-Fenchel conjugate

The result will be a consequence of the following:

Theorem
Let f : X → R ∪ {+∞} be convex, proper, lower-semicontinuous. Then f ∗∗ = f .

(Actually, both results are corollaries of the other.)

Proof: If not, there is (x , t) ∈ epi f ∗∗ with f ∗∗(x) ≤ t < f (x), that is (x , t) ̸∈ epi f . Since epi f is convex,
closed, thanks to the first separation theorem, ∃(v , λ) ∈ X × R, α ∈ R, s.t.:

⟨v , x⟩ − λt > α ≥
〈

v , x ′
〉

− λt′ ∀ (x ′, t′) ∈ epi f .

Since one can send t′ → −∞, we see that λ must be non-negative. If λ ̸= 0, one has, letting y = v/λ,

⟨y , x⟩ − t >
α

λ
≥

〈
y , x ′

〉
− f (x ′)

for any x ′ ∈ dom f , so that α/λ ≥ f ∗(y). We deduce f ∗∗(x) ≤ t < ⟨y , x⟩ − f ∗(y), which is a
contradiction.
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Convex duality: Legendre-Fenchel conjugate

The result will be a consequence of the following:

Theorem
Let f : X → R ∪ {+∞} be convex, proper, lower-semicontinuous. Then f ∗∗ = f .

(Actually, both results are corollaries of the other.)
Proof: If not, there is (x , t) ∈ epi f ∗∗ with f ∗∗(x) ≤ t < f (x), that is (x , t) ̸∈ epi f . Since epi f is convex,
closed, thanks to the first separation theorem, ∃(v , λ) ∈ X × R, α ∈ R, s.t.:

⟨v , x⟩ − λt > α ≥
〈

v , x ′
〉

− λt′ ∀ (x ′, t′) ∈ epi f .

Since one can send t′ → −∞, we see that λ must be non-negative. If λ ̸= 0, one has, letting y = v/λ,

⟨y , x⟩ − t >
α

λ
≥

〈
y , x ′

〉
− f (x ′)

for any x ′ ∈ dom f , so that α/λ ≥ f ∗(y). We deduce f ∗∗(x) ≤ t < ⟨y , x⟩ − f ∗(y), which is a
contradiction.
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Convex duality: Legendre-Fenchel conjugate

It remains the case λ = 0. One has ⟨v , x⟩ > α ≥ ⟨v , x ′⟩ ∀ x ′ ∈ dom f .
We remark that f being convex, lsc, proper, is above an affine function: indeed given a point x̄ ∈ dom f ,
the separation theorem applied to (x̄ , f (x̄) − 1) ̸∈ epi f shows that there exists (w , µ) such that

⟨w , x̄⟩ − µ(f (x̄) − 1) >
〈

w , x ′
〉

− µf (x ′)

for all x ′ ∈ dom f . Taking x ′ = x̄ we see that µ > 0, hence letting p = w/µ, we obtain f (x ′) > ⟨p, x ′⟩ − c
for c = f (x̄) − 1 − ⟨p, x̄⟩.
Hence for t > 0, one has:

f ∗(tv + p) = sup
x′

t
〈

v , x ′
〉

+
〈

p, x ′
〉

− f (x ′) ≤ t sup
x′∈dom f

〈
v , x ′

〉
+ c ≤ αt + c,

so that

f ∗∗(x) = sup
q

⟨q, x⟩ − f ∗(q) ≥ sup
t>0

⟨tv + p, x⟩ − f ∗(tv + p) ≥ sup
t>0

t(⟨v , x⟩ − α) + ⟨p, x⟩ − c = +∞

which is again a contradiction since we assumed f ∗∗(x) < f (x).
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Convex duality: Legendre-Fenchel conjugate

Now we prove the first theorem, that is the case where f is not necessarily convex,
lower-semicontinuous. In this case, we use that as before f ∗∗ ≤ f . If f ≡ +∞ then
f ∗ ≡ −∞ and f ∗∗ ≡ +∞: the result is trivial. Otherwise f ∗∗ ≤ f is proper.

Consider g ≤ f convex, lower-semicontinuous. We want to show that g ≤ f ∗∗. We may
assume g is proper, otherwise g ≤ g ′ = max{g , a} ≤ f , where a is some affine function
below f , g ′ is proper, and g ′ ≤ f ∗∗ ⇒ g ≤ f ∗∗.
One has that g∗ ≥ f ∗ and g∗∗ ≤ f ∗∗. By the last theorem, g∗∗ = g , so that g ≤ f ∗∗.
Hence f ∗∗ is the largest convex, semi-continuous function below f .
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Convex duality: Legendre-Fenchel conjugate

Remark: the following “local” version of the last result can also be useful.

Corollary
Let f be convex, proper and assume it is lower-semicontinuous at x. Then
f ∗∗(x) = f (x).

Proof: f (x) ≤ lim infy→x f (y), equivalently for any t < f (x), there is a ball B = B(x , δ)
with f > t in B. Hence epi f ∩ (B(x , δ) × (−∞, t)) = ∅, so that also
epi f ∩ (B(x , δ) × (−∞, t)) = ∅. Being f convex, epi f = epi f ∗∗ hence f ∗∗(x) ≥ t. Letting
t → f (x) we deduce f ∗∗(x) ≥ f (x)
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Conjugate: Examples

1 f (x) = |x |2/(2α), α > 0: f ∗(y) = α|y |2/2;
2 f (x) = |x |p/p: f ∗(y) = |y |p′

/p′, 1/p + 1/p′ = 1;
3 F (f ) = ∥f ∥p

Lp /p: F ∗(g) = ∥g∥p′

Lp′ /p′ (the duality is in L2, however this is also
true in the (Lp, Lp′) duality, cf Ekeland-Temam’s book);

4 f (x) = δB(0,1)(x) = 0 if x ∈ B(0, 1), +∞ else: f ∗(p) = |p|.
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Conjugate: 1-homogeneous functions

If f is positively 1-homogeneous, then

f ∗(y) = sup
x

⟨y , x⟩ − f (x) = sup
t>0

sup
x

⟨y , tx⟩ − f (tx) = sup
t>0

tf ∗(y) ∈ {0, +∞}

and precisely

f ∗(y) =
{

0 if ⟨y , x⟩ ≤ f (x) ∀ x ∈ X ,

+∞ if ∃ x ∈ X , ⟨y , x⟩ > f (x).

Letting C = {y : ⟨y , x⟩ ≤ f (x) ∀ x ∈ X } one has f ∗ = δC (C is clearly closed and
convex, and f ∗ convex lsc). Eventually, observe that if f is convex and lsc, then
f ∗∗ = f which shows that in this case:

f (x) = sup
y∈C

⟨y , x⟩ .
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Conjugate: 1-homogeneous functions

If f is positively 1-homogeneous, then

f ∗(y) = sup
x

⟨y , x⟩ − f (x) = sup
t>0

sup
x

⟨y , tx⟩ − f (tx) = sup
t>0

tf ∗(y) ∈ {0, +∞}

and precisely

f ∗(y) =
{

0 if ⟨y , x⟩ ≤ f (x) ∀ x ∈ X ,

+∞ if ∃ x ∈ X , ⟨y , x⟩ > f (x).

Letting C = {y : ⟨y , x⟩ ≤ f (x) ∀ x ∈ X } one has f ∗ = δC (C is clearly closed and
convex, and f ∗ convex lsc). Eventually, observe that if f is convex and lsc, then
f ∗∗ = f which shows that in this case:

f (x) = sup
y∈C

⟨y , x⟩ .
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Conjugate: “∞-homogeneous” functions / β-homogeneous
functions.

Conversely if f = δC for some set C (f is the support function of C), one easily
sees that f ∗(y) = supy∈C ⟨y , x⟩ is convex, 1-homogeneous, and that f ∗∗ = δcoC the
characteristic of the closed convex envelope of C , that is the smallest closed convex
set containing C .

In general for f positively β-homogeneous, 1 < β < ∞, then

f ∗(ty) = sup
x

⟨ty , x⟩ − f (x) = tα sup
x

〈
y , t1−αx

〉
− f (t−α/βx) = tαf ∗(y)

if 1 − α = −α/β, hence if 1/α + 1/β = 1.
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Conjugate: “∞-homogeneous” functions / β-homogeneous
functions.

Conversely if f = δC for some set C (f is the support function of C), one easily
sees that f ∗(y) = supy∈C ⟨y , x⟩ is convex, 1-homogeneous, and that f ∗∗ = δcoC the
characteristic of the closed convex envelope of C , that is the smallest closed convex
set containing C .

In general for f positively β-homogeneous, 1 < β < ∞, then

f ∗(ty) = sup
x

⟨ty , x⟩ − f (x) = tα sup
x

〈
y , t1−αx

〉
− f (t−α/βx) = tαf ∗(y)

if 1 − α = −α/β, hence if 1/α + 1/β = 1.
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Conjugate of a sum
Inf-convolutions

We consider f , g convex lsc. functions. We define their inf-convolution as

f □g(x) = inf
y

f (x − y) + g(y).

This defines a convex function (more generally, given G(x , y) convex in (x , y),
x 7→ infy G(x , y) is also convex).

Lemma
If there is p ∈ X where f ∗ is continuous and g∗ is finite, then the inf is a “min”
and f □g is convex, lsc. In finite dimension, it is enough to have
p ∈ ri dom f ∗ ∩ ri dom g∗.
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Inf-convolutions: proof

Proof: consider indeed xn → x and yn such that

f □g(xn) ≥ f (xn − yn) + g(yn) −
1
n

.

Consider a subsequence with

lim
k

f (xnk − ynk ) + g(ynk ) = lim inf
n

f (xn − yn) + g(yn) ≤ lim inf
n

f □g(xn)

Observe that if f ∗ is continuous at p, then it means that there is a constant c such that

f ∗(q) ≤ c + δB(0,ε)(q − p)

(where δC is the characteristic function of C which is zero in C and +∞ elsewhere) while g∗(p) < +∞: so
that for all z

f (z) = f ∗∗(z) ≥ ⟨p, z⟩ − c + ε|z|, g(z) ≥ ⟨p, z⟩ − g∗(p).
Hence,

f (xnk − ynk ) + g(ynk ) ≥ ⟨p, xnk − ynk ⟩ − c + ε|xnk − ynk | + ⟨p, ynk ⟩ − g∗(p)
= ⟨p, xnk ⟩ + ε|xnk − ynk | − (c + g∗(p))

so that (xnk − ynk )k is a bounded sequence, hence there exists y and a subsequence of (ynk ) (not
relabelled) with ynk ⇀ y . In the limit (as, f , g are weakly lsc),

f □g(x) ≤ f (x − y) + g(y) ≤ lim inf
k

f (xnk − ynk ) + g(ynk ) ≤ lim inf
n

f □g(xn).

If the sequence xn ≡ x , then this proves that there is a minimizer y in the definition of the inf-convolution.
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Conjugate of a sum

Corollary
Let f , g be convex, lsc: if there exists x ∈ dom f ∩ dom g such that f is continuous
at x (in finite dimension, x ∈ ri dom f ∩ ri dom g), then (f + g)∗ = f ∗□g∗,

Proof: By our assumption and the previous result, f ∗□g∗ is lsc, and:

(f ∗□g∗)∗(x) = sup
p,q

⟨x , p⟩ − f ∗(q) − g∗(p − q)

= sup
p,q

⟨x , q⟩ − f ∗(q) + ⟨x , p − q⟩ − g∗(p − q) = f (x) + g(x).

Hence (f + g)∗ = (f ∗□g∗)∗∗ = f ∗□g∗.
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Now we consider the problem

min
x∈X

f (Kx) + g(x)

with K : X → Y is continuous linear map and f , g convex, lsc. Then:

(P) = min
x

f (Kx) + g(x) = min
x

sup
y

⟨y , Kx⟩ − f ∗(y) + g(x)

≥ sup
y

inf
x

⟨K ∗y , x⟩ + g(x) − f ∗(y) = sup
y

− (g∗(−K ∗y) + f ∗(y)) = (D)

If there is equality one says that there is “Strong duality”. This is “often” true. The
problem “(P)” is usually called the primal problem and “(D)” the dual problem.
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The primal-dual gap

G(x , y) = f (Kx) + g(x) + g∗(−K ∗y) + f ∗(y)

is a measure of optimality. It vanishes at (x∗, y∗), if and only if (P) = (D), x∗ is
optimal in (P) and y∗ in (D), (x∗, y∗) is a saddle point of the Lagrangian

L(x , y) = ⟨y , Kx⟩ − f ∗(y) + g(x),

as one has
L(x∗, y) ≤ L(x∗, y∗) ≤ L(x , y∗) (S)

for all x ∈ X , y ∈ Y. [Indeed, for all y , x ,
L(x∗, y) ≤ f (Kx∗) + g(x∗) = −f ∗(y∗) − g∗(−K ∗y∗) ≤ L(x , y∗).]
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The following is an example of Strong duality theorem

Theorem
If there exists x̄ ∈ dom g with f continuous at K x̄ , then (P) = (D). (Moreover
under these assumptions, (D) has a solution.)

In finite dimension, it is shown in Rockafellar, (Cor 31.2.1) that Strong duality if
there exists x ∈ ri dom g with Kx ∈ ri dom f , or even more generally that
0 ∈ ri (dom f − Kdom g) (the proof is almost the same as below).
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Proof: We use the so-called “perturbation method”: We introduce, for z ∈ Y,

Φ(z) := inf
x∈X

f (Kx + z) + g(x).

Assume Φ(0) > −∞ (otherwise there is nothing to prove), then by assumption, one can find M and ε such
that for |z| < ε, Φ(z) ≤ f (Kx̄ + z) + g(x̄) ≤ M < +∞. Being Φ convex, we deduce that it is locally
Lipschitz near 0 and in particular thanks to a previous theorem, Φ(0) = Φ∗∗(0) = supy −Φ∗(y). We
compute:

Φ∗(y) = sup
z∈Y

⟨y , z⟩ − inf
x∈X

(f (Kx + z) + g(x))

= sup
x,z

⟨y , z + Kx⟩ − ⟨K∗y , x⟩ − f (Kx + z) − g(x) = f ∗(y) + g∗(−K∗y).

The claim follows. The subdifferentiability theory (next lecture) will also show that under these
assumptions, there always is a solution to the dual problem. (One can also follow the steps of the proof of
minimality of inf-convolutions, for a minimizing sequence of the dual problem.)
Remark: In finite dimension, if 0 ∈ ri (dom f − Kdom g), one can show again that
Φ is lsc at 0 and proceed in the same way.
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Example

We consider the problem
min

x
λ|Dx |1 + 1

2 |x − x0|2 (P)

where D : Rn → Rm is a continuous operator, x0 ∈ Rn, |·|1 is the ℓ1-norm. One has

f = λ|·|1, K = D, g = 1
2 |· − x0|2.

Then the Lagrangian is
L(x , y) = ⟨y , Dx⟩ − f ∗(y) + g(x)

where f ∗(y) = 0 if |yi | ≤ λ for i = 1, . . . , n, and +∞ else. To find the dual problem, we
compute g∗(z) =

〈
z , x0〉

+ |z |2/2, and we obtain

max
{〈

D∗y , x0〉
− 1

2 |D∗y |2 : |yi | ≤ λ, i = 1, . . . , n
}

. (D)

This can be rewritten as a projection problem:
min

|yi |≤λ
|D∗y − x0|2.

and can be solved for instance by implicit gradient descent with the metric I/τ − DD∗, for
τ < 1/∥D∥2.
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