
Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Continuous (convex) optimisation
M2 - PSL / Dauphine / S.U.

Antonin Chambolle, CNRS, CEREMADE

Université Paris Dauphine PSL

Oct.-Dec. 2021

Lecture 4: Splitting algorithms, Acceleration, FISTA

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Contents

1 Algorithms for monotone operators
Abstract problems
Splitting methods

2 Descent algorithms
Forward-Backward
Acceleration

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Abstract methods for Monotone operators

General problem:
0 ∈ Ax or 0 ∈ Ax + Bx

where A, B are maximal monotone operators (which may or may not be
subgradients).

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Explicit methods

Generalization of gradient descent:

xk+1 = xk − τpk , pk ∈ Axk .

Issue: Even if A is single-valued and Lipschitz continuous, then this might not work.

Example: A =
(

0 −1
1 0

)
. Then,

xk =
(

1 −τ
τ 1

)k

x0.

The eigenvalues of this matrix are 1 + ±τ i with modulus
√

1 + τ2 and the iteration
always diverges (unless x0 = 0).

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Explicit methods

So one needs a stronger condition on A. We recall that the gradient descent works
for convex functions with Lipschitz gradient, and the proof relies on the
co-coercivity.

Theorem
Let A maximal monotone be µ-co-coercive (in particular, single-valued):

⟨Ax − Ay , x − y⟩ ≥ µ|Ax − Ay |2.

Assume there exists a solution to Ax = 0. Then the iteration xk+1 = xk − τAxk

converges to x∗ with Ax∗ = 0 if 0 < τ < 2µ.

Remark: this is the same as µA firmly non-expansive.
Then, the proof relies on proving that I − τA is an averaged operator.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Explicit methods

Proof:

|(I − τA)x − (I − τA)y |2

= |x − y |2 − 2τ ⟨x − y , Ax − Ay⟩ + τ 2|Ax − Ay |2

≤ |x − y |2 − τ(2µ − τ)|Ax − Ay |2.

This shows that if 0 ≤ τ ≤ 2µ, I − τA is 1-Lipschitz (nonexpansive). Hence for τ < 2µ,

I − τA = (1 − τ
2µ)I + τ

2µ (I − (2µ)A)

is averaged. By The K-M Theorem, the iterates weakly converge, as k → ∞, to a fixed
point of (I − τA) (if it exists). If τ = 0 this is not interesting, if 0 < τ < 2µ, then it is a
zero of A, which exists by assumption.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Explicit method without co-coercivity?
Extragradient method (Korpelevich, 1976)

In case B is just L-Lipschitz continuous, the following method was proposed in
1976 by G. M. Korpelevich: {

yk = xk − τBxk

xk+1 = xk − τByk

Theorem
If τL < 1, then the algorithm generates sequences xk and yk which (weakly)
converge to a solution of Bx ∋ 0, if there exists one. In addition, |xk − yk | → 0.

Remark: the original paper has an additional projection step (for a convex
constraint), the proof is almost identical.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Extragradient method

Proof: For this algorithm we cannot use out of the box a previous theorem. We compute, for x∗ with
Bx∗ ∋ 0,

|xk+1−x∗|2 = |xk−x∗|2+2
〈

xk − x∗, xk+1 − xk
〉

+|xk+1−xk |2 = |xk−x∗|2−2τ
〈

xk − x∗, Byk
〉

+|xk+1−xk |2.

We use then that
〈

xk − x∗, Byk
〉

=
〈

xk − yk + yk − x∗, Byk − Bx∗
〉

≥
〈

xk − yk , Byk
〉

and deduce:

|xk+1−x∗|2 ≤ |xk−x∗|2−2τ
〈

xk − yk , Byk
〉

+|xk+1−xk |2 = |xk−x∗|2+2
〈

xk − yk , xk+1 − xk
〉

+|xk+1−xk |2.

It follows:

|xk+1 − x∗|2 ≤ |xk − x∗|2 + |xk+1 − yk |2 − |xk − yk |2

= |xk − x∗|2 + |τByk − τBxk |2 − |xk − yk |2 ≤ |xk − x∗|2 − (1 − τ2L2)|yk − xk |2.

We deduce, when τL < 1, that |xk − x∗| is decreasing (Fejér-monotonicity of the sequence), that
|xk − yk | → 0 (and therefore also |xk+1 − yk | and |xk+1 − xk |) and can continue as in the proof of KM’s
theorem.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Extragradient method

One also needs to check that a fixed point is a solution! A fixed point satisfies:
y = x − τBx , x = x − τBy . Hence one has y − x = τ(By − Bx) so that
|y − x | ≤ τL|y − x |. If τL < 1 then y − x = 0 and Bx = 0.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Proximal point algorithm

Now we consider the “implicit descent”:

xk+1 ∈ xk − τAxk+1

This is precisely which is solved by

xk+1 = (I + τA)−1xk = JτAxk

which is well-posed for A is maximal monotone.
This iteration is known as the proximal point algorithm. It obviously converges to a
fixed point as the operator is (1/2)-averaged (if the fixed point, that is a point with
Ax = 0, exists).

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Proximal point algorithm
Overrelaxation

The reflexion RτA = 2(I + τA)−1 − I is 1-Lipschitz and one can generalize as
follows:

xk+1 = (1 − θk)xk + θkRτAxk = xk + 2θk
(
(I + τA)−1xk − xk

)
= xk − 2θkτAτ xk ,

for 0 < θ ≤ θk ≤ θ < 1.
We still get convergence.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Proximal point algorithm

Theorem (PPA Algorithm)
Let x0 ∈ X , τk ≥ τ > 0, 0 ≤ λ ≤ λk ≤ λ ≤ 2, and let

xk+1 = xk + λk((I + τkA)−1xk − xk). (1)

If there exists x with Ax ∋ 0, then xk weakly converges to a zero of A.

We could also consider (summable) errors. (See Bauschke-Combettes for variants,
Eckstein-Bertsekas for a proof with errors.)

Proof. The proof follows the lines of the proof of the KM Theorem.
We observe that obviously, |xk+1 − x |2 ≤ |xk − x |2 for each k ≥ 0 and for each x with Ax ∋ 0. But we can
be more precise. One has:

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Proximal point algorithm

|xk+1 − x |2 = |xk − x |2 + λ2
k |Jτk Axk − xk |2 + 2λk

〈
xk − x , Jτk Axk − xk

〉
= |xk − x |2 + λ2

k |Jτk Axk − xk |2

+ λk
(

|Jτk Axk − x |2 − |xk − x |2 − |Jτk Axk − xk |2
)

.

As Jτk A is firmly non-expansive:

|Jτk Axk − x |2 + |(I − Jτk A)xk − (I − Jτk A)x |2 ≤ |xk − x |2

where in addition (I − Jτk A)x = 0 so that |(I − Jτk A)xk − (I − Jτk A)x |2 = |xk − Jτk Axk |2. Hence:

|xk+1 − x |2 ≤ |xk − x |2 + λ2
k |Jτk Axk − xk |2 − 2λk |Jτk Axk − xk |2

= |xk − x |2 − λk(2 − λk)|Jτk Axk − xk |2.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Proximal Point Algorithm

Letting c = λ(2 − λ) > 0, we deduce that (xk)k is Fejér-monotone with respect to {x : Ax ∋ 0} and that

c
n∑

k=0

|Jτk Axk − xk |2 + |xn+1 − x |2 ≤ |x0 − x |2

for all n ≥ 0, in particular |Jτk Axk − xk | → 0 (as well as, by the scheme, xk+1 − xk).
We would like to deduce convergence as in the proof of KM’s Theorem. Yet, with varying τk , it is not
obvious that a limit point x̄ of a subsequence xkl is a fixed point (of what?).
But one proves that Ax ∋ 0 using the maximal-monotonicity of A. If x ′ ∋ X , y ′ ∈ Ax ′, denoting
ek := Jτk Axk − xk → 0 we have:

A(xk + ek) ∋ −
ek
τk

,

so that 〈
y ′ + ek

τk
, x ′ − xk − ek

〉
≥ 0.

In the limit along the subsequence xkl , we find ⟨y ′, x ′ − x̄⟩ ≥ 0, so that Ax̄ ∋ 0. The rest of the proof relies
on Opial’s lemma and is as in the proof of the KM Theorem.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Splitting methods
Forward-Backward splitting

We can now mix the implicit and explicit algorithms: Let A, B be
maximal-monotone, with B µ-co-coercive. We define the forward-backward
splitting algorithm as:

xk+1 = (I + τA)−1(I − τB)xk

If 0 < τ < 2µ, the algorithm is the composition of two averaged operator →
converges weakly to a fixed point if it exists:

(I + τA)−1(I − τB)x = x ⇔ x − τBx ∈ x + τAx ⇔ Ax + Bx ∋ 0.

(As B is continuous, this is equivalent to (A + B)x ∋ 0. Hence, if A + B has a
zero, this algorithm converges to a zero of A + B.)

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Douglas-Rachford splitting

Introduced under the following form in a paper of Lions and Mercier (79):

xk+1 = JτA(2JτB − I)xk + (I − JτB)xk

Theorem
Let x0 ∈ X . Then xk ⇀ x such that w = JτBx is a solution of Aw + Bw ∋ 0 (if it
exists).

To prove this, we express the iterations in terms of the reflexion opeators:

JτA = 1
2 I + 1

2RτA, JτB = 1
2 I + 1

2RτB.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Douglas-Rachford splitting

Introduced under the following form in a paper of Lions and Mercier (79):

xk+1 = JτA(2JτB − I)xk + (I − JτB)xk

Theorem
Let x0 ∈ X . Then xk ⇀ x such that w = JτBx is a solution of Aw + Bw ∋ 0 (if it
exists).

To prove this, we express the iterations in terms of the reflexion opeators:

JτA = 1
2 I + 1

2RτA, JτB = 1
2 I + 1

2RτB.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Douglas-Rachford splitting

One has then

JτA(2JτB − I)x + (I − JτB)x =
(I + RτA

2 (RτB) + I − RτB
2

)
(x)

= I + RτA ◦ RτB
2 (x)

It follows that the iterates are of an averaged operator (with 1/2).
A fixed points satisfies:

x = JτA(2JτB − I)x + (I − JτB)x ⇔ w := JτBx = JτA(2w − x)
⇔ w + τAw ∋ 2w − x ⇔ τAw ∋ w − x

Now since w + τBw ∋ x , this is τAw + τBw ∋ 0, which shows the theorem.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Douglas-Rachford splitting
and Peaceman-Rachford splitting

Remark: In addition: one can consider an “over-relaxed” iteration with operator:

(1 − θ)I + θRτA ◦ RτB = I + 2θ(JτA(2JτB − I) − JτB).

for 0 < θ < 1. The case θ = 1 is called the “Peaceman-Rachford” splitting and
converges under some conditions on A, B.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Descent algorithms: Forward-backward descent

In case A = ∂g , B = ∇f , g , f convex, lsc, f with L-Lipschitz gradient, the
forward-backward splitting solves ∂g(x) + ∇f (x) ∋ 0: then x is a minimizer of the
composite minimization problem:

min
x

F (x) := f (x) + g(x).

We consider the operator:

x̄ 7→ x̂ = Tτ x̄ := proxτg(x̄ − τ∇f (x̄)) = (I + τ∂g)−1(x̄ − τ∇f (x̄)).

It corresponds to one explicit descent step for f followed by an implicit descent step
for g .
[Also “composite” gradient descent, where (Tτ (x) − x)/τ is the “composite”
gradient of f + g , cf Nesterov, 2005]

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Forward-Backward descent with fixed step (“ISTA”)

We choose x0 ∈ X and let xk+1 = Tτ xk for fixed k. Then we have seen that if
τ < 2/L, the methods converges to a fixed point of Tτ which is a minimizer of F .
In this case we can additionally show, at least for τ ≤ 1/L:

F (xk) − F (x∗) ≤ 1
2τk |x∗ − x0|2

while in case f is µf convex and/or g is µg convex (µf , µg ≥ 0, µf + µg > 0) one
shows:

F (xk) − F (x∗) + 1+τµg
2τ |xk − x∗|2 ≤ ωk 1+τµg

2τ |x0 − x∗|2.

where ω = (1 − τµf)/(1 + τµg) < 1.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Proof: descent inequality

Let x̂ = Tτ x̄ : then for all x ∈ X ,

F (x) + (1 − τµf) |x − x̄ |2

2τ
≥ 1 − τL

τ

|x̂ − x̄ |2

2 + F (x̂) + (1 + τµg) |x − x̂ |2

2τ
.

In particular, if τL ≤ 1,

F (x) + (1 − τµf) |x − x̄ |2

2τ
≥ F (x̂) + (1 + τµg) |x − x̂ |2

2τ
.

The proof relies on the fact that x̂ is obtained as a minimizer of

min
x

f (x̄) + ⟨∇f (x̄), x − x̄⟩ + g(x) + 1
2τ

|x − x̄ |2

which is (µg + 1
τ)-convex.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Descent inequality

Proof: One has

f (x̄) + ⟨∇f (x̄), x − x̄⟩ + g(x) +
1

2τ
|x − x̄ |2

≥ f (x̄) + ⟨∇f (x̄), x̂ − x̄⟩ + g(x̂) +
1

2τ
|x̂ − x̄ |2 + (µg + 1

τ
)

1
2

|x − x̂ |2

Now, on the one hand we have:

F (x) = f (x) + g(x) ≥ f (x̄) + ⟨∇f (x̄), x − x̄⟩ +
µf
2

|x − x̂ |2 + g(x)

and on the other hand because ∇f is L-Lipschitz we have

f (x̄) + ⟨∇f (x̄), x̂ − x̄⟩ + g(x̂) ≥ f (x̂) −
L
2

|x̂ − x̄ |2 + g(x̂) = F (x̂) −
L
2

|x̂ − x̄ |2.

Combining these three inequalities we get the descent inequality:

F (x) + (1 − τµf)
|x − x̄ |2

2τ
≥ F (x̂) + (1 + τµg)

|x − x̂ |2

2τ
.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Rates of convergence for the FB splitting

We consider the case µf + µg = 0. The descent rule with x = x∗ shows that:

F (xk+1) +
1

2τ
|xk+1 − x∗|2 ≤ F (x∗) +

1
2τ

|xk − x∗|2

while for x = xk we get:
F (xk+1) +

1
2τ

|xk+1 − xk |2 ≤ F (xk)

We deduce that for N ≥ 1,

N(F (xN) − F (x∗)) ≤
N−1∑
k=0

F (xk+1) − F (x∗) +
1

2τ
|xN − x∗|2 ≤

1
2τ

|x0 − x∗|2.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

FISTA: acceleration for the FB splitting

Due in this form to Beck and Teboulle (2009), see also Nesterov (1983, 2004
“Introductory lectures...”)
Algorithm: FISTA with fixed steps:

Choose x0 = x−1 ∈ X and t0 ≥ 0
for all k ≥ 0 do

yk = xk + βk(xk − xk−1)
xk+1 = Tτ yk = proxτg (yk − τ∇f (yk))

where

tk+1 = 1+
√

1+4t2
k

2 ≥ k+1
2 ,

βk = tk −1
tk+1

,

end for

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

FISTA: strongly convex case

In case µ = µf + µg > 0 is known, then the previous method is not optimal. One
should choose:

tk+1 = 1−qt2
k +

√
(1−qt2

k)2+4t2
k

2 ,

βk = tk−1
tk+1

1+τµg −tk+1τµ
1−τµf

,

where q = τµ/(1 + τµg) < 1, or alternatively the fixed overrelaxation parameter:
β =

√
1+τµg −√

τµ√
1+τµg +√

τµ
.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

FISTA: rate

Theorem
If √qt0 ≤ 1, t0 ≥ 0, then the sequence (xk) produced the algorithm satisfies

F (xk) − F (x∗) ≤ min
{ (1 − √q)k

t2
0

,
4

(k + 1)2

}(
t2
0 (F (x0) − F (x∗)) + 1 + τµg

2τ
|x0 − x∗|2

)
if t0 ≥ 1, and

F (xk) − F (x∗) ≤

min
{

(1 + √q)(1 − √q)k ,
4

(k + 1)2

}(
t2
0 (F (x0) − F (x∗)) + 1 + τµg

2τ
|x0 − x∗|2

)
if t0 ∈ [0, 1], where x∗ is a minimiser of F .

Common choices are t0 = 0, t0 = 1. The rate is “optimal”.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

FISTA: proof

Again we prove first µf + µg = 0.
In that case, the algorithm has the form xk+1 = Tτ yk for some yk which we will specify later. One has for
all x :

F (xk+1) +
|x − xk+1|2

2τ
≤ F (x) +

|x − yk |2

2τ

The idea is to choose x as a convex combination of a minimizer x∗ [or any point] and the old point xk , and
use the convexity to deduce a “better” decrease. Here we choose (as it will make the computation much
quicker) x = ((t − 1)xk + x∗)/t, t ≥ 1, and we find:

F (xk+1)−F (x∗)+
|(t − 1)xk + x∗ − txk+1|2

2t2τ
≤ F
((t − 1)xk + x∗

t

)
−F (x∗)+

|(t − 1)xk + x∗ − tyk |2

2t2τ

≤
t − 1

t
(F (xk) − F (x∗)) +

|(t − 1)xk + x∗ − tyk |2

2t2τ
.

Hence multiplying by t2 and adding an index k + 1 to t:

t2
k+1(F (xk+1) − F (x∗)) +

|(tk+1 − 1)xk + x∗ − tk+1xk+1|2

2τ

≤ tk+1(tk+1 − 1)(F (xk) − F (x∗)) +
|(tk+1 − 1)xk + x∗ − tk+1yk |2

2τ
.

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

FISTA: proof

We see here that the factor in front of F (xk) is strictly less than in front of F (xk+1).

t2
k+1(F (xk+1) − F (x∗)) +

|(tk+1 − 1)xk + x∗ − tk+1xk+1|2

2τ

≤ tk+1(tk+1 − 1)(F (xk) − F (x∗)) +
|(tk+1 − 1)xk + x∗ − tk+1yk |2

2τ
.

This iteration can be iterated if the sequences tk and yk satisfy:

tk+1(tk+1 − 1) = t2
k (≤ if x∗ is a minimizer)

(tk+1 − 1)xk + x∗ − tk+1yk = (tk − 1)xk−1 + x∗ − tkxk .

Then, indeed, we have

t2
k+1(F (xk+1) − F (x∗)) +

|(tk+1 − 1)xk + x∗ − tk+1xk+1|2

2τ

≤ t2
k (F (xk) − F (x∗)) +

|(tk − 1)xk−1 + x∗ − tkxk |2

2τ

and summing we obtain

t2
N(F (xN) − F (x∗)) ≤ t2

0 (F (x0) − F (x∗)) +
|(t0 − 1)x−1 + x∗ − t0x0|2

2τ

with by convention y0 = x0 = x−1, and t0 does not need to be ≥ 1 (only t1).

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

FISTA: proof

To ensure:

tk+1(tk+1 − 1) = t2
k (≤ if x∗ is a minimizer)

one can solve t2
k+1 − tk+1 − t2

k = 0 and take

tk+1 =
1 +
√

1 + 4t2
k

2

(observe that if t0 ≥ 0, t1 ≥ 1), or one can also show that tk = (k + a − 1)/a, a ≥ 2, satisfies tk+1 ≥ 1 and
t2
k+1 − tk+1 ≤ t2

k for any k ≥ 0.

To ensure: (tk+1 − 1)xk + x∗ − tk+1yk = (tk − 1)xk−1 + x∗ − tkxk one has to take, simply,

yk = xk +
tk − 1
tk+1

(xk − xk−1).

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

FISTA: proof

To ensure:

tk+1(tk+1 − 1) = t2
k (≤ if x∗ is a minimizer)

one can solve t2
k+1 − tk+1 − t2

k = 0 and take

tk+1 =
1 +
√

1 + 4t2
k

2

(observe that if t0 ≥ 0, t1 ≥ 1), or one can also show that tk = (k + a − 1)/a, a ≥ 2, satisfies tk+1 ≥ 1 and
t2
k+1 − tk+1 ≤ t2

k for any k ≥ 0.

To ensure: (tk+1 − 1)xk + x∗ − tk+1yk = (tk − 1)xk−1 + x∗ − tkxk one has to take, simply,

yk = xk +
tk − 1
tk+1

(xk − xk−1).

Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

FISTA: analysis

Observe that
1 +

√
1 + 4t2

k

2 ≥ 1
2 + tk

hence if t1 = 1, tk ≥ (k + 1)/2. Then, the final bound shows, for t0 = 0 and
τ = 1/L:

F (xN) − F (x∗) ≤ 2L
(k + 1)2 |x0 − x∗|2

which is “optimal”.

	Algorithms for monotone operators
	Abstract problems
	Splitting methods

	Descent algorithms
	Forward-Backward
	Acceleration

