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Abstract methods for Monotone operators

General problem:
0 ∈ Ax or 0 ∈ Ax + Bx

where A, B are maximal monotone operators (which may or may not be
subgradients).
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Explicit methods

Generalization of gradient descent:

xk+1 = xk − τpk , pk ∈ Axk .

Issue: Even if A is single-valued and Lipschitz continuous, then this might not work.

Example: A =
(

0 −1
1 0

)
. Then,

xk =
(

1 −τ
τ 1

)k

x0.

The eigenvalues of this matrix are 1 + ±τ i with modulus
√

1 + τ2 and the iteration
always diverges (unless x0 = 0).
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Explicit methods

So one needs a stronger condition on A. We recall that the gradient descent works
for convex functions with Lipschitz gradient, and the proof relies on the
co-coercivity.

Theorem
Let A maximal monotone be µ-co-coercive (in particular, single-valued):

⟨Ax − Ay , x − y⟩ ≥ µ|Ax − Ay |2.

Assume there exists a solution to Ax = 0. Then the iteration xk+1 = xk − τAxk

converges to x∗ with Ax∗ = 0 if 0 < τ < 2µ.

Remark: this is the same as µA firmly non-expansive.
Then, the proof relies on proving that I − τA is an averaged operator.
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Explicit methods

Proof:

|(I − τA)x − (I − τA)y |2

= |x − y |2 − 2τ ⟨x − y , Ax − Ay⟩ + τ 2|Ax − Ay |2

≤ |x − y |2 − τ(2µ − τ)|Ax − Ay |2.

This shows that if 0 ≤ τ ≤ 2µ, I − τA is 1-Lipschitz (nonexpansive). Hence for τ < 2µ,

I − τA = (1 − τ
2µ )I + τ

2µ (I − (2µ)A)

is averaged. By The K-M Theorem, the iterates weakly converge, as k → ∞, to a fixed
point of (I − τA) (if it exists). If τ = 0 this is not interesting, if 0 < τ < 2µ, then it is a
zero of A, which exists by assumption.
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Explicit method without co-coercivity?
Extragradient method (Korpelevich, 1976)

In case B is just L-Lipschitz continuous, the following method was proposed in
1976 by G. M. Korpelevich: {

yk = xk − τBxk

xk+1 = xk − τByk

Theorem
If τL < 1, then the algorithm generates sequences xk and yk which (weakly)
converge to a solution of Bx ∋ 0, if there exists one. In addition, |xk − yk | → 0.

Remark: the original paper has an additional projection step (for a convex
constraint), the proof is almost identical.
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Extragradient method

Proof: For this algorithm we cannot use out of the box a previous theorem. We compute, for x∗ with
Bx∗ ∋ 0,

|xk+1−x∗|2 = |xk−x∗|2+2
〈

xk − x∗, xk+1 − xk
〉

+|xk+1−xk |2 = |xk−x∗|2−2τ
〈

xk − x∗, Byk
〉

+|xk+1−xk |2.

We use then that
〈

xk − x∗, Byk
〉

=
〈

xk − yk + yk − x∗, Byk − Bx∗
〉

≥
〈

xk − yk , Byk
〉

and deduce:

|xk+1−x∗|2 ≤ |xk−x∗|2−2τ
〈

xk − yk , Byk
〉

+|xk+1−xk |2 = |xk−x∗|2+2
〈

xk − yk , xk+1 − xk
〉

+|xk+1−xk |2.

It follows:

|xk+1 − x∗|2 ≤ |xk − x∗|2 + |xk+1 − yk |2 − |xk − yk |2

= |xk − x∗|2 + |τByk − τBxk |2 − |xk − yk |2 ≤ |xk − x∗|2 − (1 − τ2L2)|yk − xk |2.

We deduce, when τL < 1, that |xk − x∗| is decreasing (Fejér-monotonicity of the sequence), that
|xk − yk | → 0 (and therefore also |xk+1 − yk | and |xk+1 − xk |) and can continue as in the proof of KM’s
theorem.
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Extragradient method

One also needs to check that a fixed point is a solution! A fixed point satisfies:
y = x − τBx , x = x − τBy . Hence one has y − x = τ(By − Bx) so that
|y − x | ≤ τL|y − x |. If τL < 1 then y − x = 0 and Bx = 0.
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Proximal point algorithm

Now we consider the “implicit descent”:

xk+1 ∈ xk − τAxk+1

This is precisely which is solved by

xk+1 = (I + τA)−1xk = JτAxk

which is well-posed for A is maximal monotone.
This iteration is known as the proximal point algorithm. It obviously converges to a
fixed point as the operator is (1/2)-averaged (if the fixed point, that is a point with
Ax = 0, exists).
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Proximal point algorithm
Overrelaxation

The reflexion RτA = 2(I + τA)−1 − I is 1-Lipschitz and one can generalize as
follows:

xk+1 = (1 − θk)xk + θkRτAxk = xk + 2θk
(
(I + τA)−1xk − xk

)
= xk − 2θkτAτ xk ,

for 0 < θ ≤ θk ≤ θ < 1.
We still get convergence.
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Proximal point algorithm

Theorem (PPA Algorithm)
Let x0 ∈ X , τk ≥ τ > 0, 0 ≤ λ ≤ λk ≤ λ ≤ 2, and let

xk+1 = xk + λk((I + τkA)−1xk − xk). (1)

If there exists x with Ax ∋ 0, then xk weakly converges to a zero of A.

We could also consider (summable) errors. (See Bauschke-Combettes for variants,
Eckstein-Bertsekas for a proof with errors.)

Proof. The proof follows the lines of the proof of the KM Theorem.
We observe that obviously, |xk+1 − x |2 ≤ |xk − x |2 for each k ≥ 0 and for each x with Ax ∋ 0. But we can
be more precise. One has:
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Proximal point algorithm

|xk+1 − x |2 = |xk − x |2 + λ2
k |Jτk Axk − xk |2 + 2λk

〈
xk − x , Jτk Axk − xk

〉
= |xk − x |2 + λ2

k |Jτk Axk − xk |2

+ λk
(

|Jτk Axk − x |2 − |xk − x |2 − |Jτk Axk − xk |2
)

.

As Jτk A is firmly non-expansive:

|Jτk Axk − x |2 + |(I − Jτk A)xk − (I − Jτk A)x |2 ≤ |xk − x |2

where in addition (I − Jτk A)x = 0 so that |(I − Jτk A)xk − (I − Jτk A)x |2 = |xk − Jτk Axk |2. Hence:

|xk+1 − x |2 ≤ |xk − x |2 + λ2
k |Jτk Axk − xk |2 − 2λk |Jτk Axk − xk |2

= |xk − x |2 − λk(2 − λk)|Jτk Axk − xk |2.
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Proximal Point Algorithm

Letting c = λ(2 − λ) > 0, we deduce that (xk)k is Fejér-monotone with respect to {x : Ax ∋ 0} and that

c
n∑

k=0

|Jτk Axk − xk |2 + |xn+1 − x |2 ≤ |x0 − x |2

for all n ≥ 0, in particular |Jτk Axk − xk | → 0 (as well as, by the scheme, xk+1 − xk).
We would like to deduce convergence as in the proof of KM’s Theorem. Yet, with varying τk , it is not
obvious that a limit point x̄ of a subsequence xkl is a fixed point (of what?).
But one proves that Ax ∋ 0 using the maximal-monotonicity of A. If x ′ ∋ X , y ′ ∈ Ax ′, denoting
ek := Jτk Axk − xk → 0 we have:

A(xk + ek) ∋ −
ek
τk

,

so that 〈
y ′ + ek

τk
, x ′ − xk − ek

〉
≥ 0.

In the limit along the subsequence xkl , we find ⟨y ′, x ′ − x̄⟩ ≥ 0, so that Ax̄ ∋ 0. The rest of the proof relies
on Opial’s lemma and is as in the proof of the KM Theorem.
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Splitting methods
Forward-Backward splitting

We can now mix the implicit and explicit algorithms: Let A, B be
maximal-monotone, with B µ-co-coercive. We define the forward-backward
splitting algorithm as:

xk+1 = (I + τA)−1(I − τB)xk

If 0 < τ < 2µ, the algorithm is the composition of two averaged operator →
converges weakly to a fixed point if it exists:

(I + τA)−1(I − τB)x = x ⇔ x − τBx ∈ x + τAx ⇔ Ax + Bx ∋ 0.

(As B is continuous, this is equivalent to (A + B)x ∋ 0. Hence, if A + B has a
zero, this algorithm converges to a zero of A + B.)
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Douglas-Rachford splitting

Introduced under the following form in a paper of Lions and Mercier (79):

xk+1 = JτA(2JτB − I)xk + (I − JτB)xk

Theorem
Let x0 ∈ X . Then xk ⇀ x such that w = JτBx is a solution of Aw + Bw ∋ 0 (if it
exists).

To prove this, we express the iterations in terms of the reflexion opeators:

JτA = 1
2 I + 1

2RτA, JτB = 1
2 I + 1

2RτB.
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Douglas-Rachford splitting

Introduced under the following form in a paper of Lions and Mercier (79):
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Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

Douglas-Rachford splitting

One has then

JτA(2JτB − I)x + (I − JτB)x =
( I + RτA

2 (RτB) + I − RτB
2

)
(x)

= I + RτA ◦ RτB
2 (x)

It follows that the iterates are of an averaged operator (with 1/2).
A fixed points satisfies:

x = JτA(2JτB − I)x + (I − JτB)x ⇔ w := JτBx = JτA(2w − x)
⇔ w + τAw ∋ 2w − x ⇔ τAw ∋ w − x

Now since w + τBw ∋ x , this is τAw + τBw ∋ 0, which shows the theorem.
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Douglas-Rachford splitting
and Peaceman-Rachford splitting

Remark: In addition: one can consider an “over-relaxed” iteration with operator:

(1 − θ)I + θRτA ◦ RτB = I + 2θ(JτA(2JτB − I) − JτB).

for 0 < θ < 1. The case θ = 1 is called the “Peaceman-Rachford” splitting and
converges under some conditions on A, B.
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Descent algorithms: Forward-backward descent

In case A = ∂g , B = ∇f , g , f convex, lsc, f with L-Lipschitz gradient, the
forward-backward splitting solves ∂g(x) + ∇f (x) ∋ 0: then x is a minimizer of the
composite minimization problem:

min
x

F (x) := f (x) + g(x).

We consider the operator:

x̄ 7→ x̂ = Tτ x̄ := proxτg(x̄ − τ∇f (x̄)) = (I + τ∂g)−1(x̄ − τ∇f (x̄)).

It corresponds to one explicit descent step for f followed by an implicit descent step
for g .
[Also “composite” gradient descent, where (Tτ (x) − x)/τ is the “composite”
gradient of f + g , cf Nesterov, 2005]
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Forward-Backward descent with fixed step (“ISTA”)

We choose x0 ∈ X and let xk+1 = Tτ xk for fixed k. Then we have seen that if
τ < 2/L, the methods converges to a fixed point of Tτ which is a minimizer of F .
In this case we can additionally show, at least for τ ≤ 1/L:

F (xk) − F (x∗) ≤ 1
2τk |x∗ − x0|2

while in case f is µf convex and/or g is µg convex (µf , µg ≥ 0, µf + µg > 0) one
shows:

F (xk) − F (x∗) + 1+τµg
2τ |xk − x∗|2 ≤ ωk 1+τµg

2τ |x0 − x∗|2.

where ω = (1 − τµf )/(1 + τµg) < 1.
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Proof: descent inequality

Let x̂ = Tτ x̄ : then for all x ∈ X ,

F (x) + (1 − τµf ) |x − x̄ |2

2τ
≥ 1 − τL

τ

|x̂ − x̄ |2

2 + F (x̂) + (1 + τµg) |x − x̂ |2

2τ
.

In particular, if τL ≤ 1,

F (x) + (1 − τµf ) |x − x̄ |2

2τ
≥ F (x̂) + (1 + τµg) |x − x̂ |2

2τ
.

The proof relies on the fact that x̂ is obtained as a minimizer of

min
x

f (x̄) + ⟨∇f (x̄), x − x̄⟩ + g(x) + 1
2τ

|x − x̄ |2

which is (µg + 1
τ )-convex.
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Descent inequality

Proof: One has

f (x̄) + ⟨∇f (x̄), x − x̄⟩ + g(x) +
1

2τ
|x − x̄ |2

≥ f (x̄) + ⟨∇f (x̄), x̂ − x̄⟩ + g(x̂) +
1

2τ
|x̂ − x̄ |2 + (µg + 1

τ
)

1
2

|x − x̂ |2

Now, on the one hand we have:

F (x) = f (x) + g(x) ≥ f (x̄) + ⟨∇f (x̄), x − x̄⟩ +
µf
2

|x − x̂ |2 + g(x)

and on the other hand because ∇f is L-Lipschitz we have

f (x̄) + ⟨∇f (x̄), x̂ − x̄⟩ + g(x̂) ≥ f (x̂) −
L
2

|x̂ − x̄ |2 + g(x̂) = F (x̂) −
L
2

|x̂ − x̄ |2.

Combining these three inequalities we get the descent inequality:

F (x) + (1 − τµf )
|x − x̄ |2

2τ
≥ F (x̂) + (1 + τµg )

|x − x̂ |2

2τ
.
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Rates of convergence for the FB splitting

We consider the case µf + µg = 0. The descent rule with x = x∗ shows that:

F (xk+1) +
1

2τ
|xk+1 − x∗|2 ≤ F (x∗) +

1
2τ

|xk − x∗|2

while for x = xk we get:
F (xk+1) +

1
2τ

|xk+1 − xk |2 ≤ F (xk)

We deduce that for N ≥ 1,

N(F (xN) − F (x∗)) ≤
N−1∑
k=0

F (xk+1) − F (x∗) +
1

2τ
|xN − x∗|2 ≤

1
2τ

|x0 − x∗|2.



Continuous
(convex)

optimisation

A. Chambolle

Algorithms for
monotone
operators
Abstract problems

Splitting methods

Descent
algorithms
Forward-Backward

Acceleration

FISTA: acceleration for the FB splitting

Due in this form to Beck and Teboulle (2009), see also Nesterov (1983, 2004
“Introductory lectures...”)
Algorithm: FISTA with fixed steps:

Choose x0 = x−1 ∈ X and t0 ≥ 0
for all k ≥ 0 do

yk = xk + βk(xk − xk−1)
xk+1 = Tτ yk = proxτg (yk − τ∇f (yk))

where

tk+1 = 1+
√

1+4t2
k

2 ≥ k+1
2 ,

βk = tk −1
tk+1

,

end for
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FISTA: strongly convex case

In case µ = µf + µg > 0 is known, then the previous method is not optimal. One
should choose:

tk+1 = 1−qt2
k +

√
(1−qt2

k )2+4t2
k

2 ,

βk = tk−1
tk+1

1+τµg −tk+1τµ
1−τµf

,

where q = τµ/(1 + τµg) < 1, or alternatively the fixed overrelaxation parameter:
β =

√
1+τµg −√

τµ√
1+τµg +√

τµ
.
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FISTA: rate

Theorem
If √qt0 ≤ 1, t0 ≥ 0, then the sequence (xk) produced the algorithm satisfies

F (xk) − F (x∗) ≤ min
{ (1 − √q)k

t2
0

,
4

(k + 1)2

}(
t2
0 (F (x0) − F (x∗)) + 1 + τµg

2τ
|x0 − x∗|2

)
if t0 ≥ 1, and

F (xk) − F (x∗) ≤

min
{

(1 + √q)(1 − √q)k ,
4

(k + 1)2

}(
t2
0 (F (x0) − F (x∗)) + 1 + τµg

2τ
|x0 − x∗|2

)
if t0 ∈ [0, 1], where x∗ is a minimiser of F .

Common choices are t0 = 0, t0 = 1. The rate is “optimal”.
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FISTA: proof

Again we prove first µf + µg = 0.
In that case, the algorithm has the form xk+1 = Tτ yk for some yk which we will specify later. One has for
all x :

F (xk+1) +
|x − xk+1|2

2τ
≤ F (x) +

|x − yk |2

2τ

The idea is to choose x as a convex combination of a minimizer x∗ [or any point] and the old point xk , and
use the convexity to deduce a “better” decrease. Here we choose (as it will make the computation much
quicker) x = ((t − 1)xk + x∗)/t, t ≥ 1, and we find:

F (xk+1)−F (x∗)+
|(t − 1)xk + x∗ − txk+1|2

2t2τ
≤ F
( (t − 1)xk + x∗

t

)
−F (x∗)+

|(t − 1)xk + x∗ − tyk |2

2t2τ

≤
t − 1

t
(F (xk) − F (x∗)) +

|(t − 1)xk + x∗ − tyk |2

2t2τ
.

Hence multiplying by t2 and adding an index k + 1 to t:

t2
k+1(F (xk+1) − F (x∗)) +

|(tk+1 − 1)xk + x∗ − tk+1xk+1|2

2τ

≤ tk+1(tk+1 − 1)(F (xk) − F (x∗)) +
|(tk+1 − 1)xk + x∗ − tk+1yk |2

2τ
.
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FISTA: proof

We see here that the factor in front of F (xk) is strictly less than in front of F (xk+1).

t2
k+1(F (xk+1) − F (x∗)) +

|(tk+1 − 1)xk + x∗ − tk+1xk+1|2

2τ

≤ tk+1(tk+1 − 1)(F (xk) − F (x∗)) +
|(tk+1 − 1)xk + x∗ − tk+1yk |2

2τ
.

This iteration can be iterated if the sequences tk and yk satisfy:

tk+1(tk+1 − 1) = t2
k (≤ if x∗ is a minimizer)

(tk+1 − 1)xk + x∗ − tk+1yk = (tk − 1)xk−1 + x∗ − tkxk .

Then, indeed, we have

t2
k+1(F (xk+1) − F (x∗)) +

|(tk+1 − 1)xk + x∗ − tk+1xk+1|2

2τ

≤ t2
k (F (xk) − F (x∗)) +

|(tk − 1)xk−1 + x∗ − tkxk |2

2τ

and summing we obtain

t2
N(F (xN) − F (x∗)) ≤ t2

0 (F (x0) − F (x∗)) +
|(t0 − 1)x−1 + x∗ − t0x0|2

2τ

with by convention y0 = x0 = x−1, and t0 does not need to be ≥ 1 (only t1).
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FISTA: proof

To ensure:

tk+1(tk+1 − 1) = t2
k (≤ if x∗ is a minimizer)

one can solve t2
k+1 − tk+1 − t2

k = 0 and take

tk+1 =
1 +
√

1 + 4t2
k

2

(observe that if t0 ≥ 0, t1 ≥ 1), or one can also show that tk = (k + a − 1)/a, a ≥ 2, satisfies tk+1 ≥ 1 and
t2
k+1 − tk+1 ≤ t2

k for any k ≥ 0.

To ensure: (tk+1 − 1)xk + x∗ − tk+1yk = (tk − 1)xk−1 + x∗ − tkxk one has to take, simply,

yk = xk +
tk − 1
tk+1

(xk − xk−1).
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To ensure:

tk+1(tk+1 − 1) = t2
k (≤ if x∗ is a minimizer)

one can solve t2
k+1 − tk+1 − t2

k = 0 and take

tk+1 =
1 +
√

1 + 4t2
k

2

(observe that if t0 ≥ 0, t1 ≥ 1), or one can also show that tk = (k + a − 1)/a, a ≥ 2, satisfies tk+1 ≥ 1 and
t2
k+1 − tk+1 ≤ t2

k for any k ≥ 0.

To ensure: (tk+1 − 1)xk + x∗ − tk+1yk = (tk − 1)xk−1 + x∗ − tkxk one has to take, simply,

yk = xk +
tk − 1
tk+1

(xk − xk−1).
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FISTA: analysis

Observe that
1 +

√
1 + 4t2

k

2 ≥ 1
2 + tk

hence if t1 = 1, tk ≥ (k + 1)/2. Then, the final bound shows, for t0 = 0 and
τ = 1/L:

F (xN) − F (x∗) ≤ 2L
(k + 1)2 |x0 − x∗|2

which is “optimal”.
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