Continuous (convex) optimisation M2 - PSL / Dauphine / S.U.

Antonin Chambolle, CNRS, CEREMADE

Université Paris Dauphine PSL
Oct.-Dec. 2021

Lecture 4: Splitting algorithms, Acceleration, FISTA

Contents

Continuous

(convex)
optimisation
A. Chambolle
(1) Algorithms for monotone operators

- Abstract problems
- Splitting methods
(2) Descent algorithms
- Forward-Backward
- Acceleration

Abstract methods for Monotone operators

Continuous
(convex)
optimisation
A. Chambolle

General problem:

$$
0 \in A x \quad \text { or } \quad 0 \in A x+B x
$$

where A, B are maximal monotone operators (which may or may not be subgradients).

Explicit methods

Generalization of gradient descent:

$$
x^{k+1}=x^{k}-\tau p^{k}, p^{k} \in A x^{k}
$$

Issue: Even if A is single-valued and Lipschitz continuous, then this might not work. Example: $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. Then,

$$
x^{k}=\left(\begin{array}{cc}
1 & -\tau \\
\tau & 1
\end{array}\right)^{k} x^{0}
$$

The eigenvalues of this matrix are $1+ \pm \tau i$ with modulus $\sqrt{1+\tau^{2}}$ and the iteration always diverges (unless $x^{0}=0$).

Explicit methods

So one needs a stronger condition on A. We recall that the gradient descent works for convex functions with Lipschitz gradient, and the proof relies on the co-coercivity.

Theorem

Let A maximal monotone be μ-co-coercive (in particular, single-valued):

$$
\langle A x-A y, x-y\rangle \geq \mu|A x-A y|^{2} .
$$

Assume there exists a solution to $A x=0$. Then the iteration $x^{k+1}=x^{k}-\tau A x^{k}$ converges to x^{*} with $A x^{*}=0$ if $0<\tau<2 \mu$.

Remark: this is the same as μA firmly non-expansive.
Then, the proof relies on proving that $I-\tau A$ is an averaged operator.

Explicit methods

Proof:

$$
\begin{aligned}
& |(I-\tau A) x-(I-\tau A) y|^{2} \\
& \quad=|x-y|^{2}-2 \tau\langle x-y, A x-A y\rangle+\tau^{2}|A x-A y|^{2} \\
& \quad \leq|x-y|^{2}-\tau(2 \mu-\tau)|A x-A y|^{2} .
\end{aligned}
$$

This shows that if $0 \leq \tau \leq 2 \mu, I-\tau A$ is 1 -Lipschitz (nonexpansive). Hence for $\tau<2 \mu$,

$$
I-\tau A=\left(1-\frac{\tau}{2 \mu}\right) I+\frac{\tau}{2 \mu}(I-(2 \mu) A)
$$

is averaged. By The K-M Theorem, the iterates weakly converge, as $k \rightarrow \infty$, to a fixed point of $(I-\tau A)$ (if it exists). If $\tau=0$ this is not interesting, if $0<\tau<2 \mu$, then it is a zero of A, which exists by assumption.

Explicit method without co-coercivity?

Extragradient method (Korpelevich, 1976)

In case B is just L-Lipschitz continuous, the following method was proposed in 1976 by G. M. Korpelevich:

$$
\left\{\begin{array}{l}
y^{k}=x^{k}-\tau B x^{k} \\
x^{k+1}=x^{k}-\tau B y^{k}
\end{array}\right.
$$

Theorem

If $\tau L<1$, then the algorithm generates sequences x^{k} and y^{k} which (weakly) converge to a solution of $B x \ni 0$, if there exists one. In addition, $\left|x^{k}-y^{k}\right| \rightarrow 0$.

Remark: the original paper has an additional projection step (for a convex constraint), the proof is almost identical.

Extragradient method

Continuous

Proof: For this algorithm we cannot use out of the box a previous theorem. We compute, for x^{*} with $B x^{*} \ni 0$,
$\left|x^{k+1}-x^{*}\right|^{2}=\left|x^{k}-x^{*}\right|^{2}+2\left\langle x^{k}-x^{*}, x^{k+1}-x^{k}\right\rangle+\left|x^{k+1}-x^{k}\right|^{2}=\left|x^{k}-x^{*}\right|^{2}-2 \tau\left\langle x^{k}-x^{*}, B y^{k}\right\rangle+\left|x^{k+1}-x^{k}\right|^{2}$.
We use then that $\left\langle x^{k}-x^{*}, B y^{k}\right\rangle=\left\langle x^{k}-y^{k}+y^{k}-x^{*}, B y^{k}-B x^{*}\right\rangle \geq\left\langle x^{k}-y^{k}, B y^{k}\right\rangle$ and deduce:
$\left|x^{k+1}-x^{*}\right|^{2} \leq\left|x^{k}-x^{*}\right|^{2}-2 \tau\left\langle x^{k}-y^{k}, B y^{k}\right\rangle+\left|x^{k+1}-x^{k}\right|^{2}=\left|x^{k}-x^{*}\right|^{2}+2\left\langle x^{k}-y^{k}, x^{k+1}-x^{k}\right\rangle+\left|x^{k+1}-x^{k}\right|^{2}$.
It follows:

$$
\begin{aligned}
&\left|x^{k+1}-x^{*}\right|^{2} \leq\left|x^{k}-x^{*}\right|^{2}+\left|x^{k+1}-y^{k}\right|^{2}-\left|x^{k}-y^{k}\right|^{2} \\
&=\left|x^{k}-x^{*}\right|^{2}+\left|\tau B y^{k}-\tau B x^{k}\right|^{2}-\left|x^{k}-y^{k}\right|^{2} \leq\left|x^{k}-x^{*}\right|^{2}-\left(1-\tau^{2} L^{2}\right)\left|y^{k}-x^{k}\right|^{2} .
\end{aligned}
$$

We deduce, when $\tau L<1$, that $\left|x^{k}-x^{*}\right|$ is decreasing (Fejér-monotonicity of the sequence), that $\left|x^{k}-y^{k}\right| \rightarrow 0$ (and therefore also $\left|x^{k+1}-y^{k}\right|$ and $\left|x^{k+1}-x^{k}\right|$) and can continue as in the proof of KM's theorem.

Extragradient method

Continuous
(convex) optimisation
A. Chambolle

One also needs to check that a fixed point is a solution! A fixed point satisfies: $y=x-\tau B x, x=x-\tau B y$. Hence one has $y-x=\tau(B y-B x)$ so that $|y-x| \leq \tau L|y-x|$. If $\tau L<1$ then $y-x=0$ and $B x=0$.

Proximal point algorithm

Now we consider the "implicit descent":

$$
x^{k+1} \in x^{k}-\tau A x^{k+1}
$$

This is precisely which is solved by

$$
x^{k+1}=(I+\tau A)^{-1} x^{k}=J_{\tau A} x^{k}
$$

which is well-posed for A is maximal monotone.
This iteration is known as the proximal point algorithm. It obviously converges to a fixed point as the operator is (1/2)-averaged (if the fixed point, that is a point with $A x=0$, exists).

Proximal point algorithm

Overrelaxation

Continuous

The reflexion $R_{\tau A}=2(I+\tau A)^{-1}-I$ is 1-Lipschitz and one can generalize as follows:
$x^{k+1}=\left(1-\theta_{k}\right) x^{k}+\theta_{k} R_{\tau A} x^{k}=x^{k}+2 \theta_{k}\left((I+\tau A)^{-1} x^{k}-x^{k}\right)=x^{k}-2 \theta_{k} \tau A_{\tau} x^{k}$,
for $0<\underline{\theta} \leq \theta_{k} \leq \bar{\theta}<1$.
We still get convergence.

Proximal point algorithm

Theorem (PPA Algorithm)

Let $x^{0} \in \mathcal{X}, \tau_{k} \geq \underline{\tau}>0,0 \leq \underline{\lambda} \leq \lambda_{k} \leq \bar{\lambda} \leq 2$, and let

$$
\begin{equation*}
x^{k+1}=x^{k}+\lambda_{k}\left(\left(I+\tau_{k} A\right)^{-1} x^{k}-x^{k}\right) \tag{1}
\end{equation*}
$$

If there exists x with $A x \ni 0$, then x^{k} weakly converges to a zero of A.
We could also consider (summable) errors. (See Bauschke-Combettes for variants, Eckstein-Bertsekas for a proof with errors.)

Proof. The proof follows the lines of the proof of the KM Theorem.
We observe that obviously, $\left|x^{k+1}-x\right|^{2} \leq\left|x^{k}-x\right|^{2}$ for each $k \geq 0$ and for each x with $A x \ni 0$. But we can be more precise. One has:

Proximal point algorithm

Continuous
(convex)
optimisation
A. Chambolle

Algorithms for monotone operators

Abstract problems

 Spliting methods
Descent

algorithms

 Forward-Backward Acceleration$$
\begin{aligned}
&\left|x^{k+1}-x\right|^{2}=\left|x^{k}-x\right|^{2}+\lambda_{k}^{2}\left|J_{\tau_{k}} A x^{k}-x^{k}\right|^{2}+2 \lambda_{k}\left\langle x^{k}-x, J_{\tau_{k} A} x^{k}-x^{k}\right\rangle \\
&=\left|x^{k}-x\right|^{2}+\lambda_{k}^{2}\left|J_{\tau_{k} A} x^{k}-x^{k}\right|^{2} \\
&+\lambda_{k}\left(\left|J_{\tau_{k} A} x^{k}-x\right|^{2}-\left|x^{k}-x\right|^{2}-\left|J_{\tau_{k} A} x^{k}-x^{k}\right|^{2}\right) .
\end{aligned}
$$

As $J_{\tau_{k} A}$ is firmly non-expansive:

$$
\left|J_{\tau_{k} A} x^{k}-x\right|^{2}+\left|\left(I-J_{\tau_{k} A}\right) x^{k}-\left(I-J_{\tau_{k} A}\right) x\right|^{2} \leq\left|x^{k}-x\right|^{2}
$$

where in addition $\left(I-J_{\tau_{k} A}\right) x=0$ so that $\left|\left(I-J_{\tau_{k} A}\right) x^{k}-\left(I-J_{\tau_{k} A}\right) x\right|^{2}=\left|x^{k}-J_{\tau_{k} A} x^{k}\right|^{2}$. Hence:

$$
\begin{aligned}
&\left|x^{k+1}-x\right|^{2} \leq\left|x^{k}-x\right|^{2}+\lambda_{k}^{2}\left|J_{\tau_{k} A} x^{k}-x^{k}\right|^{2}-2 \lambda_{k}\left|J_{\tau_{k} A} x^{k}-x^{k}\right|^{2} \\
&=\left|x^{k}-x\right|^{2}-\lambda_{k}\left(2-\lambda_{k}\right)\left|J_{\tau_{k} A} x^{k}-x^{k}\right|^{2} .
\end{aligned}
$$

Proximal Point Algorithm

Continuous

Letting $c=\underline{\lambda}(2-\bar{\lambda})>0$, we deduce that $\left(x^{k}\right)_{k}$ is Fejér-monotone with respect to $\{x: A x \ni 0\}$ and that

$$
c \sum_{k=0}^{n}\left|J_{\tau_{k} A} x^{k}-x^{k}\right|^{2}+\left|x^{n+1}-x\right|^{2} \leq\left|x^{0}-x\right|^{2}
$$

for all $n \geq 0$, in particular $\left|J_{\tau_{k}} A x^{k}-x^{k}\right| \rightarrow 0$ (as well as, by the scheme, $x^{k+1}-x^{k}$).
We would like to deduce convergence as in the proof of KM's Theorem. Yet, with varying τ_{k}, it is not obvious that a limit point \bar{x} of a subsequence $x^{k_{l}}$ is a fixed point (of what?).
But one proves that $A x \ni 0$ using the maximal-monotonicity of A. If $x^{\prime} \ni \mathcal{X}, y^{\prime} \in A x^{\prime}$, denoting $e_{k}:=J_{\tau_{k}} A x^{k}-x^{k} \rightarrow 0$ we have:

$$
A\left(x^{k}+e^{k}\right) \ni-\frac{e_{k}}{\tau_{k}}
$$

so that

$$
\left\langle y^{\prime}+\frac{e^{k}}{\tau_{k}}, x^{\prime}-x^{k}-e^{k}\right\rangle \geq 0
$$

In the limit along the subsequence $x^{k_{I}}$, we find $\left\langle y^{\prime}, x^{\prime}-\bar{x}\right\rangle \geq 0$, so that $A \bar{x} \ni 0$. The rest of the proof relies on Opial's lemma and is as in the proof of the KM Theorem.

Splitting methods

We can now mix the implicit and explicit algorithms: Let A, B be maximal-monotone, with $B \mu$-co-coercive. We define the forward-backward splitting algorithm as:

$$
x^{k+1}=(I+\tau A)^{-1}(I-\tau B) x^{k}
$$

If $0<\tau<2 \mu$, the algorithm is the composition of two averaged operator \rightarrow converges weakly to a fixed point if it exists:

$$
(I+\tau A)^{-1}(I-\tau B) x=x \Leftrightarrow x-\tau B x \in x+\tau A x \Leftrightarrow A x+B x \ni 0
$$

(As B is continuous, this is equivalent to $(A+B) x \ni 0$. Hence, if $A+B$ has a zero, this algorithm converges to a zero of $A+B$.)

Douglas-Rachford splitting

Introduced under the following form in a paper of Lions and Mercier (79):

$$
x^{k+1}=J_{\tau A}\left(2 J_{\tau B}-I\right) x^{k}+\left(I-J_{\tau B}\right) x^{k}
$$

Theorem

Let $x^{0} \in \mathcal{X}$. Then $x^{k} \rightharpoonup x$ such that $w=J_{\tau B} x$ is a solution of $A w+B w \ni 0$ (if it exists).

Douglas-Rachford splitting

Introduced under the following form in a paper of Lions and Mercier (79):

$$
x^{k+1}=J_{\tau A}\left(2 J_{\tau B}-I\right) x^{k}+\left(I-J_{\tau B}\right) x^{k}
$$

Theorem
 Let $x^{0} \in \mathcal{X}$. Then $x^{k} \rightharpoonup x$ such that $w=J_{\tau B} x$ is a solution of $A w+B w \ni 0$ (if it exists).

To prove this, we express the iterations in terms of the reflexion opeators:

$$
J_{\tau A}=\frac{1}{2} I+\frac{1}{2} R_{\tau A}, \quad J_{\tau B}=\frac{1}{2} I+\frac{1}{2} R_{\tau B}
$$

Douglas-Rachford splitting

One has then

$$
\begin{aligned}
J_{\tau A}\left(2 J_{\tau B}-I\right) x+\left(I-J_{\tau B}\right) x=\left(\frac{I+R_{\tau A}}{2}\left(R_{\tau B}\right)+\frac{I-R_{\tau B}}{2}\right) & (x) \\
& =\frac{I+R_{\tau A} \circ R_{\tau B}}{2}(x)
\end{aligned}
$$

It follows that the iterates are of an averaged operator (with $1 / 2$).
A fixed points satisfies:

$$
\begin{aligned}
x=J_{\tau A}\left(2 J_{\tau B}-I\right) x+\left(I-J_{\tau B}\right) x \Leftrightarrow w & :=J_{\tau B} x=J_{\tau A}(2 w-x) \\
& \Leftrightarrow w+\tau A w \ni 2 w-x \Leftrightarrow \tau A w \ni w-x
\end{aligned}
$$

Now since $w+\tau B w \ni x$, this is $\tau A w+\tau B w \ni 0$, which shows the theorem.

Douglas-Rachford splitting

and Peaceman-Rachford splitting

Continuous

Remark: In addition: one can consider an "over-relaxed" iteration with operator:

$$
(1-\theta) I+\theta R_{\tau A} \circ R_{\tau B}=I+2 \theta\left(J_{\tau A}\left(2 J_{\tau B}-I\right)-J_{\tau B}\right) .
$$

for $0<\theta<1$. The case $\theta=1$ is called the "Peaceman-Rachford" splitting and converges under some conditions on A, B.

Descent algorithms: Forward-backward descent

In case $A=\partial g, B=\nabla f, g, f$ convex, Isc, f with L-Lipschitz gradient, the forward-backward splitting solves $\partial g(x)+\nabla f(x) \ni 0$: then x is a minimizer of the composite minimization problem:

$$
\min _{x} F(x):=f(x)+g(x) .
$$

We consider the operator:

$$
\bar{x} \mapsto \hat{x}=T_{\tau} \bar{x}:=\operatorname{prox}_{\tau g}(\bar{x}-\tau \nabla f(\bar{x}))=(I+\tau \partial g)^{-1}(\bar{x}-\tau \nabla f(\bar{x})) .
$$

It corresponds to one explicit descent step for f followed by an implicit descent step for g.
[Also "composite" gradient descent, where $\left(T_{\tau}(x)-x\right) / \tau$ is the "composite" gradient of $f+g$, cf Nesterov, 2005]

Forward-Backward descent with fixed step ("ISTA")

We choose $x^{0} \in \mathcal{X}$ and let $x^{k+1}=T_{\tau} x^{k}$ for fixed k. Then we have seen that if $\tau<2 / L$, the methods converges to a fixed point of T_{τ} which is a minimizer of F. In this case we can additionally show, at least for $\tau \leq 1 / L$:

$$
F\left(x^{k}\right)-F\left(x^{*}\right) \leq \frac{1}{2 \tau k}\left|x^{*}-x^{0}\right|^{2}
$$

while in case f is μ_{f} convex and/or g is μ_{g} convex $\left(\mu_{f}, \mu_{g} \geq 0, \mu_{f}+\mu_{g}>0\right)$ one shows:

$$
F\left(x^{k}\right)-F\left(x^{*}\right)+\frac{1+\tau \mu_{g}}{2 \tau}\left|x^{k}-x^{*}\right|^{2} \leq \omega^{k} \frac{1+\tau \mu_{g}}{2 \tau}\left|x^{0}-x^{*}\right|^{2}
$$

where $\omega=\left(1-\tau \mu_{f}\right) /\left(1+\tau \mu_{g}\right)<1$.

Proof: descent inequality

Continuous
(convex)
optimisation
A. Chambolle

Algorithms for monotone operators

Let $\hat{x}=T_{\tau} \bar{x}$: then for all $x \in \mathcal{X}$,

$$
F(x)+\left(1-\tau \mu_{f}\right) \frac{|x-\bar{x}|^{2}}{2 \tau} \geq \frac{1-\tau L}{\tau} \frac{|\hat{x}-\bar{x}|^{2}}{2}+F(\hat{x})+\left(1+\tau \mu_{g}\right) \frac{|x-\hat{x}|^{2}}{2 \tau} .
$$

In particular, if $\tau L \leq 1$,

$$
F(x)+\left(1-\tau \mu_{f}\right) \frac{|x-\bar{x}|^{2}}{2 \tau} \geq F(\hat{x})+\left(1+\tau \mu_{g}\right) \frac{|x-\hat{x}|^{2}}{2 \tau}
$$

The proof relies on the fact that \hat{x} is obtained as a minimizer of

$$
\min _{x} f(\bar{x})+\langle\nabla f(\bar{x}), x-\bar{x}\rangle+g(x)+\frac{1}{2 \tau}|x-\bar{x}|^{2}
$$

which is $\left(\mu_{g}+\frac{1}{\tau}\right)$-convex.

Descent inequality

Continuous (convex) optimisation A. Chambolle

Proof: One has

$$
\begin{aligned}
f(\bar{x})+\langle\nabla f(\bar{x}), x-\bar{x}\rangle+g(x)+ & \frac{1}{2 \tau}|x-\bar{x}|^{2} \\
& \geq f(\bar{x})+\langle\nabla f(\bar{x}), \hat{x}-\bar{x}\rangle+g(\hat{x})+\frac{1}{2 \tau}|\hat{x}-\bar{x}|^{2}+\left(\mu_{g}+\frac{1}{\tau}\right) \frac{1}{2}|x-\hat{x}|^{2}
\end{aligned}
$$

Now, on the one hand we have:

$$
F(x)=f(x)+g(x) \geq f(\bar{x})+\langle\nabla f(\bar{x}), x-\bar{x}\rangle+\frac{\mu_{f}}{2}|x-\hat{x}|^{2}+g(x)
$$

and on the other hand because ∇f is L-Lipschitz we have

$$
f(\bar{x})+\langle\nabla f(\bar{x}), \hat{x}-\bar{x}\rangle+g(\hat{x}) \geq f(\hat{x})-\frac{L}{2}|\hat{x}-\bar{x}|^{2}+g(\hat{x})=F(\hat{x})-\frac{L}{2}|\hat{x}-\bar{x}|^{2} .
$$

Combining these three inequalities we get the descent inequality:

$$
F(x)+\left(1-\tau \mu_{f}\right) \frac{|x-\bar{x}|^{2}}{2 \tau} \geq F(\hat{x})+\left(1+\tau \mu_{g}\right) \frac{|x-\hat{x}|^{2}}{2 \tau}
$$

Rates of convergence for the FB splitting

Continuous

We consider the case $\mu_{f}+\mu_{g}=0$. The descent rule with $x=x^{*}$ shows that:

$$
F\left(x^{k+1}\right)+\frac{1}{2 \tau}\left|x^{k+1}-x^{*}\right|^{2} \leq F\left(x^{*}\right)+\frac{1}{2 \tau}\left|x^{k}-x^{*}\right|^{2}
$$

while for $x=x^{k}$ we get:

$$
F\left(x^{k+1}\right)+\frac{1}{2 \tau}\left|x^{k+1}-x^{k}\right|^{2} \leq F\left(x^{k}\right)
$$

We deduce that for $N \geq 1$,

$$
N\left(F\left(x^{N}\right)-F\left(x^{*}\right)\right) \leq \sum_{k=0}^{N-1} F\left(x^{k+1}\right)-F\left(x^{*}\right)+\frac{1}{2 \tau}\left|x^{N}-x^{*}\right|^{2} \leq \frac{1}{2 \tau}\left|x^{0}-x^{*}\right|^{2}
$$

FISTA: acceleration for the FB splitting

Continuous
(convex) optimisation
A. Chambolle

Due in this form to Beck and Teboulle (2009), see also Nesterov (1983, 2004 "Introductory lectures...")
Algorithm: FISTA with fixed steps:
Choose $x^{0}=x^{-1} \in \mathcal{X}$ and $t_{0} \geq 0$

for all $k \geq 0$ do

$$
\begin{aligned}
& y^{k}=x^{k}+\beta_{k}\left(x^{k}-x^{k-1}\right) \\
& x^{k+1}=T_{\tau} y^{k}=\operatorname{prox}_{\tau g}\left(y^{k}-\tau \nabla f\left(y^{k}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2} \geq \frac{k+1}{2} \\
& \beta_{k}=\frac{t_{k}-1}{t_{k+1}}
\end{aligned}
$$

end for

FISTA: strongly convex case

Continuous

In case $\mu=\mu_{f}+\mu_{g}>0$ is known, then the previous method is not optimal. One should choose:

$$
\begin{aligned}
& t_{k+1}=\frac{1-q t_{k}^{2}+\sqrt{\left(1-q t_{k}^{2}\right)^{2}+4 t_{k}^{2}}}{2} \\
& \beta_{k}=\frac{t_{k}-1}{t_{k+1}} \frac{1+\tau \mu_{g}-t_{k+1} \tau \mu}{1-\tau \mu_{f}}
\end{aligned}
$$

where $q=\tau \mu /\left(1+\tau \mu_{g}\right)<1$, or alternatively the fixed overrelaxation parameter:
$\beta=\frac{\sqrt{1+\tau \mu_{g}}-\sqrt{\tau \mu}}{\sqrt{1+\tau \mu_{g}}+\sqrt{\tau \mu}}$.

FISTA: rate

Theorem

If $\sqrt{q} t_{0} \leq 1, t_{0} \geq 0$, then the sequence $\left(x^{k}\right)$ produced the algorithm satisfies

$$
\begin{aligned}
& F\left(x^{k}\right)-F\left(x^{*}\right) \leq \min \left\{\frac{(1-\sqrt{q})^{k}}{t_{0}^{2}}, \frac{4}{(k+1)^{2}}\right\}\left(t_{0}^{2}\left(F\left(x^{0}\right)-F\left(x^{*}\right)\right)+\frac{1+\tau \mu_{g}}{2 \tau}\left|x^{0}-x^{*}\right|^{2}\right) \\
& \text { if } t_{0} \geq 1 \text {, and } \\
& \quad F\left(x^{k}\right)-F\left(x^{*}\right) \leq \\
& \min \left\{(1+\sqrt{q})(1-\sqrt{q})^{k}, \frac{4}{(k+1)^{2}}\right\}\left(t_{0}^{2}\left(F\left(x^{0}\right)-F\left(x^{*}\right)\right)+\frac{1+\tau \mu_{g}}{2 \tau}\left|x^{0}-x^{*}\right|^{2}\right) \\
& \text { if } t_{0} \in[0,1], \text { where } x^{*} \text { is a minimiser of } F .
\end{aligned}
$$

Common choices are $t_{0}=0, t_{0}=1$. The rate is "optimal".

FISTA: proof

Continuous (convex) optimisation A. Chambolle

Again we prove first $\mu_{f}+\mu_{g}=0$.
In that case, the algorithm has the form $x^{k+1}=T_{\tau} y^{k}$ for some y^{k} which we will specify later. One has for all x :

$$
F\left(x^{k+1}\right)+\frac{\left|x-x^{k+1}\right|^{2}}{2 \tau} \leq F(x)+\frac{\left|x-y^{k}\right|^{2}}{2 \tau}
$$

The idea is to choose x as a convex combination of a minimizer x^{*} [or any point] and the old point x^{k}, and use the convexity to deduce a "better" decrease. Here we choose (as it will make the computation much quicker) $x=\left((t-1) x^{k}+x^{*}\right) / t, t \geq 1$, and we find:

$$
\begin{aligned}
F\left(x^{k+1}\right)-F\left(x^{*}\right)+\frac{\left|(t-1) x^{k}+x^{*}-t x^{k+1}\right|^{2}}{2 t^{2} \tau} \leq & F\left(\frac{(t-1) x^{k}+x^{*}}{t}\right)-F\left(x^{*}\right)+\frac{\left|(t-1) x^{k}+x^{*}-t y^{k}\right|^{2}}{2 t^{2} \tau} \\
& \leq \frac{t-1}{t}\left(F\left(x^{k}\right)-F\left(x^{*}\right)\right)+\frac{\left|(t-1) x^{k}+x^{*}-t y^{k}\right|^{2}}{2 t^{2} \tau}
\end{aligned}
$$

Hence multiplying by t^{2} and adding an index $k+1$ to t :

$$
\begin{aligned}
& t_{k+1}^{2}\left(F\left(x^{k+1}\right)-F\left(x^{*}\right)\right)+\frac{\left|\left(t_{k+1}-1\right) x^{k}+x^{*}-t_{k+1} x^{k+1}\right|^{2}}{2 \tau} \\
& \leq t_{k+1}\left(t_{k+1}-1\right)\left(F\left(x^{k}\right)-F\left(x^{*}\right)\right)+\frac{\left|\left(t_{k+1}-1\right) x^{k}+x^{*}-t_{k+1} y^{k}\right|^{2}}{2 \tau}
\end{aligned}
$$

FISTA: proof

Continuous (convex) optimisation A. Chambolle

We see here that the factor in front of $F\left(x^{k}\right)$ is strictly less than in front of $F\left(x^{k+1}\right)$.

$$
\begin{aligned}
& t_{k+1}^{2}\left(F\left(x^{k+1}\right)-F\left(x^{*}\right)\right)+\frac{\left|\left(t_{k+1}-1\right) x^{k}+x^{*}-t_{k+1} x^{k+1}\right|^{2}}{2 \tau} \\
& \leq t_{k+1}\left(t_{k+1}-1\right)\left(F\left(x^{k}\right)-F\left(x^{*}\right)\right)+\frac{\left|\left(t_{k+1}-1\right) x^{k}+x^{*}-t_{k+1} y^{k}\right|^{2}}{2 \tau}
\end{aligned}
$$

This iteration can be iterated if the sequences t_{k} and y_{k} satisfy:

$$
\begin{array}{ll}
t_{k+1}\left(t_{k+1}-1\right)=t_{k}^{2} \\
\left(t_{k+1}-1\right) x^{k}+x^{*}-t_{k+1} y^{k}=\left(t_{k}-1\right) x^{k-1}+x^{*}-t_{k} x^{k}
\end{array} \quad\left(\leq \text { if } x^{*} \text { is a minimizer }\right)
$$

Then, indeed, we have

$$
\begin{aligned}
& t_{k+1}^{2}\left(F\left(x^{k+1}\right)-F\left(x^{*}\right)\right)+\frac{\left|\left(t_{k+1}-1\right) x^{k}+x^{*}-t_{k+1} x^{k+1}\right|^{2}}{2 \tau} \\
& \quad \leq t_{k}^{2}\left(F\left(x^{k}\right)-F\left(x^{*}\right)\right)+\frac{\left|\left(t_{k}-1\right) x^{k-1}+x^{*}-t_{k} x^{k}\right|^{2}}{2 \tau}
\end{aligned}
$$

and summing we obtain

$$
t_{N}^{2}\left(F\left(x^{N}\right)-F\left(x^{*}\right)\right) \leq t_{0}^{2}\left(F\left(x^{0}\right)-F\left(x^{*}\right)\right)+\frac{\left|\left(t_{0}-1\right) x^{-1}+x^{*}-t_{0} x^{0}\right|^{2}}{2 \tau}
$$

with by convention $y^{0}=x^{0}=x^{-1}$, and t_{0} does not need to be ≥ 1 (only $\left.t_{1}\right)$.

FISTA: proof

Continuous (convex) optimisation A. Chambolle

To ensure:

$$
t_{k+1}\left(t_{k+1}-1\right)=t_{k}^{2} \quad\left(\leq \text { if } x^{*} \text { is a minimizer }\right)
$$

one can solve $t_{k+1}^{2}-t_{k+1}-t_{k}^{2}=0$ and take

$$
t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}
$$

(observe that if $t_{0} \geq 0, t_{1} \geq 1$), or one can also show that $t_{k}=(k+a-1) / a, a \geq 2$, satisfies $t_{k+1} \geq 1$ and $t_{k+1}^{2}-t_{k+1} \leq t_{k}^{2}$ for any $k \geq 0$.

FISTA: proof

Continuous (convex) optimisation A. Chambolle

To ensure:

$$
t_{k+1}\left(t_{k+1}-1\right)=t_{k}^{2} \quad\left(\leq \text { if } x^{*} \text { is a minimizer }\right)
$$

one can solve $t_{k+1}^{2}-t_{k+1}-t_{k}^{2}=0$ and take

$$
t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}
$$

(observe that if $t_{0} \geq 0, t_{1} \geq 1$), or one can also show that $t_{k}=(k+a-1) / a, a \geq 2$, satisfies $t_{k+1} \geq 1$ and $t_{k+1}^{2}-t_{k+1} \leq t_{k}^{2}$ for any $k \geq 0$.

To ensure: $\left(t_{k+1}-1\right) x^{k}+x^{*}-t_{k+1} y^{k}=\left(t_{k}-1\right) x^{k-1}+x^{*}-t_{k} x^{k}$ one has to take, simply,

$$
y^{k}=x^{k}+\frac{t_{k}-1}{t_{k+1}}\left(x^{k}-x^{k-1}\right)
$$

FISTA: analysis

Continuous

Observe that

$$
\frac{1+\sqrt{1+4 t_{k}^{2}}}{2} \geq \frac{1}{2}+t_{k}
$$

hence if $t_{1}=1, t_{k} \geq(k+1) / 2$. Then, the final bound shows, for $t_{0}=0$ and $\tau=1 / L$:

$$
F\left(x^{N}\right)-F\left(x^{*}\right) \leq \frac{2 L}{(k+1)^{2}}\left|x^{0}-x^{*}\right|^{2}
$$

which is "optimal".

