Continuous (convex) optimisation M2 - PSL / Dauphine / S.U.

Antonin Chambolle, CNRS, CEREMADE

Université Paris Dauphine PSL
Oct.-Dec. 2021

Lecture 5: Saddle points, Primal-dual splitting

Contents

Continuous

(1) Optimisation for saddle-point problems, duality

- Uzawa
- ADMM
- Primal-Dual methods
- Extensions
- PDHG: acceleration

Constrained problems. Duality.

Assume we need to solve:

$$
\min _{x}\left\{f(x): g_{i}(x) \leq 0, i=1, \ldots, m\right\}
$$

with f, g_{i} convex (KKT framework), and we assume in addition:

- f is strongly convex with some parameter $\gamma>0$,
- $\left|g(x)-g\left(x^{\prime}\right)\right| \leq L\left|x-x^{\prime}\right|\left(g=\left(g_{1}, \ldots, g_{m}\right)\right.$ is L-Lipschitz $)$.

We can introduce a Lagrange multiplier for the constraints as in the KKT's theorem:

$$
\min _{g(x) \leq 0} f(x)=\min _{x} \sup _{\lambda \geq 0} f(x)+\langle\lambda, g(x)\rangle=(\geq) \sup _{\lambda \geq 0} \min _{x} f(x)+\langle\lambda, g(x)\rangle
$$

and try to solve the dual problem

$$
\max _{\lambda \geq 0} \mathcal{D}(\lambda) \quad \text { where } \quad \mathcal{D}(\lambda)=\min _{x} f(x)+\langle\lambda, g(x)\rangle .
$$

Uzawa

Assume now we are able to solve for any $\lambda \geq 0$ the unconstrained problem

$$
\min _{x} f(x)+\langle\lambda, g(x)\rangle
$$

(for instance, using FISTA...)
Let $x(\lambda)$ be the (unique) solution. Then for any $\mu \geq 0$,

$$
\begin{array}{r}
\mathcal{D}(\mu)=f(x(\mu))+\langle\mu, g(x(\mu))\rangle=f(x(\mu))+\langle\lambda, g(x(\mu))\rangle+\langle\mu-\lambda, g(x(\mu))\rangle \\
\geq f(x(\lambda))+\langle\lambda, g(x(\lambda))\rangle+\frac{\gamma}{2}|x(\mu)-x(\lambda)|^{2}+\langle\mu-\lambda, g(x(\mu))\rangle
\end{array}
$$

that is:

$$
\mathcal{D}(\lambda) \leq \mathcal{D}(\mu)+\langle\lambda-\mu, g(x(\mu))\rangle-\frac{\gamma}{2}|x(\mu)-x(\lambda)|^{2}
$$

and it follows:

Uzawa

$$
\mathcal{D}(\lambda) \leq \mathcal{D}(\mu)+\langle\lambda-\mu, g(x(\mu))\rangle-\frac{\gamma}{2}|x(\mu)-x(\lambda)|^{2}
$$

and it follows:

$$
g(x(\mu)) \in \partial \mathcal{D}(\mu)
$$

[here the supergradient of the concave function g] and

$$
\gamma|x(\mu)-x(\lambda)|^{2} \leq\langle\lambda-\mu, g(x(\mu))-g(x(\lambda))\rangle \leq|\lambda-\mu||g(x(\mu))-g(x(\lambda))| .
$$

Now we have $|g(x(\mu))-g(x(\lambda))| \leq L|x(\mu)-x(\lambda)|$ and we deduce

$$
|g(x(\mu))-g(x(\lambda))| \leq \frac{L^{2}}{\gamma}|\lambda-\mu|
$$

that is, \mathcal{D} is concave with L^{2} / γ-Lipschitz gradient.

Then, it can be solved using "ISTA" or "FISTA", for instance:

$$
\lambda^{k+1}=\left(\lambda^{k}+\tau g\left(x\left(\lambda^{k}\right)\right)\right)^{+}
$$

for $\tau=\gamma / L^{2}$, which will ensure that:

$$
\mathcal{D}\left(\lambda^{*}\right)-\mathcal{D}\left(\lambda^{N}\right) \leq \frac{L^{2}}{2 \gamma N}\left|\lambda^{0}-\lambda^{*}\right|^{2}
$$

In addition (using $\mu=\lambda^{*}$ in the first inequality of the previous slide),

$$
\left|x\left(\lambda^{N}\right)-x^{*}\right|^{2} \leq \frac{2}{\gamma}\left(\mathcal{D}\left(\lambda^{*}\right)-\mathcal{D}\left(\lambda^{N}\right)\right) \leq \frac{L^{2}}{\gamma^{2} N}\left|\lambda^{0}-\lambda^{*}\right|^{2}
$$

(Of course, one should use acceleration, but for this we need to be able to solve the primal problems very precisely.)

The "ADMM"

$$
\max _{p}\langle b, p\rangle-f^{*}\left(A^{*} p\right)-g^{*}\left(B^{*} p\right)
$$

with strong duality if f, g are continuous at some x, y with $A x+B y=b$ (in finite dimension, x, y in the relative interiors of the domains, respectively, of f, g) or if f^{*} is continuous at some point $A^{*} p$ and g^{*} at $B^{*} p$ (in finite dimension, $A^{*} p \in \operatorname{ridom} f^{*}, B^{*} p \in \operatorname{ridom} g^{*}$ for some p. This seems not particularly easier to solve for generic f, g.

ADMM: Augmented Lagrangian

An "augmented Lagrangian" approach consists in introducing the constraint in the form

$$
\min _{x, y} \sup _{z} f(x)+g(y)-\langle z, A x+B y-b\rangle+\frac{\gamma}{2}|A x+B y-b|^{2}
$$

for some $\gamma>0$, which is equivalent (as the sup is $+\infty$ if $A x+B y \neq b$) to the original problem. Why use $\gamma>0$? It makes the problem more regular.

ADMM: Augmented Lagrangian and dual

One considers the dual (concave) function:

$$
\mathcal{D}(z)=\inf _{x, y} f(x)+g(y)-\langle z, A x+B y-b\rangle+\frac{\gamma}{2}|A x+B y-b|^{2}
$$

Thanks to the quadratic term, it has $(1 / \gamma)$-Lipschitz gradient. This follows from the following result which we will prove next week in a slightly more general setting:

Lemma

Let f be convex, Isc: then f is γ-convex (strongly convex with parameter γ) if and only if f^{*} has $(1 / \gamma)$-Lipschitz gradient.

ADMM: Augmented Lagrangian and dual

Hence, a natural method for maximizing the dual could be to implement an (accelerated) gradient ascent, using that (the supergradient)

$$
\partial \mathcal{D}(z)=\{-(A x+B y-b)\}
$$

where (x, y) minimizes the problem which defines $\mathcal{D}(z)$. (Same proof as for the Uzawa method, or simply Legendre-Fenchel identity.)

However, it means we are able to solve for (x, y), which is not necessarily easy. Hence the "Alternating Directions Methods of Multipliers".

ADMM: algorithm

[Proposed initially by Glowinski and Marroco 75 / Gabay and Mercier 76]

Choose $\gamma>0, y^{0}, z^{0}$. for all $k \geq 0$ do

Find x^{k+1} by minimising $x \mapsto f(x)-\left\langle z^{k}, A x\right\rangle+\frac{\gamma}{2}\left|b-A x-B y^{k}\right|^{2}$,
Find y^{k+1} by minimising $y \mapsto g(y)-\left\langle z^{k}, B y\right\rangle+\frac{\gamma}{2}\left|b-A x^{k+1}-B y\right|^{2}$,
Update $z^{k+1}=z^{k}+\gamma\left(b-A x^{k+1}-B y^{k+1}\right)$.
end for
Convergence: for f, g convex, Isc. and provided there exists a saddle-point, the method converges.
Proof is omitted. In fact, it can be related to a Douglas-Rachford iteration on the dual problem. Or it is an "inexact" gradient ascent on the dual, with an error which needs to be controlled.

ADMM: difficulties

In practice, it is not necessarily easy to solve

$$
\min _{x} f(x)-\left\langle z^{k}, A x\right\rangle+\frac{\gamma}{2}\left|b-A x-B y^{k}\right|^{2}
$$

and one may revert to "proximal" ADMM: one introduces G, H symmetric positive-definite operators and considers rather the steps:

$$
\begin{aligned}
& x^{k+1}=\arg \min _{x} f(x)-\left\langle z^{k}, A x\right\rangle+\frac{\gamma}{2}\left|b-A x-B y^{k}\right|^{2}+\frac{1}{2}\left|x-x^{k}\right|_{F}^{2} \\
& y^{k+1}=\arg \min _{y} g(y)-\left\langle z^{k}, B y\right\rangle+\frac{\gamma}{2}\left|b-A x^{k+1}-B y\right|^{2}+\frac{1}{2}\left|y-y^{k}\right|_{G}^{2} .
\end{aligned}
$$

In practice, choosing $F=I / \tau-\gamma A^{*} A$ and $G=I / \sigma-\gamma B^{*} B$ with τ, σ small enough allows to solve the problems if the "prox" of f, g can be computed. Then, again, the algorithm will converge.
"PDHG"
(primal dual hybrid gradient)

One considers again:

$$
\min _{x} f(K x)+g(x)=\min _{x} \sup _{y}\langle K x, y\rangle+g(x)-f^{*}(y) .
$$

A basic idea consists in performing a gradient descent in x and a gradient ascent in y ("Arrow-Hurwicz" method):

$$
\begin{aligned}
& x^{k+1}=(I+\tau \partial g)^{-1}\left(x^{k}-\tau K^{*} y^{k}\right) \\
& y^{k+1}=\left(I+\sigma \partial f^{*}\right)^{-1}\left(y^{k}+\sigma K x^{k}\right)
\end{aligned}
$$

for some $\sigma, \tau>0$, however in general this will not converge (case $f, g=0$: this is similar to an explicit update for a monotone operator).
We observe though that in this specific case, one could use x^{k+1} in the second step (\rightarrow semi implicit). Does it help?

PDHG

Continuous
(convex)
optimisation
A. Chambolle

Optimisation
Well, almost. For $f, g=0$ one has:

$$
\binom{x^{k+1}}{y^{k+1}}=\left(\begin{array}{cc}
I & -\tau K^{*} \\
\sigma K & I-\sigma \tau K K^{*}
\end{array}\right)\binom{x^{k}}{y^{k}}
$$

and the eigenvalues of this matrix have modulus equal to 1 for $\sigma \tau$ small enough.

Continuous

In case $\lambda=1$ we also deduce that $K x=0$. So the eigenvalue 1 corresponds to $x \in \operatorname{ker} K, y \in \operatorname{ker} K^{*}$. If $K \neq 0$ there must be another eigenvalue $\lambda \neq 1$. Then, one has:

$$
\frac{\sigma \tau}{1-\lambda} K K^{*} y-\sigma \tau K K^{*} y=(\lambda-1) y \Leftrightarrow K K^{*} y=-\frac{(\lambda-1)^{2}}{\sigma \tau \lambda} y
$$

unless $\lambda=0$ but in this case $y=0$, then $x=0$, and it is not an eigenvalue.

PDHG

Continuous

We see that y is an eigenvector of $K K^{*}$, corresponding to an eigenvalue $\mu>0$ (otherwise $\lambda=1$). λ solves:

$$
-\frac{(\lambda-1)^{2}}{\sigma \tau \lambda}=\mu \Leftrightarrow \lambda^{2}-2 \lambda+1=-\sigma \tau \mu \lambda \Leftrightarrow \lambda^{2}-2\left(1-\frac{\sigma \tau \mu}{2}\right) \lambda+1=0
$$

If $\sigma \tau\left\|K^{*} K\right\| \leq 2$, letting $1-\sigma \tau \mu / 2=\cos \theta$ we find that $\lambda=\cos \theta \pm i \sin \theta$.
Hence, in that case, the algorithm will not converge nor diverge (the iterates "rotate"). Of course, for $f, g \neq 0$, the method may actually converge, in practice.

PDHG

The PDHG algorithm is a stable and converging variant of the previous case. Its simplest form is:

$$
\begin{align*}
& x^{k+1}=(I+\tau \partial g)^{-1}\left(x^{k}-\tau K^{*} y^{k}\right) \\
& y^{k+1}=\left(I+\sigma \partial f^{*}\right)^{-1}\left(y^{k}+\sigma K\left(2 x^{k+1}-x^{k}\right)\right) \tag{PDHG}
\end{align*}
$$

Proposition (He-Yuan 2011)

If $\tau \sigma\left\|K^{*} K\right\|<1$ then PDHG^{a} is a proximal-point algorithm.
a"Primal-dual hybrid gradient"

PDHG

Continuous
(convex)
optimisation
A. Chambolle

Optimisation

 forsaddle-point problems duality Uzawa ADMM Primal-Dual methods Extensions

To see this we write the iterates as follows:

$$
\left\{\begin{array}{l}
\frac{x^{k+1}-x^{k}}{\tau}+\partial g\left(x^{k+1}\right) \ni-K^{*} y^{k}=K^{*}\left(y^{k+1}-y^{k}\right)-K^{*} y^{k+1} \\
\frac{y^{k+1}-y^{k}}{\sigma}+\partial f^{*}\left(y^{k+1}\right) \ni K\left(x^{k+1}-x^{k}\right)+K x^{k+1},
\end{array}\right.
$$

that is

$$
\left(\begin{array}{cc}
\frac{1}{\tau} I & -K^{*} \\
-K & \frac{1}{\sigma} I
\end{array}\right)\binom{x^{k+1}-x^{k}}{y^{k+1}-y^{k}}+\binom{\partial g\left(x^{k+1}\right)}{\partial f^{*}\left(y^{k+1}\right)}+\left(\begin{array}{cc}
0 & K^{*} \\
-K & 0
\end{array}\right)\binom{x^{k+1}}{y^{k+1}} \ni 0
$$

PDHG

Continuous
is the iteration of the proximal point algorithm for the maximal monotone operator $S^{-1} A$ in the metric defined by the scalar product $\left\langle z, z^{\prime}\right\rangle_{S}:=\left\langle S z, z^{\prime}\right\rangle$.
We remark that if S is symmetric, positive-definite (defines a metric/coercive in infinite dimension) then for A a maximal monotone operator:

$$
S\left(z^{k+1}-z^{k}\right)+A z^{k+1} \ni 0
$$

PDHG

Continuous
(convex)
optimisation
A. Chambolle

Hence here, one find that the algorithm is a PPA iff

$$
M_{\tau, \sigma}:=\left(\begin{array}{cc}
\frac{1}{\tau} I & -K^{*} \\
-K & \frac{1}{\sigma} I
\end{array}\right)
$$

is symmetric, coercive.

PDHG

Continuous
if and only if

$$
2\|K\|<\min _{X \geq 0, Y \geq 0} \frac{X}{\tau Y}+\frac{Y}{\sigma X}=\frac{2}{\sqrt{\tau \sigma}}
$$

if and only if

$$
\tau \sigma\|K\|^{2}<1
$$

hence the theorem.

PDHG: rate

Continuous
One inherits the rate of convergence for the iterates of a proximal-point algorithm.
Yet for this specific form (using the convexity of f^{*}, g) one can improve the rate.
We denote $z=(x, y)^{T}$ and take the scalar product of the algorithm and $z^{k+1}-z$:

$$
\begin{array}{r}
\left\langle z^{k+1}-z^{k}, z^{k+1}-z\right\rangle_{M_{\tau, \sigma}}+\left\langle\left(\begin{array}{cc}
0 & K^{*} \\
-K & 0
\end{array}\right)\binom{x^{k+1}}{y^{k+1}},\binom{x^{k+1}-x}{y^{k+1}-y}\right\rangle \\
+g\left(x^{k+1}\right)+f^{*}\left(y^{k+1}\right) \leq g(x)+f^{*}(y)
\end{array}
$$

The scalar product is

$$
-\left\langle K^{*} y^{k+1}, x\right\rangle+\left\langle K x^{k+1}, y\right\rangle
$$

while

$$
\left\langle z^{k+1}-z^{k}, z^{k+1}-z\right\rangle_{M_{\tau, \sigma}}=\frac{1}{2}\left|z^{k+1}-z^{k}\right|_{M_{\tau, \sigma}}^{2}+\frac{1}{2}\left|z^{k+1}-z\right|_{M_{\tau, \sigma}}^{2}-\frac{1}{2}\left|z^{k}-z\right|_{M_{\tau, \sigma}}^{2}
$$

Hence:

$$
\begin{aligned}
\frac{1}{2}\left|z^{k+1}-z^{k}\right|_{M_{\tau, \sigma}}^{2}+\frac{1}{2}\left|z^{k+1}-z\right|_{M_{\tau, \sigma}}^{2}-\frac{1}{2}\left|z^{k}-z\right|_{M_{\tau, \sigma}}^{2}-\left\langle K^{*} y^{k+1}, x\right\rangle & +\left\langle K x^{k+1}, y\right\rangle \\
& +g\left(x^{k+1}\right)+f^{*}\left(y^{k+1}\right) \leq g(x)+f^{*}(y)
\end{aligned}
$$

PDHG: rate

Continuous

Therefore, introducing the Lagrangian $\mathcal{L}(x, y)=g(x)-f^{*}(y)+\langle K x, y\rangle$ and using:

$$
\mathcal{L}\left(x^{k+1}, y\right)-\mathcal{L}\left(x, y^{k+1}\right)=g\left(x^{k+1}\right)+\left\langle y, K x^{k+1}\right\rangle-f^{*}(y)-g(x)-\left\langle y^{k+1}, K x\right\rangle+f^{*}\left(y^{k+1}\right)
$$

we obtain for any $z=(x, y)^{T}$:

$$
\mathcal{L}\left(x^{k+1}, y\right)-\mathcal{L}\left(x, y^{k+1}\right)+\frac{1}{2}\left|z^{k+1}-z^{k}\right|_{M_{\tau, \sigma}}^{2}+\frac{1}{2}\left|z^{k+1}-z\right|_{M_{\tau, \sigma}}^{2} \leq \frac{1}{2}\left|z^{k}-z\right|_{M_{\tau, \sigma}}^{2} .
$$

so that, if $M_{\tau, \sigma} \geq 0$, for any $N \geq 1$,

$$
\sum_{k=0}^{N-1} \mathcal{L}\left(x^{k+1}, y\right)-\mathcal{L}\left(x, y^{k+1}\right)+\frac{1}{2}\left|z^{N}-z\right|_{M_{\tau, \sigma}}^{2} \leq \frac{1}{2}\left|z^{0}-z\right|_{M_{\tau, \sigma}}^{2}
$$

PDHG: rate

Continuous
By convexity, we obtain, denoting $Z^{N}=\left(X^{N}, Y^{N}\right)^{T}:=\frac{1}{N} \sum_{k=1}^{N} z^{k}$:

$$
\mathcal{L}\left(X^{N}, y\right)-\mathcal{L}\left(x, Y^{N}\right) \leq \frac{1}{2 N}\left|z^{0}-z\right|_{M_{\tau, \sigma}}^{2} .
$$

If the domains of x, y are bounded we deduce:

$$
\mathcal{P}\left(X^{N}\right)-\mathcal{D}\left(Y^{N}\right) \leq \frac{1}{N}\left(\frac{D_{x}^{2}}{\tau}+\frac{D_{y}^{2}}{\sigma}\right)
$$

where $D_{\text {. }}$ are the diameters of the corresponding sets. (Similar to Nemirovsky, 2010, for an extragradient variant.)

PDHG: rate

By convexity, we obtain, denoting $Z^{N}=\left(X^{N}, Y^{N}\right)^{T}:=\frac{1}{N} \sum_{k=1}^{N} z^{k}$:

$$
\mathcal{L}\left(X^{N}, y\right)-\mathcal{L}\left(x, Y^{N}\right) \leq \frac{1}{2 N}\left|z^{0}-z\right|_{M_{\tau, \sigma}}^{2} .
$$

If the domains of x, y are bounded we deduce:

$$
\mathcal{P}\left(X^{N}\right)-\mathcal{D}\left(Y^{N}\right) \leq \frac{1}{N}\left(\frac{D_{x}^{2}}{\tau}+\frac{D_{y}^{2}}{\sigma}\right)
$$

where $D_{\text {. }}$ are the diameters of the corresponding sets. (Similar to Nemirovsky, 2010, for an extragradient variant.)

Remark: we just used $\tau \sigma\|K\|^{2} \leq 1$ (not $<$). If g, f^{*} provide additional information on the coerciveness of g, f^{*} it is enough (in finite dimension) to show convergence of the algorithm.

PDHG: Extensions

- one can over-relax;
- one can ad an "explicit" (co-coercive) term:
we obtain an extension due to L. Condat (in a generalized form to B.C. Vu, referred usually as Condat-Vu's primal-dual algorithm). If h is a convex function with L_{h}-Lipschitz gradient one writes:

$$
\left(\begin{array}{cc}
\frac{1}{\tau} I & -K^{*} \\
-K & \frac{1}{\sigma} I
\end{array}\right)\binom{x^{k+1}-x^{k}}{y^{k+1}-y^{k}}+\binom{\partial g\left(x^{k+1}\right)}{\partial f^{*}\left(y^{k+1}\right)}+\left(\begin{array}{cc}
0 & K^{*} \\
-K & 0
\end{array}\right)\binom{x^{k+1}}{y^{k+1}} \ni\binom{-\nabla h\left(x^{k}\right)}{0} .
$$

Then, this is exactly a foward-backward splitting for two operators and we know that it will converge provided, in the metric $M_{\tau, \sigma}$:

$$
C=M_{\tau, \sigma}^{-1}\binom{-\nabla h(x)}{0}
$$

is μ-co-coercive for some $\mu>1 / 2$.

Condat-Vu's variant

Continuous
(convex) optimisation
A. Chambolle

Optimisation for saddle-point problems, duality Uzawa ADMM Primal-Dual methods

Extensions

That is, if for all z, z^{\prime} :

$$
\left\langle M_{\tau, \sigma}\left(z-z^{\prime}\right), C z-C z^{\prime}\right\rangle \geq \mu\left|C z-C z^{\prime}\right|_{M_{\tau, \sigma}}^{2}
$$

Some algebra (see notes) show that μ can be estimated as $\mu \geq\left(1-\sigma \tau\|K\|^{2}\right) /\left(\tau L_{h}\right)$ and one needs $\mu>1 / 2$, hence:

$$
\frac{1}{\sigma}\left(\frac{1}{\tau}-\frac{L_{h}}{2}\right)>\|K\|^{2}
$$

Condat-Vu's variant

Continuous

In the end the method reads:
Input: initial pair of primal and dual points $\left(x^{0}, y^{0}\right)$, steps $\tau, \sigma>0$.
for all $k \geq 0$ do
find $\left(x^{k+1}, y^{k+1}\right)$ by solving

$$
\begin{align*}
& x^{k+1}=\operatorname{prox}_{\tau g}\left(x^{k}-\tau\left(K^{*} y^{k}+\nabla h\left(x^{k}\right)\right)\right) \tag{2}\\
& y^{k+1}=\operatorname{prox}_{\sigma f^{*}}\left(y^{k}+\sigma K\left(2 x^{k+1}-x^{k}\right)\right) \tag{3}
\end{align*}
$$

end for

which will converge to a fixed point (if it exists) if $\tau<2 / L_{h}$ and $\sigma\|K\|^{2}<1 / \tau-L_{h} / 2$. [A rate can also be shown with a proof similar to the previous.]

Condat-Vu's variant

Continuous

In the end the method reads:
Input: initial pair of primal and dual points $\left(x^{0}, y^{0}\right)$, steps $\tau, \sigma>0$.
for all $k \geq 0$ do
find $\left(x^{k+1}, y^{k+1}\right)$ by solving

$$
\begin{align*}
& x^{k+1}=\operatorname{prox}_{\tau g}\left(x^{k}-\tau\left(K^{*} y^{k}+\nabla h\left(x^{k}\right)\right)\right) \tag{2}\\
& y^{k+1}=\operatorname{prox}_{\sigma f^{*}}\left(y^{k}+\sigma K\left(2 x^{k+1}-x^{k}\right)\right) \tag{3}
\end{align*}
$$

end for

which will converge to a fixed point (if it exists) if $\tau<2 / L_{h}$ and $\sigma\|K\|^{2}<1 / \tau-L_{h} / 2$. [A rate can also be shown with a proof similar to the previous.]
(!) One should additionally check that a fixed point of these iterations solves:

$$
\min _{x} f(K x)+g(x)+h(x)=\min _{x} \sup _{y}\langle y, K x\rangle-f^{*}(y)+g(x)+h(x) .
$$

PDHG: acceleration

The previous method can be accelerated if g or f^{*} is strongly convex (and even further if both are strongly convex), similarly to the forward-backward splitting. We explain how it works, for instance if g is strongly convex. To make the computation a little bit easier we rather write the method as:

$$
\begin{aligned}
& y^{k+1}=\left(I+\sigma \partial f^{*}\right)^{-1}\left(y^{k}+\sigma K\left(x^{k}+\theta\left(x^{k}-x^{k-1}\right)\right)\right. \\
& x^{k+1}=(I+\tau \partial g)^{-1}\left(x^{k}-\tau K^{*} y^{k+1}\right)
\end{aligned}
$$

for some $\sigma, \tau>0$, and some $\theta \in[0,1]$ (we had $\theta=1$ in the previous parts).

PDHG: acceleration

Actually, the general form considers "old points" ($\bar{x}, \tilde{x}, \bar{y}, \tilde{y}$) and finds a "new point" (\hat{x}, \hat{y}) by solving:

$$
\begin{aligned}
& \hat{y}=\left(I+\sigma \partial f^{*}\right)^{-1}(\bar{y}+\sigma K \tilde{x}) \\
& \hat{x}=(I+\tau \partial g)^{-1}\left(\bar{x}-\tau K^{*} \tilde{y}\right) .
\end{aligned}
$$

In particular, if g is μ_{g}-convex and/or f^{*} is $\mu_{f^{*}}$-convex, then for all x, y, one has:

$$
\begin{aligned}
& g(x)+\langle K x, \tilde{y}\rangle+\frac{1}{2 \tau}|x-\bar{x}|^{2} \geq g(\hat{x})+\langle K \hat{x}, \tilde{y}\rangle+\frac{1}{2 \tau}|\hat{x}-\bar{x}|^{2}+\frac{1+\tau \mu_{g}}{2 \tau}|x-\hat{x}|^{2} \\
& f^{*}(y)-\langle K \tilde{x}, y\rangle+\frac{1}{2 \sigma}|y-\bar{y}|^{2} \geq f^{*}(\hat{y})-\langle K \tilde{x}, \hat{y}\rangle+\frac{1}{2 \sigma}|\hat{y}-\bar{y}|^{2}+\frac{1+\sigma \mu_{f^{*}}}{2 \sigma}|y-\hat{y}|^{2}
\end{aligned}
$$

PDHG: acceleration

Continuous

$$
\begin{aligned}
& g(x)+\langle K x, \tilde{y}\rangle+\frac{1}{2 \tau}|x-\bar{x}|^{2} \geq g(\hat{x})+\langle K \hat{x}, \tilde{y}\rangle+\frac{1}{2 \tau}|\hat{x}-\bar{x}|^{2}+\frac{1+\tau \mu_{g}}{2 \tau}|x-\hat{x}|^{2} \\
& f^{*}(y)-\langle K \tilde{x}, y\rangle+\frac{1}{2 \sigma}|y-\bar{y}|^{2} \geq f^{*}(\hat{y})-\langle K \tilde{x}, \hat{y}\rangle+\frac{1}{2 \sigma}|\hat{y}-\bar{y}|^{2}+\frac{1+\sigma \mu_{f^{*}}}{2 \sigma}|y-\hat{y}|^{2}
\end{aligned}
$$

as before we sum and see that:

$$
\begin{aligned}
& \mathcal{L}(\hat{x}, y)-\mathcal{L}(x, \hat{y})+\frac{1}{2 \tau}|\hat{x}-\bar{x}|^{2}+\frac{1+\tau \mu_{g}}{2 \tau}|x-\hat{x}|^{2}+\frac{1}{2 \sigma}|\hat{y}-\bar{y}|^{2}+\frac{1+\sigma \mu_{f *}}{2 \sigma}|y-\hat{y}|^{2} \\
& \leq \frac{1}{2 \tau}|x-\bar{x}|^{2}+\frac{1}{2 \sigma}|y-\bar{y}|^{2} \\
& +\langle K \hat{x}, y\rangle-\langle K x, \hat{y}\rangle+\langle K(x-\hat{x}), \tilde{y}\rangle-\langle K \tilde{x}, y-\hat{y}\rangle .
\end{aligned}
$$

Then, we add and remove $\langle K \hat{x}, \hat{y}\rangle$ to rewrite the last terms:

$$
\langle K(x-\hat{x}), \tilde{y}-\hat{y}\rangle-\langle K(\tilde{x}-\hat{x}), y-\hat{y}\rangle .
$$

PDHG: acceleration

Continuous

$$
\begin{aligned}
& g(x)+\langle K x, \tilde{y}\rangle+\frac{1}{2 \tau}|x-\bar{x}|^{2} \geq g(\hat{x})+\langle K \hat{x}, \tilde{y}\rangle+\frac{1}{2 \tau}|\hat{x}-\bar{x}|^{2}+\frac{1+\tau \mu_{g}}{2 \tau}|x-\hat{x}|^{2} \\
& f^{*}(y)-\langle K \tilde{x}, y\rangle+\frac{1}{2 \sigma}|y-\bar{y}|^{2} \geq f^{*}(\hat{y})-\langle K \tilde{x}, \hat{y}\rangle+\frac{1}{2 \sigma}|\hat{y}-\bar{y}|^{2}+\frac{1+\sigma \mu_{f^{*}}}{2 \sigma}|y-\hat{y}|^{2}
\end{aligned}
$$

as before we sum and see that:

$$
\begin{aligned}
& \mathcal{L}(\hat{x}, y)-\mathcal{L}(x, \hat{y})+\frac{1}{2 \tau}|\hat{x}-\bar{x}|^{2}+\frac{1+\tau \mu_{g}}{2 \tau}|x-\hat{x}|^{2}+\frac{1}{2 \sigma}|\hat{y}-\bar{y}|^{2}+\frac{1+\sigma \mu_{f *}}{2 \sigma}|y-\hat{y}|^{2} \\
& \leq \frac{1}{2 \tau}|x-\bar{x}|^{2}+\frac{1}{2 \sigma}|y-\bar{y}|^{2} \\
& +\langle K \hat{x}, y\rangle-\langle K x, \hat{y}\rangle+\langle K(x-\hat{x}), \tilde{y}\rangle-\langle K \tilde{x}, y-\hat{y}\rangle .
\end{aligned}
$$

Then, we add and remove $\langle K \hat{x}, \hat{y}\rangle$ to rewrite the last terms:

$$
\langle K(x-\hat{x}), \tilde{y}-\hat{y}\rangle-\langle K(\tilde{x}-\hat{x}), y-\hat{y}\rangle .
$$

\rightarrow the best would be to take $\tilde{x}=\hat{x}$ and $\tilde{y}=\hat{y}$ to get rid of these terms... (but then it is totally implicit).

Accelerated PDHG

Continuous
reads in our case:

$$
\begin{aligned}
\mathcal{L}\left(x^{k+1}, y\right)- & \mathcal{L}\left(x, y^{k+1}\right)+\frac{1}{2 \tau}\left|x^{k+1}-x^{k}\right|^{2}+\frac{1+\tau \mu g}{2 \tau}\left|x-x^{k+1}\right|^{2}+\frac{1}{2 \sigma}\left|y^{k+1}-y^{k}\right|^{2}+\frac{1+\sigma \mu_{f} *}{2 \sigma}\left|y-y^{k+1}\right|^{2} \\
& \leq \frac{1}{2 \tau}\left|x-x^{k}\right|^{2}+\frac{1}{2 \sigma}\left|y-y^{k}\right|^{2}+\left\langle K\left(x-x^{k+1}\right), \tilde{y}-y^{k+1}\right\rangle-\left\langle K\left(\tilde{x}-x^{k+1}\right), y-y^{k+1}\right\rangle
\end{aligned}
$$

and we can specialize in a semi-implicit form: $\tilde{y}=y^{k+1}$ and $\tilde{x}=x^{k}+\theta\left(x^{k}-x^{k-1}\right)$ for some θ choosen later on, so that the last term becomes:

$$
-\left\langle K\left(x^{k}+\theta\left(x^{k}-x^{k-1}\right)-x^{k+1}\right), y-y^{k+1}\right\rangle=\left\langle K\left(x^{k+1}-x^{k}\right), y-y^{k+1}\right\rangle-\theta\left\langle K\left(x^{k}-x^{k-1}\right), y-y^{k+1}\right\rangle
$$

Accelerated PDHG

Continuous
（convex）
optimisation
A．Chambolle

Optimisation for
saddle－point problems， duality Uzawa ADMM Primal－Dual method Extensions PDHG：acceleration

We end up with：

$$
\begin{aligned}
& \mathcal{L}\left(x^{k+1}, y\right)- \mathcal{L}\left(x, y^{k+1}\right)+\frac{1}{2 \tau}\left|x^{k+1}-x^{k}\right|^{2}+\frac{1}{2 \sigma}\left|y^{k+1}-y^{k}\right|^{2} \\
&+\frac{1+\tau \mu_{g}}{2 \tau}\left|x-x^{k+1}\right|^{2}+ \\
& \quad \frac{1+\sigma \mu_{f *}}{2 \sigma}\left|y-y^{k+1}\right|^{2}-\left\langle K\left(x^{k+1}-x^{k}\right), y-y^{k+1}\right\rangle \\
& \leq \frac{1}{2 \tau}\left|x-x^{k}\right|^{2}+\frac{1}{2 \sigma}\left|y-y^{k}\right|^{2}-\theta\left\langle K\left(x^{k}-x^{k-1}\right), y-y^{k+1}\right\rangle
\end{aligned}
$$

Accelerated PDHG

Continuous
(convex)
optimisation
A. Chambolle

Optimisation for
saddle-point problems,
duality
Uzawa
ADMM
Primal-Dual method
Extensions
PDHG: acceleration

We end up with:

$$
\begin{aligned}
\mathcal{L}\left(x^{k+1}, y\right)- & \mathcal{L}\left(x, y^{k+1}\right)+\frac{1}{2 \tau}\left|x^{k+1}-x^{k}\right|^{2}+\frac{1}{2 \sigma}\left|y^{k+1}-y^{k}\right|^{2} \\
& +\frac{1+\tau \mu g}{2 \tau}\left|x-x^{k+1}\right|^{2}+\frac{1+\sigma \mu_{f *}}{2 \sigma}\left|y-y^{k+1}\right|^{2}-\left\langle K\left(x^{k+1}-x^{k}\right), y-y^{k+1}\right\rangle \\
+ & \theta\left\langle K\left(x^{k}-x^{k-1}\right), y^{k}-y^{k+1}\right\rangle \leq \frac{1}{2 \tau}\left|x-x^{k}\right|^{2}+\frac{1}{2 \sigma}\left|y-y^{k}\right|^{2}-\theta\left\langle K\left(x^{k}-x^{k-1}\right), y-y^{k}\right\rangle
\end{aligned}
$$

Accelerated PDHG

Continuous

We end up with:

$$
\begin{aligned}
\mathcal{L}\left(x^{k+1}, y\right)- & \mathcal{L}\left(x, y^{k+1}\right)+\frac{1}{2 \tau}\left|x^{k+1}-x^{k}\right|^{2}+\frac{1}{2 \sigma}\left|y^{k+1}-y^{k}\right|^{2} \\
& +\frac{1+\tau \mu_{g}}{2 \tau}\left|x-x^{k+1}\right|^{2}+\frac{1+\sigma \mu_{f *}}{2 \sigma}\left|y-y^{k+1}\right|^{2}-\left\langle K\left(x^{k+1}-x^{k}\right), y-y^{k+1}\right\rangle \\
+ & \theta\left\langle K\left(x^{k}-x^{k-1}\right), y^{k}-y^{k+1}\right\rangle \leq \frac{1}{2 \tau}\left|x-x^{k}\right|^{2}+\frac{1}{2 \sigma}\left|y-y^{k}\right|^{2}-\theta\left\langle K\left(x^{k}-x^{k-1}\right), y-y^{k}\right\rangle
\end{aligned}
$$

Provided we can control the cross term $\left\langle K\left(x^{k}-x^{k-1}\right), y^{k}-y^{k+1}\right\rangle$ with the terms $\frac{1}{2 \tau}\left|x^{k+1}-x^{k}\right|^{2}+\frac{1}{2 \sigma}\left|y^{k+1}-y^{k}\right|^{2}$ we can hope to obtain a rate of convergence, even linear if $\mu_{g}>0$ and $\mu_{f} *>0$. Let us consider the more difficult case $\mu_{g}>0, \mu_{f *}=0$.

Accelerated PDHG

Continuous (convex) optimisation
A. Chambolle

Optimisation

duality
Uzawa
ADMM Primal-Dual method Extensions PDHG: acceleration

In this case, we assume θ, σ, τ are varying and depend on k and we write:

$$
\begin{aligned}
& \mathcal{L}\left(x^{k+1}, y\right)-\mathcal{L}\left(x, y^{k+1}\right)+\frac{1}{2 \tau_{k}}\left|x^{k+1}-x^{k}\right|^{2}+\frac{1}{2 \sigma_{k}}\left|y^{k+1}-y^{k}\right|^{2}+\theta_{k}\left\langle K\left(x^{k}-x^{k-1}\right), y^{k}-y^{k+1}\right\rangle \\
&+\frac{1+\tau_{k} \mu_{g}}{2 \tau_{k}}\left|x-x^{k+1}\right|^{2}+\frac{1}{2 \sigma_{k}}\left|y-y^{k+1}\right|^{2}-\left\langle K\left(x^{k+1}-x^{k}\right), y-y^{k+1}\right\rangle \\
& \leq \frac{1}{2 \tau_{k}}\left|x-x^{k}\right|^{2}+\frac{1}{2 \sigma_{k}}\left|y-y^{k}\right|^{2}-\theta_{k}\left\langle K\left(x^{k}-x^{k-1}\right), y-y^{k}\right\rangle
\end{aligned}
$$

Accelerated PDHG

Continuous (convex) optimisation A. Chambolle

Optimisation

 for saddle-point problems, duality Uzawa ADMM Primal-Dual method ExtensionsPDHG: acceleration

In this case, we assume θ, σ, τ are varying and depend on k and we write:

$$
\begin{aligned}
& \mathcal{L}\left(x^{k+1}, y\right)-\mathcal{L}\left(x, y^{k+1}\right)+\frac{1}{2 \tau_{k}}\left|x^{k+1}-x^{k}\right|^{2}+\frac{1}{2 \sigma_{k}}\left|y^{k+1}-y^{k}\right|^{2}+\theta_{k}\left\langle K\left(x^{k}-x^{k-1}\right), y^{k}-y^{k+1}\right\rangle \\
&+\frac{\tau_{k+1}\left(1+\tau_{k} \mu_{g}\right)}{\tau_{k}} \frac{1}{2 \tau_{k+1}}\left|x-x^{k+1}\right|^{2}+\frac{\sigma_{k+1}}{\sigma_{k}} \frac{1}{2 \sigma_{k+1}}\left|y-y^{k+1}\right|^{2}-\frac{\theta_{k+1}}{\theta_{k+1}}\left\langle K\left(x^{k+1}-x^{k}\right), y-y^{k+1}\right\rangle \\
& \leq \frac{1}{2 \tau_{k}}\left|x-x^{k}\right|^{2}+\frac{1}{2 \sigma_{k}}\left|y-y^{k}\right|^{2}-\theta_{k}\left\langle K\left(x^{k}-x^{k-1}\right), y-y^{k}\right\rangle
\end{aligned}
$$

so that if we can choose

$$
\frac{\tau_{k+1}\left(1+\tau_{k} \mu_{g}\right)}{\tau_{k}}=\frac{\sigma_{k+1}}{\sigma_{k}}=\frac{1}{\theta_{k+1}}>1
$$

and let $A_{k}:=\frac{1}{2 \tau_{k}}\left|x-x^{k}\right|^{2}+\frac{1}{2 \sigma_{k}}\left|y-y^{k}\right|^{2}-\theta_{k}\left\langle K\left(x^{k}-x^{k-1}\right), y-y^{k}\right\rangle$ it reads:

$$
\begin{array}{r}
\mathcal{L}\left(x^{k+1}, y\right)-\mathcal{L}\left(x, y^{k+1}\right)+\frac{1}{2 \tau_{k}}\left|x^{k+1}-x^{k}\right|^{2}+\frac{1}{2 \sigma_{k}}\left|y^{k+1}-y^{k}\right|^{2}+\theta_{k}\left\langle K\left(x^{k}-x^{k-1}\right), y^{k}-y^{k+1}\right\rangle \\
+\frac{\sigma_{k+1}}{\sigma_{k}} A_{k+1} \leq A_{k}
\end{array}
$$

Accelerated PDHG

Continuous (convex) optimisation
A. Chambolle

Optimisation for saddle-point problems, duality Uzawa ADMM Primal-Dual method Extensions PDHG: acceleration

$$
\begin{aligned}
\mathcal{L}\left(x^{k+1}, y\right)-\mathcal{L}\left(x, y^{k+1}\right)+\frac{1}{2 \tau_{k}}\left|x^{k+1}-x^{k}\right|^{2}+\frac{1}{2 \sigma_{k}}\left|y^{k+1}-y^{k}\right|^{2}+\theta_{k}\left\langle K\left(x^{k}-x^{k-1}\right), y^{k}-y^{k+1}\right\rangle \\
+\frac{\sigma_{k+1}}{\sigma_{k}} A_{k+1} \leq A_{k}
\end{aligned}
$$

Then, we use that (denoting to simplify $L:=\|K\|$):

$$
-\theta_{k}\left\langle K\left(x^{k}-x^{k-1}\right), y^{k}-y^{k+1}\right\rangle \leq \frac{\theta_{k}^{2} L^{2} \sigma_{k}}{2}\left|x^{k}-x^{k-1}\right|^{2}+\frac{1}{2 \sigma_{k}}\left|y^{k}-y^{k+1}\right|^{2}
$$

to arrive at

$$
\mathcal{L}\left(x^{k+1}, y\right)-\mathcal{L}\left(x, y^{k+1}\right)+\frac{1}{2 \tau_{k}}\left|x^{k+1}-x^{k}\right|^{2}-\frac{\theta_{k}^{2} L^{2} \sigma_{k}}{2}\left|x^{k}-x^{k-1}\right|^{2}+\frac{\sigma_{k+1}}{\sigma_{k}} A_{k+1} \leq A_{k}
$$

or (after multiplication with σ_{k}):

$$
\sigma_{k}\left(\mathcal{L}\left(x^{k+1}, y\right)-\mathcal{L}\left(x, y^{k+1}\right)\right)+\frac{\sigma_{k}}{2 \tau_{k}}\left|x^{k+1}-x^{k}\right|^{2}-\frac{\theta_{k}^{2} L^{2} \sigma_{k}^{2}}{2}\left|x^{k}-x^{k-1}\right|^{2}+\sigma_{k+1} A_{k+1} \leq \sigma_{k} A_{k} .
$$

Accelerated PDHG

Continuous （convex） optimisation A．Chambolle

Optimisation

 for saddle－point problems， duality Uzawa ADMM Primal－Dual method Extensions PDHG：accelerationWe now sum from $k=0$ to $N-1$ the inequality（we use also $\theta_{k} \sigma_{k}=\sigma_{k-1}$ ）：

$$
\sigma_{k}\left(\mathcal{L}\left(x^{k+1}, y\right)-\mathcal{L}\left(x, y^{k+1}\right)\right)+\frac{\sigma_{k}}{2 \tau_{k}}\left|x^{k+1}-x^{k}\right|^{2}-\frac{L^{2} \sigma_{k-1}^{2}}{2}\left|x^{k}-x^{k-1}\right|^{2}+\sigma_{k+1} A_{k+1} \leq \sigma_{k} A_{k}
$$

We let $T_{N}=\sum_{k=0}^{N-1} \sigma_{k}, X^{N}=\frac{1}{T_{N}} \sum_{k=0}^{N-1} \sigma_{k} x^{k+1}, Y^{N}=\frac{1}{T_{N}} \sum_{k=0}^{N-1} \sigma_{k} y^{k+1}$ ，so that：

$$
T_{N}\left(\mathcal{L}\left(X^{N}, y\right)-\mathcal{L}\left(x, Y^{N}\right)\right) \leq \sum_{k=0}^{N-1} \sigma_{k}\left(\mathcal{L}\left(x^{k+1}, y\right)-\mathcal{L}\left(x, y^{k+1}\right)\right)
$$

thanks to the convexity of $\mathcal{L}(\cdot, y)-\mathcal{L}\left(x, .^{\prime}\right)$ Then we get：

$$
T_{N}\left(\mathcal{L}\left(X^{N}, y\right)-\mathcal{L}\left(x, Y^{N}\right)\right)+\sum_{k=1}^{N} \frac{\sigma_{k-1}}{2 \tau_{k-1}}\left|x^{k}-x^{k-1}\right|^{2}-\sum_{k=0}^{N-1} \frac{L^{2} \sigma_{k-1}^{2}}{2}\left|x^{k}-x^{k-1}\right|^{2}+\sigma_{N} A_{N} \leq \sigma_{0} A_{0}
$$

or，choosing $x^{-1}=x^{0}$ ：
$T_{N}\left(\mathcal{L}\left(X^{N}, y\right)-\mathcal{L}\left(x, Y^{N}\right)\right)+\frac{\sigma_{N-1}}{2 \tau_{N-1}}\left|x^{N}-x^{N-1}\right|^{2}+\sum_{k=1}^{N-1}\left(\frac{\sigma_{k-1}}{\tau_{k-1}}\left(1-L^{2} \tau_{k-1} \sigma_{k-1}\right)\right) \frac{\left|x^{k}-x^{k-1}\right|^{2}}{2}+\sigma_{N} A_{N} \leq \sigma_{0} A_{0}$

Accelerated PDHG

Continuous (convex) optimisation
A. Chambolle

Hence: we choose in addition $L^{2} \sigma_{k} \tau_{k} \leq 1$ (or $=$ in practice) and end up with:

$$
\begin{aligned}
T_{N}\left(\mathcal{L}\left(X^{N}, y\right)-\mathcal{L}\left(x, Y^{N}\right)\right)+\frac{\sigma_{N-1}}{2 \tau_{N-1}} & \left|x^{N}-x^{N-1}\right|^{2}+\frac{\sigma_{N}}{2 \tau_{N}}\left|x^{N}-x\right|^{2}+\frac{1}{2}\left|y^{N}-y\right|^{2} \\
& -\sigma_{N} \theta_{N}\left\langle K\left(x^{N}-x^{N-1}\right), y-y^{N}\right\rangle \leq \frac{\sigma_{0}}{2 \tau_{0}}\left|x^{0}-x\right|^{2}+\frac{1}{2}\left|y^{0}-y\right|^{2}
\end{aligned}
$$

(using again $x^{-1}=x^{0}$ and recalling $A_{k}:=\frac{1}{2 \tau_{k}}\left|x-x^{k}\right|^{2}+\frac{1}{2 \sigma_{k}}\left|y-y^{k}\right|^{2}-\theta_{k}\left\langle K\left(x^{k}-x^{k-1}\right), y-y^{k}\right\rangle$). We end up estimating again:

$$
\sigma_{N} \theta_{N}\left\langle K\left(x^{N}-x^{N-1}\right), y-y^{N}\right\rangle \leq \frac{L^{2} \sigma_{N-1}^{2}}{2}\left|x^{N}-x^{N-1}\right|^{2}+\frac{1}{2}\left|y-y^{N}\right|^{2}
$$

and using $L^{2} \sigma_{N-1}^{2} \leq \sigma_{N-1} / \tau_{N-1}$ to find:

$$
T_{N}\left(\mathcal{L}\left(X^{N}, y\right)-\mathcal{L}\left(x, Y^{N}\right)\right)+\frac{\sigma_{N}}{2 \tau_{N}}\left|x^{N}-x\right|^{2} \leq \frac{\sigma_{0}}{2 \tau_{0}}\left|x^{0}-x\right|^{2}+\frac{1}{2}\left|y^{0}-y\right|^{2}
$$

Accelerated PDHG

Continuous (convex) optimisation A. Chambolle

Now we specify the parameters... In order to keep $L^{2} \sigma_{k} \tau_{k}=1$ (to simplify) we keep $\sigma_{k} \tau_{k}=\sigma_{0} \tau_{0}=1 / L^{2}$. Then, we should have:

$$
\frac{\tau_{k+1}\left(1+\tau_{k} \mu_{g}\right)}{\tau_{k}}=\frac{\sigma_{k+1}}{\sigma_{k}}=\frac{1}{\theta_{k+1}}>1
$$

and in particular, $\sigma_{k+1}=\sigma_{k} / \theta_{k+1}$ and $\tau_{k+1}=\theta_{k+1} \tau_{k}$, so that:

$$
\theta_{k+1}=\frac{1}{\sqrt{1+\mu_{g} \tau_{k}}}, \quad \tau_{k+1}=\frac{\tau_{k}}{\sqrt{1+\mu_{g} \tau_{k}}}, \quad \sigma_{k+1}=\sigma_{k} \sqrt{1+\mu_{g} \tau_{k}}
$$

In particular $\sigma_{k+1}^{2}=\sigma_{k}^{2}+\kappa \sigma_{k}$ where $\kappa=\mu_{g} / L^{2}$ is an (inverse) condition number.
One can then show that: if τ_{0} is large, then after very few iterations, $\tau_{k} \leq 1$: we use

$$
\mu_{g} \tau_{k+1}=\frac{\mu_{g} \tau_{k}}{\sqrt{1+\mu_{g} \tau_{k}}} \leq \sqrt{\mu_{g} \tau_{k}} \quad \Rightarrow \ldots
$$

Accelerated PDHG: paramters and rate

Continuous

$$
\mu_{g} \tau_{k+1} \leq \sqrt{\mu_{g} \tau_{k}} \Rightarrow \log \mu_{g} \tau_{k} \leq \frac{1}{2^{k}} \log \mu_{g} \tau_{0}
$$

so that, for instance, $\mu_{g} \tau_{k} \leq 2$ as soon as $k \geq \log _{2} \log _{2}\left(\mu_{g} \tau_{0}\right)$ (or $k=0$), which is always very small. Then, for larger $k s$, one has $\sigma_{k}=1 /\left(L^{2} \tau_{k}\right) \geq \kappa / 2$ and:

$$
\sigma_{k+1}^{2}=\sigma_{k}^{2}+\kappa \sigma_{k} \geq \sigma_{k}^{2}+\alpha \kappa \sigma_{k}+(1-\alpha) \frac{\kappa^{2}}{2}=\left(\sigma_{k}+\frac{\alpha}{2} \kappa\right)^{2}+\left((1-\alpha)-\frac{\alpha^{2}}{2}\right) \frac{\kappa^{2}}{2}=\left(\sigma_{k}+\frac{\alpha}{2} \kappa\right)^{2}
$$

if we choose $\alpha=\sqrt{3}-1 \approx 0.73$. Then it follows $\sigma_{k} \gtrsim(.73 \kappa / 2) k$ and in particular, $T_{N} \gtrsim(.73 \kappa / 4) N(N-1)$ (in fact, one can show $\sigma_{k} \sim(\kappa / 2) k$ and $\left.T_{N} \sim \kappa N^{2} / 4\right)$.

Accelerated PDHG

Continuous

Getting back to:

$$
T_{N}\left(\mathcal{L}\left(X^{N}, y\right)-\mathcal{L}\left(x, Y^{N}\right)\right)+\frac{\sigma_{N}}{2 \tau_{N}}\left|x^{N}-x\right|^{2} \leq \frac{\sigma_{0}}{2 \tau_{0}}\left|x^{0}-x\right|^{2}+\frac{1}{2}\left|y^{0}-y\right|^{2}
$$

we see that, taking $(x, y)=\left(x^{*}, y^{*}\right)$ (for which one can show: $\left.\mathcal{L}\left(X^{N}, y\right)-\mathcal{L}\left(x, Y^{N}\right) \geq \mu_{g}\left|X^{N}-x^{*}\right|^{2}\right)$ one has

$$
\left|x^{N}-x^{*}\right|^{2}+\left|X^{N}-x^{*}\right|^{2} \lesssim \frac{C L^{2}}{\mu_{g}^{2} N^{2}}
$$

and

$$
\mathcal{L}\left(X^{N}, y\right)-\mathcal{L}\left(x, Y^{N}\right)=O\left(\kappa^{-1} N^{-2}\right)\left(\left|x-x^{0}\right|^{2}+\left|y-y^{0}\right|^{2}\right)
$$

(for $\sigma_{0}<\tau_{0}$).
It shows an improvement over the non-accelerated method provided $N \gtrsim 1 / \kappa$.

Accelerated PDHG

Continuous
(convex) optimisation
A. Chambolle

A similar (easier) proof shows an accelerated rate in case both functions are strongly convex.

