Continuous (convex) optimisation M2 - PSL / Dauphine / S.U.

Antonin Chambolle, CNRS, CEREMADE
Université Paris Dauphine PSL

Oct.-Dec. 2021

Lecture 6: Non-linear problems, mirror descent.

Contents

Continuous
(1) Optimization in Banach spaces, nonlinear problems

- Nonlinear norms
- Nonlinear "gradient" descent
- Strong convexity in Banach spaces
- Bregman distances / Legendre functions
- Mirror descent, relative smoothness
- Accelerated Mirror descent
- Nonlinear primal-dual algorithm

Nonlinear norms

Most of the time we will work in finite dimension. However the general setting we can consider here is of a Banach space \mathcal{X} with dual \mathcal{X}^{*} and respective norms denoted $\|\cdot\|,\|\cdot\|_{*}$ with

$$
\|y\|_{*}=\sup \left\{\langle y, x\rangle_{\mathcal{X}^{*}, \mathcal{X}}:\|x\| \leq 1\right\} \quad\|x\|=\sup \left\{\langle y, x\rangle_{\mathcal{X}^{*}, \mathcal{X}}:\|y\|_{*} \leq 1\right\}
$$

Now, given f a C^{1} function, one can define its differential:

$$
f\left(x^{\prime}\right)=f(x)+\left\langle d f(x), x^{\prime}-x\right\rangle_{\mathcal{X}^{*}, \mathcal{X}}+o\left(\left\|x^{\prime}-x\right\|\right)
$$

but there is no obvious notion of a "Gradient".

Nonlinear Gradient descent

 descentHowever, we can easily generalize the gradient descent as follows: given x^{k}, we let x^{k+1} be a minimizer of

$$
\min _{x} f\left(x^{k}\right)+\left\langle d f\left(x^{k}\right), x-x^{k}\right\rangle_{\mathcal{X}^{*}, \mathcal{X}}+\frac{1}{2 \tau}\left\|x-x^{k}\right\|^{2}
$$

provided such a minimizer exists. This will be the case for instance

- In finite dimension;
- If \mathcal{X} is reflexive (or if \mathcal{X} is a dual and f is weakly-* Isc).

We assume one of these conditions hold.

Nonlinear Gradient descent

Convergence

As in the linear case, we can show the following:

Theorem

Assume df L-Lipschitz and consider the iterates x^{k} of the non-linear gradient descent with $\tau=1 / L$. Then, if x^{*} is a minimizer and $C=\max _{\left\{f(x)<f\left(x^{0}\right)\right\}}\left\|x-x^{*}\right\|^{2}<+\infty$, one has the rate:

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq \frac{2 L C}{k+1} .
$$

Functions with Lipschitz differential

Of course, we say that f is a function with Lipschitz differential $d f(x)$ iff for any $x, x^{\prime} \in \mathcal{X}$,

$$
\left\|d f(x)-d f\left(x^{\prime}\right)\right\|_{*} \leq\left\|x-x^{\prime}\right\|
$$

where each norm has to be taken in the appropriate space. Then, one has, exactly as before,

$$
\begin{aligned}
& f\left(x^{\prime}\right)=f(x)+\int_{0}^{1}\left\langle d f\left(x+s\left(x^{\prime}-x\right)\right), x^{\prime}-x\right\rangle d s \\
&=f(x)+\left\langle d f(x), x^{\prime}-x\right\rangle+\int_{0}^{1}\left\langle d f\left(x+s\left(x^{\prime}-x\right)\right)-d f(x), x^{\prime}-x\right\rangle d s \\
& \leq f(x)+\left\langle d f(x), x^{\prime}-x\right\rangle+\int_{0}^{1}\left\|d f\left(x+s\left(x^{\prime}-x\right)\right)-d f(x)\right\|_{*}\left\|x^{\prime}-x\right\| d s \\
& \leq f(x)+\left\langle d f(x), x^{\prime}-x\right\rangle+\int_{0}^{1} L s\left\|x^{\prime}-x\right\|^{2} d s=f(x)+\left\langle d f(x), x^{\prime}-x\right\rangle+\frac{L}{2}\left\|x^{\prime}-x\right\|^{2} .
\end{aligned}
$$

Dual norms

Continuous

We show the following lemma:

Lemma

Let $\mathcal{F}(x)=\mu\|x\|^{2} / 2$. Then its conjugate is $\mathcal{F}^{*}(y)=\|y\|_{*}^{2} /(2 \mu)$.
Proof: we write

$$
\mathcal{F}^{*}(y)=\sup _{x}\langle y, x\rangle-\frac{\mu}{2}\|x\|^{2}=\sup _{t>0} \sup _{\|x\| \leq t}\langle y, x\rangle-\frac{\mu t^{2}}{2}=\sup _{t>0} t\|y\|_{*}-\frac{\mu t^{2}}{2}=\frac{1}{2 \mu}\|y\|_{*}^{2}
$$

Dual norms

We show the following lemma:

Lemma

Let $\mathcal{F}(x)=\mu\|x\|^{2} / 2$. Then its conjugate is $\mathcal{F}^{*}(y)=\|y\|_{*}^{2} /(2 \mu)$.
Proof: we write

$$
\mathcal{F}^{*}(y)=\sup _{x}\langle y, x\rangle-\frac{\mu}{2}\|x\|^{2}=\sup _{t>0} \sup _{\|x\| \leq t}\langle y, x\rangle-\frac{\mu t^{2}}{2}=\sup _{t>0} t\|y\|_{*}-\frac{\mu t^{2}}{2}=\frac{1}{2 \mu}\|y\|_{*}^{2} .
$$

Legendre-Fenchel identity shows again that $y \in \partial \mathcal{F}(x) \Leftrightarrow x \in \partial \mathcal{F}^{*}(y) \Leftrightarrow\langle y, x\rangle=\mathcal{F}(x)+\mathcal{F}^{*}(y)$, yet in addition, being \mathcal{F} and \mathcal{F}^{*} positively 2 -homogeneous, we have also $\langle y, x\rangle=2 \mathcal{F}(x)=2 \mathcal{F}^{*}(y)$ and $\mathcal{F}(x)=\mathcal{F}^{*}(y)$.

Nonlinear Gradient descent

Returning to the gradient descent algorithm, we have, since x^{k+1} is a minimizer (for $\mu=1 / \tau$) of:

$$
\min _{x} f\left(x^{k}\right)+\left\langle d f\left(x^{k}\right), x-x^{k}\right\rangle_{\mathcal{X}^{*}, \mathcal{X}}+\mathcal{F}\left(x-x^{k}\right)=f\left(x^{k}\right)-\mathcal{F}^{*}\left(-d f\left(x^{k}\right)\right),
$$

and $-d f\left(x^{k}\right) \in \partial \mathcal{F}\left(x^{k+1}-x^{k}\right), x^{k+1}-x^{k} \in-\partial \mathcal{F}^{*}\left(d f\left(x^{k}\right)\right)$, while
$-\left\langle d f\left(x^{k}\right), x^{k+1}-x^{k}\right\rangle_{\mathcal{X}^{*}, \mathcal{X}}=\mathcal{F}\left(x^{k+1}-x^{k}\right)+\mathcal{F}^{*}\left(-d f\left(x^{k}\right)\right)$.
In particular, the algorithm is defined by:

$$
x^{k+1}=x^{k}-\tau p^{k}, \quad p^{k} \in\left\|d f\left(x^{k}\right)\right\|_{*} \partial\|\cdot\|_{*}\left(d f\left(x^{k}\right)\right) .
$$

By 2-homogeneity of \mathcal{F} and \mathcal{F}^{*} one also sees that $\mathcal{F}\left(x^{k+1}-x^{k}\right)=\mathcal{F}^{*}\left(-d f\left(x^{k}\right)\right)$.

Nonlinear Gradient descent

Continuous (convex) optimisation
A. Chambolle

Optimization in Banach spaces, nonlinear problems Noolinear norms
Nonlinear "gradient descent descent Srong convexity
Banach spaces Bregman distances Legendre functions Mirico descent, relative smoothness Accelerated Mirror descent Nonimear promelerim Noniniear

Now we return to the proof of a rate: In addition, since $d f$ is L-Lipschitz,

$$
\begin{aligned}
& f\left(x^{k+1}\right) \leq f\left(x^{k}\right)+\left\langle d f\left(x^{k}\right), x^{k+1}-x^{k}\right\rangle_{\mathcal{X}^{*}, \mathcal{X}}+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|^{2} \\
= & f\left(x^{k}\right)+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|^{2}-\mathcal{F}\left(x^{k+1}-x^{k}\right)-\mathcal{F}^{*}\left(-d f\left(x^{k}\right)\right)=f\left(x^{k}\right)+\left(\frac{L}{2}-\frac{1}{2 \tau}\right)\left\|x^{k+1}-x^{k}\right\|^{2}-\frac{\tau}{2}\left\|d f\left(x^{k}\right)\right\|_{*}^{2} .
\end{aligned}
$$

so that if $\tau=1 / L$, one obtains:

$$
f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|d f\left(x^{k}\right)\right\|_{*}^{2} .
$$

Now we can proceed as in the Euclidean setting. We observe that

$$
f\left(x^{*}\right) \geq f\left(x^{k}\right)+\left\langle d f\left(x^{k}\right), x^{*}-x^{k}\right\rangle \quad \Rightarrow \quad f\left(x^{k}\right)-f\left(x^{*}\right) \leq\left\|d f\left(x^{k}\right)\right\| *\left\|x^{k}-x^{*}\right\|
$$

so that if $\Delta_{k}=f\left(x^{k}\right)-f\left(x^{*}\right)$,

$$
\Delta_{k+1} \leq \Delta_{k}-\frac{\Delta_{k}^{2}}{2 L\left\|x^{k}-x^{*}\right\|^{2}}
$$

Nonlinear Gradient descent: rate

Continuous
(convex) optimisation
A. Chambolle

Optimization in Banach descent Strong convexity
Banach spaces Banach spaces Bregman distances Legendre function Mirror descent,
relative smoothness Accelerated Mirror descent Nonlinear primal-dua Nonlinear
ailgorithim

If we now that $C_{k}=\max _{0 \leq i \leq k}\left\|x^{i}-x^{*}\right\|^{2} \leq C$ remains bounded (for instance if $\left\{f \leq f\left(x^{0}\right)\right\}$ is bounded) then we deduce:

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq \frac{2 L C}{k+1}
$$

as in the Hilbertian case.

Strongly convex functions in non-Euclidean spaces

Are not!! functions f such that $f-\mu\|\cdot\|^{2} / 2$ is convex!

Definition

The function f is μ-strongly convex if and only if for any $x, x^{\prime} \in X$ and $t \in[0,1]$,

$$
f\left(t x+(1-t) x^{\prime}\right) \leq t f(x)+(1-t) f\left(x^{\prime}\right)-\mu \frac{t(1-t)}{2}\left\|x-x^{\prime}\right\|^{2}
$$

Then one can show the following. We assume \mathcal{X} is reflexive.

Theorem

Let $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex, proper, lower semi-continuous. Then f is strongly convex if and only if for all $x, x^{\prime} \in \mathcal{X}$ and all $y \in \partial f(x)$, one has:

$$
f\left(x^{\prime}\right) \geq f(x)+\left\langle y, x^{\prime}-x\right\rangle_{\mathcal{X}_{*, \mathcal{X}}}+\frac{\mu}{2}\left\|x-x^{\prime}\right\|^{2} .
$$

Strongly convex functions

Continuous (convex) optimisation

Proof. One direction is easy (and does not require lower semicontinuity): if f is strongly convex and $x, x^{\prime} \in \mathcal{X}, y \in \partial f(x)$, then for any $t \in(0,1)$,

$$
f\left(t x+(1-t) x^{\prime}\right) \geq f(x)+(1-t)\left\langle y, x^{\prime}-x\right\rangle .
$$

From the strong convexity, we deduce

$$
f(x)+(1-t)\left\langle y, x^{\prime}-x\right\rangle \leq t f(x)+(1-t) f\left(x^{\prime}\right)-\mu \frac{t(1-t)}{2}\left\|x-x^{\prime}\right\|^{2} .
$$

Dividing by $(1-t)$ it follows:

$$
f\left(x^{\prime}\right) \geq f(x)+\left\langle y, x^{\prime}-x\right\rangle+\mu \frac{t}{2}\left\|x-x^{\prime}\right\|^{2}
$$

and letting $t \rightarrow 1$ we conclude.

Strongly convex functions

Continuous (convex) optimisation
A. Chambolle

Optimization

 in Banach spaces, nonlinear problems Nonlinear norms Nonlinear "gradient" descentStrong convexity in Banach spaces Bregman distances Legendre functions Mirror descent, relative-smoothness Accelerated Mirror descent
Nonlinear pimal-dua alporithm

For the converse, we need to use points where the subgradient exists. Let $x, x^{\prime} \in \mathcal{X}$ and $t \in[0,1]$. We do as follows: we let $x_{t}=t x+(1-t) x^{\prime}$ and assume $f(x), f\left(x^{\prime}\right)$ are finite (otherwise, nothing to prove). Let ξ_{n} be a minimizer of:

$$
\min _{\xi} f(\xi)+\frac{n}{2}\left\|\xi-x_{t}\right\|^{2}
$$

Being $\|\cdot\|$ strongly continuous, one can show that a solution (which exists because a minimizing sequence is bounded, hence weakly converging since we assumed \mathcal{X} is reflexive, and Hahn-Banach's theorem then shows that f is weakly Isc.) satisfies:

$$
\partial f\left(\xi_{n}\right)+n\left\|\xi_{n}-x_{t}\right\| \partial\|\cdot\|\left(\xi_{n}-x_{t}\right) \ni 0 \quad \Leftrightarrow \quad \eta_{n}:=-n\left\|\xi_{n}-x_{t}\right\| \partial\|\cdot\|\left(\xi_{n}-x_{t}\right) \in \partial f\left(\xi_{n}\right)
$$

Using

$$
f\left(\xi_{n}\right)+\frac{n}{2}\left\|\xi_{n}-x_{t}\right\|^{2} \leq f\left(x_{t}\right) \leq t f(x)+(1-t) f\left(x^{\prime}\right)<+\infty
$$

we deduce that $\xi_{n} \rightarrow x_{t}$, then that $f\left(x_{t}\right) \leq \liminf _{n} f\left(\xi_{n}\right)$, and eventually that

$$
\frac{n}{2}\left\|\xi-x_{t}\right\|^{2} \rightarrow 0
$$

Strongly convex functions

Continuous (convex) optimisation

Now, we can write:

$$
\left\{\begin{array}{l}
f(x) \geq f\left(\xi_{n}\right)+\left\langle\eta_{n}, x-\xi_{n}\right\rangle+\frac{\mu}{2}\left\|x-\xi_{n}\right\|^{2} \\
f\left(x^{\prime}\right) \geq f\left(\xi_{n}\right)+\left\langle\eta_{n}, x^{\prime}-\xi_{n}\right\rangle+\frac{\mu}{2}\left\|x^{\prime}-\xi_{n}\right\|^{2} .
\end{array}\right.
$$

We multiply the first equation by t and the second by $(1-t)$, and sum:

$$
t f(x)+(1-t) f\left(x^{\prime}\right) \geq f\left(\xi_{n}\right)+\left\langle\eta_{n}, x_{t}-\xi_{n}\right\rangle+\frac{\mu}{2}\left(t\left\|x-\xi_{n}\right\|^{2}+(1-t)\left\|x^{\prime}-\xi_{n}\right\|^{2}\right)
$$

As $\|\cdot\|$ is positively 1-homogeneous, Euler's identity shows $\left\langle\eta_{n}, x_{t}-\xi_{n}\right\rangle=n\left\|x_{t}-\xi_{n}\right\|^{2} \rightarrow 0$ as $n \rightarrow \infty$. In the limit (and because f is Isc) we find

$$
\begin{aligned}
& t f(x)+(1-t) f\left(x^{\prime}\right) \geq f\left(x_{t}\right)+\frac{\mu}{2}\left(t\left\|x-x_{t}\right\|^{2}+(1-t)\left\|x^{\prime}-x_{t}\right\|^{2}\right) \\
&=f\left(x_{t}\right)+\frac{\mu}{2}\left(t(1-t)^{2}\left\|x-x^{\prime}\right\|^{2}+(1-t) t^{2}\left\|x^{\prime}-x\right\|^{2}\right)=f\left(x_{t}\right)+\mu \frac{t(1-t)}{2}\left\|x-x^{\prime}\right\|^{2}
\end{aligned}
$$

Strongly convex functions and Lipschitz differentials

Now, we have the following theorem, which is a duality result between convex functions with Lipschitz differential and strongly convex functions:

Theorem

Let f be convex, Isc. Then f has (L-)Lipschitz differential if and only if f^{*} is (1/L-)strongly convex.

Proof: If f is convex with L-Lipschitz differential, then one has for all x, x^{\prime}

$$
f\left(x^{\prime}\right) \leq f(x)+\left\langle d f(x), x^{\prime}-x\right\rangle+\frac{L}{2}\left\|x-x^{\prime}\right\|^{2} .
$$

We let $y=d f(x)$ so that, by Legendre-Fenchel's identity, $x \in \partial f^{*}(y)$ and $\langle y, x\rangle=f(x)+f^{*}(y)$.
Taking the conjugate of the inequality at a point y^{\prime}, we have

$$
f^{*}\left(y^{\prime}\right) \geq \sup _{x^{\prime}}\left\langle y^{\prime}, x^{\prime}\right\rangle-f(x)-\left\langle y, x^{\prime}-x\right\rangle-\frac{L}{2}\left\|x-x^{\prime}\right\|^{2}=f^{*}(y)+\sup _{x^{\prime}}\left\langle y^{\prime}-y, x^{\prime}\right\rangle-\frac{L}{2}\left\|x-x^{\prime}\right\|^{2} .
$$

Strongly convex functions and Lipschitz differentials

Continuous

Now, we recall that

$$
\left(\frac{L}{2}\|\cdot\|^{2}\right)^{*}(p)=\frac{1}{2 L}\|p\|_{*}^{2} .
$$

We deduce
$\sup _{x^{\prime}}\left\langle y^{\prime}-y, x^{\prime}\right\rangle-\frac{L}{2}\left\|x-x^{\prime}\right\|^{2}=\left\langle y^{\prime}-y, x\right\rangle+\sup _{x^{\prime}}\left\langle y^{\prime}-y, x^{\prime}-x\right\rangle-\frac{L}{2}\left\|x-x^{\prime}\right\|^{2}=\left\langle y^{\prime}-y, x\right\rangle+\frac{1}{2 L}\left\|y^{\prime}-y\right\|_{*}^{2}$,
so that

$$
\begin{equation*}
f^{*}\left(y^{\prime}\right) \geq f^{*}(y)+\left\langle y^{\prime}-y, x\right\rangle+\frac{1}{2 L}\left\|y^{\prime}-y\right\|_{*}^{2} \tag{*}
\end{equation*}
$$

so that f^{*} is $(1 / L)$-convex. Conversely, if $y, y^{\prime} \in \mathcal{X}^{*}$ and $x \in \partial f^{*}(y)$, the same computation will show that if $(*)$ holds: (using $y \in \partial f(x)$ and $\langle y, x\rangle=f(x)+f^{*}(y)$):

$$
f\left(x^{\prime}\right) \leq f(x)+\left\langle y, x^{\prime}-x\right\rangle+\frac{L}{2}\left\|x^{\prime}-x\right\|^{2} .
$$

Since $f\left(x^{\prime}\right) \geq f(x)+\left\langle y, x^{\prime}-x\right\rangle$, we deduce that f is differentiable at x and $y=d f(x)$.

Strongly convex functions and Lipschitz differentials

Continuous

In addition，if $y^{\prime} \in \partial f\left(x^{\prime}\right)$（hence as above，$\left.y^{\prime}=d f\left(x^{\prime}\right)\right)$ so that $x^{\prime} \in \partial f^{*}\left(y^{\prime}\right)$ ，we write：

$$
f^{*}\left(y^{\prime}\right) \geq f^{*}(y)+\left\langle y^{\prime}-y, x\right\rangle+\frac{1}{2 L}\left\|y^{\prime}-y\right\|_{*}^{2} \text { and } f^{*}(y) \geq f^{*}\left(y^{\prime}\right)+\left\langle y-y^{\prime}, x^{\prime}\right\rangle+\frac{1}{2 L}\left\|y-y^{\prime}\right\|_{*}^{2}
$$

and we deduce $\left\langle x^{\prime}-x, y^{\prime}-y\right\rangle \geq\left\|y-y^{\prime}\right\|_{*}^{2} / L$ ．Since $\left\langle x^{\prime}-x, y^{\prime}-y\right\rangle \leq\left\|x-x^{\prime}\right\|\left\|y-y^{\prime}\right\|_{*}$ it follows that $\left\|d f(x)-d f\left(x^{\prime}\right)\right\|_{*}=\left\|y-y^{\prime}\right\|_{*} \leq L\left\|x-x^{\prime}\right\|$ ．
It remains to check that $d f$ is defined everywhere．Observe that f is globally bounded by a quadratic function hence locally finite，hence locally Lipschitz．Then，if $x_{n} \rightarrow x$ are points where a subgradient（hence differential）exists，since $d f\left(x_{n}\right)$ is a Cauchy sequence：there exists $y \in \mathcal{X}^{*}$ with $d f\left(x_{n}\right) \rightarrow y$ and we pass to the limit in：

$$
f\left(x^{\prime}\right) \geq f\left(x_{n}\right)+\left\langle d f\left(x_{n}\right), x^{\prime}-x_{n}\right\rangle
$$

to conclude that $p \in \partial f(x)$ so that $y=d f(x)$ ．Hence f is C^{1} with Lipschitz gradient．

Example

A typical example is given by the entropy in \mathbb{R}^{d} on the unit simplex $\Sigma:=\left\{x \in \mathbb{R}^{d}: x_{i} \geq 0, \sum_{i} x_{i}=1\right\}:$

$$
\xi(x)= \begin{cases}\sum_{i} x_{i} \log x_{i} & \text { if } x \in \Sigma \\ +\infty & \text { else }\end{cases}
$$

(where $0 \log 0$ is defined as 0). Then, one shows that the conjugate is the "log-sum-exp" function:

$$
\xi^{*}(y)=\log \sum_{i} \exp \left(y_{i}\right)
$$

also called "soft-max" since $\varepsilon \xi^{*}(y / \varepsilon)$ is an approximation of the max as $\varepsilon \rightarrow 0$.

Example

Pinsker inequality

Continuous

Then, one can show the following:

Lemma (Pinsker inequality)

ξ is 1-strongly convex in the ℓ^{1} norm.
That is, for any $x, x^{\prime} \in \Sigma$ the unit simplex, $p \in \partial \xi(x)$,

$$
\xi\left(x^{\prime}\right)-\xi(x)-\left\langle p, x^{\prime}-x\right\rangle=\sum_{i} x_{i}^{\prime} \log \frac{x_{i}^{\prime}}{x_{i}} \geq \frac{1}{2}\left(\sum_{i}\left|x_{i}-x_{i}^{\prime}\right|\right)^{2}
$$

This latter inequality is called the "Pinsker inequality".

Example

Continuous (convex) optimisation
A. Chambolle

Optimization

 in Banachspaces, nonlinear problems Nonlinear norms Nonlinear "gradient" descent
Strong convexity in Banach spaces Bregman distances Lregman distances
Legendre functions Mirror descent relative smoothness Accelerated Mirror descen Nonlinear primal-dua Noninear

Proof: We leave as an exercise that if $\|\cdot\|=\|\cdot\|_{1}$ is the ℓ^{1} norm, then $\|\cdot\|_{*}=\|\cdot\|_{\infty}$.
First we prove the expression for ξ^{*} : one has to compute $\sup _{x \in \Sigma} \sum_{i} x_{i} y_{i}-x_{i} \log x_{i}$. For the maximum x there is a Lagrange multiplier λ for the constraint $\sum_{i} x_{i}=1$ and one has $y_{i}-\log x_{i}-1=\lambda$ (and in particular $\left.\xi^{*}(x)=\sum_{i} x_{i}(\lambda+1)=\lambda+1=: \lambda^{\prime}\right)$. One has $x_{i}=\exp \left(y_{i}-\lambda^{\prime}\right)$ and since $\sum_{i} x_{i}=1$, $\exp \left(-\lambda^{\prime}\right) \sum_{i} \exp \left(y_{i}\right)=1$ so that $\exp \left(\lambda^{\prime}\right)=\sum_{i} \exp \left(y_{i}\right)$, and $\lambda^{\prime}=\log \sum_{i} \exp \left(y_{i}\right)$.

Example

Continuous (convex) optimisation
A. Chambolle

Optimization in Banach spaces, nonlinear problems Nonlinear norms Nonlinear "gradient" descent
Strong convexity in Banach spaces Bregman distances Legendre functions Mirror descent, relative smoothness Accelerated Mirror descent Nonlinear primal-dua algorithm

Now, we prove that ξ^{*} has 1-Lipschitz gradient. Observe that

$$
\begin{aligned}
& \left\|d \xi^{*}\left(y^{\prime}\right)-d \xi^{*}(y)\right\|_{1}=\sup _{\|z\|_{\infty} \leq 1}\left\langle z, d \xi^{*}\left(y^{\prime}\right)-d \xi^{*}(y)\right\rangle \\
& \quad=\sup _{\|z\|_{\infty} \leq 1}\left\langle z, \int_{0}^{1} d^{2} \xi^{*}\left(y+s\left(y^{\prime}-y\right)\right) \cdot\left(y^{\prime}-y\right) d s\right\rangle \\
& \leq \sup _{\|z(\cdot)\|_{\infty} \leq 1} \int_{0}^{1}\left\langle z(s), d^{2} \xi^{*}\left(y+s\left(y^{\prime}-y\right)\right) \cdot \frac{y^{\prime}-y}{\left\|y^{\prime}-y\right\|_{\infty}}\right\rangle d s\left\|y^{\prime}-y\right\|_{\infty} \\
& \quad \leq \int_{0}^{1} L\left(y+s\left(y^{\prime}-y\right)\right) d s\left\|_{y^{\prime}}-y\right\|_{\infty}
\end{aligned}
$$

where

$$
L(y):=\sup _{\sigma_{i} \in[-1,1], \tau_{j} \in[-1,1]} \sum_{i, j} \frac{\partial^{2} \xi^{*}}{\partial y_{i} \partial y_{j}}(y) \sigma_{i} \tau_{j} .
$$

If we can show that $L(y) \leq 1$ for all y, we are done.

Example

Continuous (convex) optimisation
A. Chambolle

Optimization

 in Banach spaces, nonlinear problems Nonlinear norms Nonlinear "gradient descentStrong convexity in Banach spaces Bregman distances Legendre functions Mirror descent, relative smootiness Accelerated Mirror descent
Nonlinear primal-dur alrorithm

We now show that $L(y) \leq 1$ for all $y \in \mathbb{R}^{d}$. First, letting (for a given $y \in \mathbb{R}^{d}$) $a_{i, j}:=\partial_{i, j}^{2} \xi^{*}(y)$, we have

$$
a_{i, j}=\theta_{i} \delta_{i, j}-\theta_{i} \theta_{j}
$$

where $\theta_{i}=\exp \left(y_{i}\right) / \sum_{k} \exp \left(y_{k}\right)$ and $\delta_{i, j}$ is the Kronecker symbol. In particular, $\theta \in \Sigma$, and we see that $\sum_{i} a_{i, j}=0$ for all j and $\sum_{j} a_{i, j}=0$ for all i.
Then, let τ, σ be a maximizer. Let $\sigma_{i}^{\prime}=1$ if $\sum_{j} a_{i, j} \tau_{j} \geq 0$ and -1 else, and then $\tau_{j}^{\prime}=1$ if $\sum_{i} a_{i, j} \sigma_{i}^{\prime} \geq 0$ and -1 else: one checks that ($\sigma^{\prime}, \tau^{\prime}$) is also a maximizer. Hence one can restrict the maximisation problem over $\sigma_{i}, \tau_{j} \in\{-1,1\}$ and in particular we see that

$$
L(y)=\max _{\sigma_{i} \in\{-1,1\}} \sum_{j}\left|\sum_{i} a_{i, j} \sigma_{i}\right|
$$

Then, $\sum_{i} a_{i, j} \sigma_{i}=\sum_{i: \sigma_{i}=1} a_{i, j}-\sum_{i: \sigma_{i}=-1} a_{i, j}=2 \sum_{i: \sigma_{i}=1} a_{i, j}$ since $\sum_{i} a_{i, j}=0$. Introducing the variable $\xi=2 \sigma-1$, we find that the max is

$$
\max _{\xi_{i} \in\{0,1\}} 2 \sum_{j}\left|\sum_{i} \xi_{i} a_{i, j}\right| .
$$

Example

Continuous

Then, for all j,

$$
\begin{aligned}
\left|\sum_{i} \xi_{i} a_{i, j}\right|=\left|\xi_{j} \theta_{j}-(\xi \cdot \theta) \theta_{j}\right|=\theta_{j}\left|\xi_{j}-(\xi \cdot \theta)\right|= \begin{cases}\theta_{j}(1-\xi \cdot \theta) & \text { if } \xi_{j}=1 \\
\theta_{j}(\xi \cdot \theta) & \text { if } \xi_{j}=0\end{cases} \\
=\xi_{j} \theta_{j}(1-\xi \cdot \theta)+\left(1-\xi_{j}\right) \theta_{j}(\xi \cdot \theta)
\end{aligned}
$$

so that

$$
\sum_{j}\left|\sum_{i} \xi_{i} a_{i, j}\right|=\xi \cdot \theta(1-\xi \cdot \theta)+(\xi \cdot \theta)-(\xi \cdot \theta)^{2}=2 \xi \cdot \theta(1-\xi \cdot \theta)
$$

We deduce

$$
L(y)=4 \max _{\xi_{i} \in\{0,1\}}(\xi \cdot \theta)(1-\xi \cdot \theta) \leq 4 \max _{0 \leq t \leq 1} t(1-t)=1
$$

Remark: we see that the max is reached for $\tau=\sigma$, minimizing $|\tau \cdot \theta|=\left|\sum_{\tau_{i}=1} \theta_{i}-\sum_{\tau_{i}=-1} \theta_{i}\right|$.

Bregman distances and Legendre function

We say a convex function ξ with domain $D \subset \mathcal{X}$ is "Legendre" (Rockafellar 1970, Chen-Teboulle 1993) if
(i) ξ is C^{1} in the (relative) interior of D;
(ii) $\lim _{x \rightarrow \partial D}\|\nabla \xi(x)\|=+\infty$;
(iii) ξ is 1-convex.

In particular, $\partial \xi(x)=\emptyset$ for $x \in \partial D$, and, given f convex, Isc., then if x solves:

$$
\min _{x} \xi(x)+f(x)
$$

one must have $x \in \mathscr{D}$ and $-\nabla \xi(x) \in \partial f(x)$
[If "relative" in (i) this needs to be adapted a bit)]

Bregman distances

Given ξ Legendre, we define for $x, x^{\prime} \in \mathcal{X}$:

$$
D_{\xi}\left(x^{\prime}, x\right):=\xi\left(x^{\prime}\right)-\xi(x)-\left\langle d \xi(x), x^{\prime}-x\right\rangle
$$

and we observe that $D_{\xi}\left(x^{\prime}, x\right) \geq 0$ (by convexity), moreover $D_{\xi}\left(x^{\prime}, x\right) \geq\left\|x^{\prime}-x\right\|^{2} / 2$ if (iii) holds.

One has the following result:

Lemma

Three-point inequality [Chen-Teboulle 1993, Tseng 2008] Let g be convex, Isc., and assume \hat{x} is a minimiser of $\min _{x} D_{\xi}(x, \bar{x})+g(x)$. Then for all x,

$$
D_{\xi}(x, \bar{x})+g(x) \geq D_{\xi}(\hat{x}, \bar{x})+g(\hat{x})+D_{\xi}(x, \hat{x})
$$

Bregman distances

Continuous
（convex）
optimisation
A．Chambolle

Optimization

 in BanachProof：one has by minimality that

$$
d \xi(\hat{x})-d \xi(\bar{x})+\partial g(\hat{x}) \ni 0 \quad \Leftrightarrow \quad \partial g(\hat{x}) \ni d \xi(\bar{x})-d \xi(\hat{x})
$$

Hence for all x ，

$$
g(x) \geq g(\hat{x})+\langle d \xi(\bar{x})-d \xi(\hat{x}), x-\hat{x}\rangle .
$$

We deduce

$$
\begin{aligned}
D_{\xi}(x, \bar{x})+g(x) \geq & \geq(x)-\xi(\bar{x})-\langle d \xi(\bar{x}), x-\bar{x}\rangle+g(\hat{x})+\langle d \xi(\bar{x})-d \xi(\hat{x}), x-\hat{x}\rangle \\
& =\xi(x)-\xi(\hat{x})+\xi(\hat{x})-\xi(\bar{x})-\langle d \xi(\bar{x}), x-\hat{x}+\hat{x}-\bar{x}\rangle+g(\hat{x})+\langle d \xi(\bar{x})-d \xi(\hat{x}), x-\hat{x}\rangle \\
& =\xi(x)-\xi(\hat{x})+\xi(\hat{x})-\xi(\bar{x})-\langle d \xi(\hat{x}), x-\hat{x}\rangle-\langle d \xi(\bar{x}), \hat{x}-\bar{x}\rangle+g(\hat{x}) \\
& =D_{\xi}(x, \hat{x})+D_{\xi}(\hat{x}, \bar{x})+g(\hat{x}) .
\end{aligned}
$$

Mirror descent (explicit-implicit)

Let ξ be a Legendre function.
Assume the function f has L-Lipschitz gradient and g is such that one can compute for each k :

$$
\min _{x \in \operatorname{dom} \xi} \frac{1}{\tau} D_{\xi}\left(x, x^{k}\right)+\left\langle d f\left(x^{k}\right), x\right\rangle+g(x)
$$

and let x^{k+1} be the solution. This is a "mirror-prox" algorithm. Then thanks to the "three points inequality" one can deduce the same as for the forward-backward descent: for any x, one has for τ small enough, letting $F=f+g$:

$$
\frac{1}{\tau} D_{\xi}\left(x, x^{k}\right)+F(x) \geq F\left(x^{k+1}\right)+\frac{1}{\tau} D_{\xi}\left(x, x^{k+1}\right)
$$

Mirror descent

Thanks to:

$$
\begin{equation*}
\frac{1}{\tau} D_{\xi}\left(x, x^{k}\right)+F(x) \geq F\left(x^{k+1}\right)+\frac{1}{\tau} D_{\xi}\left(x, x^{k+1}\right) \tag{*}
\end{equation*}
$$

we deduce exactly as in the Euclidean case:
Convergence rate for the mirror descent
Assume there exists x^{*} a minimizer of F in dom ξ. Then the mirror-prox algorithm produces a sequence which satisfies:

$$
F\left(x^{k}\right)-F\left(x^{*}\right) \leq \frac{D_{\xi}\left(x^{*}, x^{0}\right)}{\tau k}
$$

As usual, we obtain this by taking $x=x^{k}$ and $x=x^{*}$ in the descent inequality $(*)$.

Mirror descent (explicit-implicit)

Continuous

One has thanks to the 3-points inequality:

$$
\begin{aligned}
\frac{1}{\tau} D_{\xi}\left(x, x^{k}\right)+F(x) \geq & \frac{1}{\tau} D_{\xi}\left(x, x^{k}\right)+f\left(x^{k}\right)+\left\langle d f\left(x^{k}\right), x-x^{k}\right\rangle+g(x) \\
& \geq \frac{1}{\tau} D_{\xi}\left(x^{k+1}, x^{k}\right)+f\left(x^{k}\right)+\left\langle d f\left(x^{k}\right), x^{k+1}-x^{k}\right\rangle+g\left(x^{k+1}\right)+\frac{1}{\tau} D_{\xi}\left(x, x^{k+1}\right)
\end{aligned}
$$

Now $f\left(x^{k}\right)+\left\langle d f\left(x^{k}\right), x^{k+1}-x^{k}\right\rangle=f\left(x^{k+1}\right)-D_{f}\left(x^{k+1}, x^{k}\right)$ by definition so that:

$$
\frac{1}{\tau} D_{\xi}\left(x, x^{k}\right)+F(x) \geq \frac{1}{\tau} D_{\xi}\left(x^{k+1}, x^{k}\right)-D_{f}\left(x^{k+1}, x^{k}\right)+F\left(x^{k+1}\right)+\frac{1}{\tau} D_{\xi}\left(x, x^{k+1}\right) .
$$

Now, if f has L-Lipschitz gradient then $D_{f}\left(x^{k+1}, x^{k}\right) \leq L\left\|x^{k+1}-x^{k}\right\|^{2} / 2$, while ξ being strongly convex, $D_{\xi}\left(x^{k+1}, x^{k}\right) \geq\left\|x^{k+1}-x^{k}\right\|^{2} / 2$. Hence one finds that if $\tau \leq 1 / L$,

$$
\frac{1}{\tau} D_{\xi}\left(x^{k+1}, x^{k}\right)-D_{f}\left(x^{k+1}, x^{k}\right) \geq 0
$$

and this ends the proof.

Relative smoothness

However, here, we need the strong convexity of ξ and the Lipschitz gradient of f only to bound the difference $D_{\xi}\left(x^{k+1}, x^{k}\right) / \tau-D_{f}\left(x^{k+1}, x^{k}\right)$. So a much simper and better assumption could be "there exists L such that $L D_{\xi}-D_{f} \geq 0$ ". When is it true??? Observe that by construction,

$$
D_{f-g}=D_{f}-D_{g}
$$

so that clearly, $D_{f} \geq D_{g}$ for any points if and only if $f-g$ is convex. Hence:

Definition

One says that f is L-relatively smooth with respect to ξ if $L \xi-f$ is convex.

Corollary

The nonlinear forward-backward algorithm has the rate $O(1 / k)$ (when a minimizer exists) as soon as f is L-relatively smooth wr. ξ and $\tau \leq 1 / L$.
(No L-Lipschitz or strongly convexity assumption needed here \rightarrow "NoLips" algorithm (Bauschke, Bolte, Teboulle 2017). Can be improved with over-relaxation which depends on ξ.)

Relative strong convexity

Similarly (Teboulle 2018, Lu, Freund, Nesterov 2018, C-Pock 2016):

Definition

One says that f is relatively strongly convex wr. ξ if there exists $\gamma>0$ such that $f-\gamma \xi$ is convex.

In case f or g is relatively strongly convex, one obtains a linear convergence rate. Indeed, the three-points inequality is improved to:

$$
D_{\xi}(x, \bar{x})+g(x) \geq D_{\xi}(\hat{x}, \bar{x})+g(\hat{x})+\left(1+\mu_{g}\right) D_{\xi}(x, \hat{x}),
$$

and the descent inequality is improved as before to, for $\tau \leq 1 / L$:

$$
\frac{1-\tau \mu_{f}}{\tau} D_{\xi}\left(x, x^{k}\right)+F(x) \geq F\left(x^{k+1}\right)+\frac{1+\tau \mu_{g}}{\tau} D_{\xi}\left(x, x^{k+1}\right)
$$

Unfortunately, there is no way to accelerate under the mere assumption of relative smoothness, nor can we improve easily this method when f is relatively strongly convex. (cf Dragomir, Taylor, D'Aspremont, Bolte 2019.)

Assuming ξ is 1 -convex and ∇f is L-Lipschitz, on the other hand, makes acceleration is possible. This is improved in addition under a relative strong convexity assumption.

The "accelerated mirror descent" is a possibility, the "accelerated primal-dual" algorithm another. We now explain the mirror descent algorithm in the simplest case, that is non relatively strongly convex.

Accelerated Mirror descent

The general algorithm is as follows: we assume f is has L-Lipschitz gradient. Let also g such that $\min _{x} \alpha g(x)+\xi(x)+\langle p, x\rangle$ is easily computed. We pick x^{0}, set $y^{0}=z^{0}=x^{0}$, let $\alpha_{0}=\beta_{0}=0$.
(1) Let α_{k+1} be the largest root of:

$$
\beta_{k+1}:=\beta_{k}+\alpha_{k+1}=L \alpha_{k+1}^{2}
$$

(2) Let: $x^{k+1}=\left(\alpha_{k+1} z^{k}+\beta_{k} y^{k}\right) / \beta_{k+1}$
(3) Define z^{k+1} as the minimizer of

$$
\min _{x} \frac{1}{\alpha_{k+1}} D_{\xi}\left(z, z^{k}\right)+\left(g(z)+f\left(x^{k+1}\right)+\left\langle d f\left(x^{k+1}\right), z-x^{k+1}\right\rangle\right.
$$

(9) Let $y^{k+1}=\left(\alpha_{k+1} z^{k+1}+\beta_{k} y^{k}\right) / \beta_{k+1}$; return to 1 .

Accelerated Mirror descent

Continuous （convex） optimisation

We prove that，letting $F=f+g$ ：
Rate of convergence for accelerated mirror descent．

$$
F\left(y^{k}\right)-F\left(x^{*}\right) \leq \frac{4 L}{k^{2}} D_{\xi}\left(x^{*}, y^{0}\right) .
$$

Accelerated Mirror descent

Continuous (convex) optimisation

We prove that, letting $F=f+g$:
Rate of convergence for accelerated mirror descent.

$$
F\left(y^{k}\right)-F\left(x^{*}\right) \leq \frac{4 L}{k^{2}} D_{\xi}\left(x^{*}, y^{0}\right) .
$$

Proof: As in the descent lemma, we have that

$$
\begin{aligned}
& \alpha_{k+1}(f(z)+g(z))+D_{\xi}\left(z, z^{k}\right) \geq \alpha_{k+1}\left(g(z)+f\left(x^{k+1}\right)+\left\langle d f\left(x^{k+1}\right), z-x^{k+1}\right\rangle\right)+D_{\xi}\left(z, z^{k}\right) \\
& \quad \geq \alpha_{k+1}\left(g\left(z^{k+1}\right)+f\left(x^{k+1}\right)+\left\langle d f\left(x^{k+1}\right), z^{k+1}-x^{k+1}\right\rangle\right)+D_{\xi}\left(z^{k+1}, z^{k}\right)+D_{\xi}\left(z, z^{k+1}\right)
\end{aligned}
$$

Now we use that $\alpha_{k+1}=\beta_{k+1}-\beta_{k}$ and $\alpha_{k+1} z^{k+1}=\beta_{k+1} y^{k+1}-\beta_{k} y^{k}$ to write:

$$
\begin{aligned}
& \alpha_{k+1}\left(f\left(x^{k+1}\right)+\left\langle d f\left(x^{k+1}\right), z^{k+1}-x^{k+1}\right\rangle\right) \\
&\left.\quad=\beta_{k+1}\left(f\left(x^{k+1}\right)+\left\langle d f\left(x^{k+1}\right), y^{k+1}-x^{k+1}\right\rangle\right)\right)\left.-\beta_{k}\left(f\left(x^{k+1}\right)+\left\langle d f\left(x^{k+1}\right), y^{k}-x^{k+1}\right\rangle\right)\right) \\
& \geq \beta_{k+1}\left(f\left(y^{k+1}\right)-D_{f}\left(y^{k+1}, x^{k+1}\right)\right)-\beta_{k} f\left(y^{k}\right)
\end{aligned}
$$

Also: $\beta_{k+1} g\left(y^{k+1}\right) \leq \alpha_{k+1} g\left(z^{k+1}\right)+\beta_{k} g\left(y^{k}\right)$ by convexity.

Accelerated Mirror descent

Continuous

Hence combining these inequalities we have:

$$
\alpha_{k+1}\left(g\left(z^{k+1}\right)+f\left(x^{k+1}\right)+\left\langle d f\left(x^{k+1}\right), z^{k+1}-x^{k+1}\right\rangle\right) \geq \beta_{k+1}\left(F\left(y^{k+1}\right)-D_{f}\left(y^{k+1}, x^{k+1}\right)\right)-\beta_{k} F\left(y^{k}\right),
$$

and

$$
\left(\beta_{k+1}-\beta_{k}\right) F(z)+D_{\xi}\left(z, z^{k}\right) \geq \beta_{k+1}\left(F\left(y^{k+1}\right)-D_{f}\left(y^{k+1}, x^{k+1}\right)\right)-\beta_{k} F\left(y^{k}\right)+D_{\xi}\left(z^{k+1}, z^{k}\right)+D_{\xi}\left(z, z^{k+1}\right)
$$

that is:

$$
\begin{aligned}
\beta_{k}\left(F\left(y^{k}\right)-F(z)\right)+D_{\xi}\left(z, z^{k}\right) \geq \beta_{k+1}\left(F\left(y^{k+1}\right)-F(z)\right)+D_{\xi}(& \left(z, z^{k+1}\right) \\
& -\beta_{k+1} D_{f}\left(y^{k+1}, x^{k+1}\right)+D_{\xi}\left(z^{k+1}, z^{k}\right) .
\end{aligned}
$$

We now show that $D_{\xi}\left(z^{k+1}, z^{k}\right) \geq \beta_{k+1} D_{f}\left(y^{k+1}, x^{k+1}\right)$.

Accelerated Mirror descent

Continuous
$D_{\xi}\left(z^{k+1}, z^{k}\right) \geq \beta_{k+1} D_{f}\left(y^{k+1}, x^{k+1}\right)$: here we use that f is L-Lipschitz and $\xi 1$-convex, so that

$$
\begin{aligned}
D_{\xi}\left(z^{k+1}, z^{k}\right)-\beta_{k+1} D_{f}\left(y^{k+1}, x^{k+1}\right) & \geq \frac{1}{2}\left(\left\|z^{k+1}-z^{k}\right\|^{2}-\beta_{k+1} L\left\|y^{k+1}-x^{k+1}\right\|^{2}\right) \\
& =\frac{1}{2}\left(\left\|z^{k+1}-z^{k}\right\|^{2}-\beta_{k+1} L \frac{\alpha_{k+1}^{2}}{\beta_{k+1}^{2}}\left\|z^{k+1}-z^{k}\right\|^{2}\right) \geq 0
\end{aligned}
$$

by the definition of β_{k+1}.

We deduce:

$$
\beta_{k}\left(F\left(y^{k}\right)-F(z)\right) \leq D_{\xi}\left(z, z^{0}\right)+\beta_{0}\left(F\left(y^{0}\right)-F(z)\right)=D_{\xi}\left(z, z^{0}\right)
$$

Now, $\alpha_{k+1}=\frac{1+\sqrt{1+4 L \beta_{k}}}{2 L}$ and $\beta_{k+1}=\beta_{k}+\alpha_{k+1}$. By induction we deduce that $\beta_{k} \geq k^{2} /(4 L)$. Indeed, if true, it implies:

$$
\alpha_{k+1} \geq \frac{1+\sqrt{k^{2}+1}}{2 L} \text { and } \beta_{k+1} \geq \frac{k^{2}+2+2 \sqrt{k^{2}+1}}{4 L}=\frac{\left(\sqrt{k^{2}+1}+1\right)^{2}}{4 L} \geq \frac{(k+1)^{2}}{4 L}
$$

Accelerated Mirror descent

Remarks

- A "backtracking" technique is available if one does not know L in advance;
- Requires increasing sequence α_{k} : might become harder and harder to compute as k increases;
- Better rate if g is relatively strongly convex (or f, possibly modifying the algorithm). Linear with $\omega \approx 1-\sqrt{\mu / L}$ if $\mu \ll L$ (with varying or fixed α, β);
- "Relatively" strongly convex might not be very interesting in general. (Main example: "smoothing".)

Nonlinear primal-dual algorithm

One can extend also the primal-dual algorithm to the non-linear case. In fact, it is even simpler. We introduce strongly convex Legendre functions ξ_{x}, ξ_{y} for both x and y and assume we want to solve

$$
\min _{x \in \operatorname{dom}}^{\xi_{x}} \sup _{y \in \operatorname{dom} \xi_{y}} g(x)+\langle y, K x\rangle-f^{*}(y)
$$

Algorithm: Bregman PDHG

$$
\begin{aligned}
& x^{k+1}=\arg \min g(x)+\left\langle y^{k}, K x\right\rangle+\frac{1}{\tau} D_{x}\left(x, x^{k}\right) \\
& y^{k+1}=\arg \min f^{*}(y)-\left\langle y, K\left(2 x^{k+1}-x^{k}\right)\right\rangle+\frac{1}{\sigma} D_{y}\left(y, y^{k}\right)
\end{aligned}
$$

Nonlinear primal-dual algorithm: descent rule

With the same notation as in the previous lecture:

$$
\begin{aligned}
& \hat{y}=\arg \min _{y} f^{*}(y)-\langle y, K \tilde{x}\rangle+\frac{1}{\sigma} D_{y}(y, \bar{y}), \\
& \hat{x}=\arg \min _{x} g(x)+\langle\tilde{y}, K x\rangle+\frac{1}{\tau} D_{x}(x, \bar{x})
\end{aligned}
$$

we can deduce the same descent rule: for all $x \in \operatorname{dom} \xi_{x}, y \in \operatorname{dom} \xi_{y}$, one has:

$$
\begin{aligned}
& g(x)+\langle K x, \tilde{y}\rangle+\frac{1}{\tau} D_{x}(x, \bar{x}) \geq g(\hat{x})+\langle K \hat{x}, \tilde{y}\rangle+\frac{1}{\tau} D_{x}(\hat{x}, \bar{x})+\frac{1+\tau \mu_{g}}{\tau} D_{x}(x, \hat{x}) \\
& f^{*}(y)-\langle K \tilde{x}, y\rangle+\frac{1}{\sigma} D_{y}(y, \bar{y}) \geq f^{*}(\hat{y})-\langle K \tilde{x}, \hat{y}\rangle+\frac{1}{\sigma} D_{y}(\hat{y}, \bar{y})+\frac{1+\sigma \mu_{f^{*}}}{\sigma} D_{y}(y, \hat{y}) .
\end{aligned}
$$

reproducing the same computation and using the 3-points inequality (here if g is μ_{g} relatively strongly convex $\mathrm{wr} \xi_{x}$, and f^{*} is $\mu_{f^{*}}$ relatively strongly convex $\mathrm{wr} \xi_{y}$). Then the convergence proofs are identical. For instance, we get:

Nonlinear primal-dual algorithm

Rate for Nonlinear PDHG

We let $Z^{N}=\left(X^{N}, Y^{N}\right)^{T}:=\frac{1}{N} \sum_{k=1}^{N} z^{k}$. Then for all $x \in \operatorname{dom} \xi_{x}$ and $y \in \operatorname{dom} \xi_{y}$:

$$
\mathcal{L}\left(X^{N}, y\right)-\mathcal{L}\left(x, Y^{N}\right) \leq \frac{1}{N}\left(\frac{1}{\tau} D_{x}\left(x, x^{0}\right)+\frac{1}{\sigma} D_{y}\left(y, y^{0}\right)-\left\langle y-y^{0}, K\left(x-x^{0}\right)\right\rangle\right)
$$

provided $\sigma \tau L^{2} \leq 1$, where $L:=\sup _{\|x\| \leq 1,\|y\| \leq 1}\langle y, K x\rangle$.

Remark: under this condition, one has
$\left\langle y-y^{0}, K\left(x-x^{0}\right)\right\rangle \leq D_{x}\left(x, x^{0}\right) / \tau+D_{y}\left(y, y^{0}\right) / \sigma$ so that one can also bound the rate by

$$
\cdots \leq \frac{2}{N}\left(\frac{1}{\tau} D_{x}\left(x, x^{0}\right)+\frac{1}{\sigma} D_{y}\left(y, y^{0}\right)\right) .
$$

（Accelereated）Nonlinear primal－dual algorithm

If in addition g is μ_{g} relatively strongly convex，then，as in the Euclidean case，one can update y^{k} with $x^{k}+\theta_{k}\left(x^{k}-x^{k-1}\right)$ and then x^{k} with y^{k+1} and we obtain：

Accelerated rate

Choosing $x^{-1}=x^{0}, \sigma_{0} \tau_{0} L^{2} \leq 1$ and for $k \geq 0, \theta_{k+1}=1 / \sqrt{1+\mu_{g} \tau_{k}}$ ， $\tau_{k+1}=\tau_{k} \theta_{k+1}, \sigma_{k+1}=\sigma_{k} / \theta_{k+1}$ ，one has：

$$
T_{N}\left(\mathcal{L}\left(X^{N}, y\right)-\mathcal{L}\left(x, Y^{N}\right)\right)+\frac{\sigma_{N}}{2 \tau_{N}}\left\|x^{N}-x\right\|^{2} \leq \frac{\sigma_{0}}{\tau_{0}} D_{x}\left(x, x^{0}\right)+D_{y}\left(y, y^{0}\right)
$$

where $T_{N}=\sum_{k=0}^{N-1} \sigma_{k} \approx \mu_{g} k^{2} / L^{2}, Z^{N}=\frac{1}{T_{N}} \sum_{k=0}^{N-1} \sigma_{k} z^{k+1}(z=(x, y))$ ．

Application of Bregman (primal-dual) descent

Example: Complexity for "optimal transportation" problems.
Problem: optimal assignment:

$$
\min \left\{C: X: X \mathbf{1}=\frac{1}{N} \mathbf{1}, X^{\top} \mathbf{1}=\frac{1}{N} \mathbf{1}, X \geq 0\right\}
$$

where C is an $N \times N$ cost matrix (in general ≥ 0 but this is not important), X is an $N \times N$ matrix with $\sum_{i, j} X_{i, j}=1, C: X:=\sum_{i, j} C_{i, j} X_{i, j}$ and $\mathbf{1}=(1, \ldots, 1)^{T}$. Then one can show that this problem is solved by a permutation matrix $X_{i, j}=\delta_{\epsilon(i), j}$ for $\epsilon \in \mathcal{S}(N)$, which minimizes the cost $\sum_{j} C_{i, \epsilon(i)}$. More general problem: $X \mathbf{1}=\mu, X^{T} \mathbf{1}=\nu$ where μ, ν are discretized probability measures ($\sum_{i} \mu_{i}=1$): convexification of "optimal transportation" problem (then X might not be a permutation anymore).

Optimal assignment

Primal-dual and dual formulation:

$$
\begin{aligned}
& \min _{X \geq 0} \sup _{f, g \in \mathbb{R}^{N}} C: X+f \cdot(\mu-X \mathbf{1})+g \cdot\left(\nu-X^{\top} \mathbf{1}\right) \\
& =\max _{f, g} f \cdot \mu+g \cdot \nu+\min _{X \geq 0} X:(C-f \otimes 1-1 \otimes g)=\max _{f, g: f_{i}+g_{j} \leq C_{i, j}} f \cdot \mu+g \cdot \nu .
\end{aligned}
$$

Then, one can show that there is a solution $\left(X^{*}, f^{*}, g^{*}\right)$ with:

$$
\begin{aligned}
& X_{i, j}>0 \Rightarrow f_{i}+g_{j}=C_{i, j} \\
& f_{i}+g_{j}<C_{i, j} \Rightarrow X_{i, j}=0
\end{aligned}
$$

In particular:

- (f, g) solution $\Rightarrow(f+c, g-c)$ solution for any constant c;
- One can find a solution with $\left|f_{i}\right|,\left|g_{j}\right| \leq|C|_{\infty} / 2\left(|C|_{\infty}=\max _{i, j} C_{i, j}\right)$.

Optimal assignment

Primal-dual algorithm, for $\lambda=|C|_{\infty} / 2$:

$$
\min _{X \geq 0} \sup _{|f|,|g| \leq \lambda} C: X-X:(f \otimes 1-1 \otimes g)+f \cdot \mu+g \cdot \nu:
$$

We pick X^{0}, f^{0}, g^{0} and let for $k \geq 0$:

$$
\begin{aligned}
& \left(f^{k+1}, g^{k+1}\right)=\arg \min _{|f|,|g| \leq \lambda / 2} \frac{1}{\tau}\left(D_{f}\left(f, f^{k}\right)+D_{f}\left(g, g^{k}\right)\right)-f \cdot \mu-g \cdot \nu-X^{k}:(f \otimes 1-1 \otimes g) \\
& \left(\bar{f}^{k+1}, \bar{g}^{k+1}\right)=2\left(f^{k+1}, g^{k+1}\right)-\left(f^{k}, g^{k}\right) \\
& X^{k+1}=\arg \min _{X \geq 0} \frac{1}{\sigma} D_{X}\left(X, X^{k}\right)+X:\left(C-\bar{f}^{k+1} \otimes 1-1 \otimes \bar{g}^{k+1}\right)
\end{aligned}
$$

(the minimizations wr f and wr g are uncoupled).

Optimal assignment

Continuous
(convex) optimisation
A. Chambolle

Optimization in Banach

One obtains a rate of the form:

$$
\operatorname{Gap}^{k} \leq \frac{2}{k}\left(\frac{1}{\sigma} D_{X}\left(X, X^{0}\right)+\frac{1}{\tau} D_{f}\left(f, f^{0}\right)+\frac{1}{\tau} D_{g}\left(g, g^{0}\right)\right) .
$$

with $\sigma \tau L^{2} \leq 1$. Let us consider two cases:
(1) $\xi_{f}=\xi_{g}=|\cdot|^{2} / 2, \xi_{x}=|\cdot|^{2} / 2$ (Euclidean case);
(2) $\xi_{f}=\xi_{g}=|\cdot|^{2} / 2, \xi_{X}=\sum_{i, j} X_{i, j} \log X_{i, j}$ with $\sum_{i, j} X_{i, j}=1$ (Entropy case), and the norm $\|X\|=\|X\|_{1}=\sum_{i, j}\left|X_{i, j}\right|$.

Optimal assignment

Euclidean

Continuous

In the first case:

$$
L=\sup \left\{\sum_{i, j} X_{i, j}\left(f_{i}+g_{j}\right): \sum_{i, j} X_{i, j}^{2} \leq 1, \sum_{i} f_{i}^{2}+g_{i}^{2} \leq 1\right\}=\sup \sqrt{\sum_{i, j} f_{i}^{2}+g_{j}^{2}}=\sqrt{N}
$$

so one needs $\tau \sigma \leq 1 / N$. Then, one has (assuming $X^{0}=\frac{1}{N^{2}} \mathbf{1} \otimes \mathbf{1}$ or 0)

$$
\sup _{X \geq 0, \sum_{i, j} x_{i, j}=1} \frac{1}{2}\left|X-X^{0}\right|^{2} \leq \frac{1}{2}, \quad \sup _{|f|,|g| \leq \lambda} \frac{1}{2}\left(|f|^{2}+|g|^{2}\right) \leq N \lambda^{2}
$$

hence the rate is less than $(2 / k)$ times:

$$
\min _{\sigma \tau=1 / N} \frac{1}{2 \sigma}+\frac{N \lambda^{2}}{\tau}=\min _{\sigma>0} \frac{1}{2 \sigma}+N^{2} \lambda^{2} \sigma=\sqrt{2} N \lambda
$$

and the optimum is for $\sigma=1 /(N \lambda \sqrt{2}), \tau=\sqrt{2} \lambda$.

Optimal assignment

Non-linear

In the second case:

$$
L=\sup \left\{\sum_{i, j} X_{i, j}\left(f_{i}+g_{j}\right): \sum_{i, j}\left|X_{i, j}\right| \leq 1, \sum_{i} f_{i}^{2}+g_{i}^{2} \leq 1\right\}=\sup \max _{i, j} f_{i}+g_{j}=\sqrt{2}
$$

so one needs $\tau \sigma \leq 1 / 2$. One recalls that (for $\sum_{i, j} X_{i, j}=\sum_{i, j} Y_{i, j}=1$):

$$
D_{X}(X, Y)=\sum_{i, j} X_{i, j} \log X_{i, j}-Y_{i, j} \log Y_{i, j}-\left(\log Y_{i, j}+1\right)\left(X_{i, j}-Y_{i, j}\right)=\sum_{i, j} X_{i, j} \log \frac{X_{i, j}}{Y_{i, j}}
$$

so that one has (assuming $X^{0}=\frac{1}{N^{2}} \mathbf{1} \otimes \mathbf{1}$)

$$
\sup _{x \geq 0, \sum_{i, j} X_{i, j}=1} \sum_{i, j} X_{i, j} \log \frac{X_{i, j}}{X_{i, j}^{0}} \leq \log N^{2} .
$$

Hence, the rate is less than $(2 / k)$ times:

$$
\min _{\sigma \tau=1 / 2} \frac{2 \log N}{\sigma}+\frac{N \lambda^{2}}{\tau}=\min _{\sigma>0} \frac{2 \log N}{\sigma}+2 N \lambda^{2} \sigma=\sqrt{N \log N} \lambda
$$

and the optimum is for $\sigma=\sqrt{\log N / N} / \lambda, \tau=(\lambda / 2) \sqrt{N / \log N}$,

