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Alternating minimization?

Problem:
min

x1,...,xn
f (x1, . . . , xn)

Assume we know how to solve, for i = 1, . . . , n and given (xj)j 6=i :

min
ξ

f (x1, . . . , xi−1, ξ, xi+1, . . . , xn).

Then, the following algorithm is natural:
Let (x0) be given and for k ≥ 0, i = 1, . . . , n let:

xk+1
i ∈ arg min

ξ
f (xk+1

1 , . . . , xk+1
i−1 , ξ, x

k
i+1, . . . , xk

n ). (1)

Convergence?
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Counterexample

For x = (x1, x2) ∈ R2 let f (x1, x2) = x2
1 /2 + |x1 − x2|.

Then f (0, 0) = 0 is minimal.

From (xk
1 , xk

2 ), the algorithm will first produce xk+1
1 = max{−1,min{xk

2 , 1}} and
then xk+1

2 = xk+1
1 .

Hence, one has xk
1 = xk

2 = x1
2 for any k ≥ 1 and unless x0

2 = 0, this never
converges to the minimizer.
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Alternating minimization?

Assume on the other hand that:
The space is finite-dimensional;
f is C1, bounded from below, coercive (f (x)→ +∞ if |x | → ∞);
f is convex.

First, one has that f (xk+1) ≤ f (xk) so in particular there is a value f ∗ with
f (xk)→ f ∗ = infk f (xk).

Then, (xk) is bounded and has a subsequence (xkl ) which converges to some x .
Up to a further subsequence, xkl +1 → y . One can easily show that:

f ∗ = f (y1, . . . , yi−1, yi , xi+1, . . . , xn) = min
ξ

f (y1, . . . , yi−1, ξ, xi+1, . . . , xn)

≤ f (y1, . . . , yi−1, xi , xi+1, . . . , xn) = f ∗

for all i . In particular
∂i f (y1, . . . , yi−1, yi , xi+1, . . . , xn) = ∂i f (y1, . . . , yi−1, xi , xi+1, . . . , xn) = 0.
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Alternating minimization

If xk → x , one deduces that x is a minimizer, otherwise it is not even clear. Yet
using that f is convex, we can show that limit points are minimizers.

Proof: This is shown by induction: let us assume that ∂j f (y1, . . . , yi , xi+1, . . . , xn) = 0 for j = 1, . . . , i ,
i ≤ n − 1. This is true for i = 1.

Now, we have by minimality that ∂i+1f (y1, . . . , yi+1, xi+2, . . . ) = 0, and since it has the same value, also
∂i+1f (y1, . . . , yi , xi+1, xi+2, . . . ) = 0.

As a consequence, thanks to the induction hypothesis, (y1, . . . , yi , xi+1) is a minimizer of the convex
function f (•, xi+2, . . . , xn) and since it has the same value, also (y1, . . . , yi+1) is a minimizer. It follows that
∂j f (y1, . . . , yi+1, xi+2, . . . , xn) = 0 for all j ≤ i + 1, which shows the induction.

As a consequence, ∂j f (y) = 0 for all j and y is a minimizer of f . Since x has the same value and it is also
a minimizer of f .
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(Block) coordinate descent

We can replace the minimization with a step of gradient descent.
If f has Lipschitz gradients:

xk+1
i = xk

i − τi∇i f (xk+1
1 , . . . , xk+1

i−1 , x
k
i , . . . , xk

n ).

Here, ∇i := ∂/∂xi .
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(Block) coordinate descent

Assume that ∂i f is Li -Lipschitz (uniformly): as usual,

f (xk+1
1 , . . . , xk+1

i , xk
i+1, . . . , xk

n ) ≤ f (xk+1
1 , . . . , xk+1

i−1 , x
k
i , . . . , xk

n )
− τi (1− Liτi

2 )|∇i f (xk+1
1 , . . . , xk+1

i−1 , x
k
i , . . . , xk

n )|2

Choosing τi = 1
Li
:

f (xk+1
1 , . . . , xk+1

i , xk
i+1, . . . , xk

n ) + 1
2Li
|∇i f (xk+1

1 , . . . , xk+1
i−1 , x

k
i , . . . , xk

n )|2

≤ f (xk+1
1 , . . . , xk+1

i−1 , x
k
i , . . . , xk

n )

→ as in the previous analysis, in the convex case one deduces that limit points are
minimizers.
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(Block) Coordinate descent

One interesting point here is that in general, the Lipschitz constant with respect to
one variable is smaller than with respect to all the variables

Example: (x1, x2) 7→ (x1 + x2)2 has
√
2-Lipschitz gradient but the partial gradients

are 1-Lipschitz.

→ longer steps.

Variants: change the order of updates. Random order.
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Random coordinate descent

Algorithm: choose x0.
At iteration k ≥ 0, choose ik ∈ {1, . . . , n} randomly with probablilities (p1, . . . , pn)
(
∑

i pi = 1). Then let:{
xk+1

ik = xk
ik − τik∇ik f (xk),

xk+1
j = xk

j for j 6= ik .

We have, given xk and ik :

f (xk+1) ≤ f (xk)− τik (1− Lik τik
2 )|∇ik f (xk)|2 (2)

As a consequence, knowing the point xk , the expectation E(f (xk+1)|xk) satisfies

E(f (xk+1)|xk) ≤ f (xk)−
n∑

i=1
piτi (1− Liτi

2 )|∇i f (xk)|2.
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Random coordinate descent

Algorithm: choose x0.
At iteration k ≥ 0, choose ik ∈ {1, . . . , n} randomly with probablilities (p1, . . . , pn)
(
∑

i pi = 1). Then let:{
xk+1

ik = xk
ik − τik∇ik f (xk),

xk+1
j = xk

j for j 6= ik .

We have, given xk and ik :

f (xk+1) ≤ f (xk)− τik (1− Lik τik
2 )|∇ik f (xk)|2 (2)

As a consequence, knowing the point xk , the expectation E(f (xk+1)|xk) satisfies

E(f (xk+1)|xk) ≤ f (xk)−
n∑

i=1
piτi (1− Liτi

2 )|∇i f (xk)|2.
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Random coordinate descent

Let τi = 1/Li and pi = Li/(
∑

j Lj) (we pick more often the coordinates with larger
Lipschitz constants). Then:

E(f (xk+1)|xk) ≤ f (xk)− 1
2
∑

j Lj

n∑
i=1
|∇i f (xk)|2 = f (xk)− 1

2
∑

j Lj
|∇f (xk)|2.

Then we compute the expectation with respect to xk :

E(f (xk+1)) ≤ E(f (xk))− 1
2
∑

j Lj
E(|∇f (xk)|2). (3)

In particular, E(f (xk)) is a decreasing sequence, and one has

1
2
∑

j Lj

∞∑
k=0

E(|∇f (xk)|2) ≤ f (x0) <∞

which shows that E(|∇f (xk)|2)→ 0 (up to a subsequence ∇f (xk)→ 0 a.s.).



Continuous
(convex)

optimisation

A. Chambolle

Large scale
problems
Alternating
minimization,
Coordinate descent

Random coordinate
descent

Stochastic gradient
descent

SAGA

Random coordinate descent

More generally: pick τi = θ/Li for θ ∈]0, 2[, let |g |2M :=
∑n

i=1 mi |gi |2, for
mi := pi/Li . Then with the same computation we get:

E(f (xk+1)|xk) ≤ f (xk)−
n∑

i=1

θ(2− θ)pi
Li

|∇i f (xk)|2 = f (xk)− θ(2− θ)
2 |∇f (xk)|2M .

If we assume that there exists a minimizer x∗, let ∆k := f (xk)− f (x∗). Then:

Lemma
Assume {f ≤ f (x0)} is bounded. Then

E(∆k) ≤ 2D2

θ(2− θ)
1

k + 1

where D ≥ supf (x)≤f (x0) |x − x∗|M−1 .1

1The traditional “L” constant is here included in the norm | · |M .
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Random coordinate descent

Proof. As usual from the convexity of f we get:

f (x)− f (x∗) ≤ 〈∇f (x), x − x∗〉 ≤ |∇f (x)|M |x∗ − x |M−1 ≤ D|∇f (x)|M

if f (x) ≤ f (x0) and D is as in the Lemma. Then:

E(f (xk+1)− f (x∗)|xk ) ≤ f (xk )− f (x∗)−
θ(2− θ)

2
(f (xk )− f (x∗))2

D2 .

By convexity (using Jensen’s inequality): E(∆k )2 ≤ E(∆2
k ), hence:

E(∆k+1) ≤ E(∆k )−
θ(2− θ)

2D2 E(∆2
k ) ≤ E(∆k )−

θ(2− θ)
2D2 E(∆k )2.

Then we conclude as for the standard gradient descent.
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Random coordinate descent

Comments:
Ideally the probabilities should minimize the “diameter” D...
Standard choice already mentioned: θ = 1, pi = Li/

∑
j Lj . Then the rate

becomes:

E(∆nk) ≤

2
n

n∑
j=1

Lj

 supf (x)≤f (x0) |x − x∗|2

k + 1/n

after k “epochs” (that is nk iterations, or k average passes over all the
variables).
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Random coordinate descent
Comparison with gradient descent

E(∆nk) ≤

2
n

n∑
j=1

Lj

 supf (x)≤f (x0) |x − x∗|2

k + 1/n

This is to be compared to the rate for deterministic G.D.:

∆k ≤ 2L |x
0 − x∗|2
k + 1

now L is the global Lipschitz constant of f : we have replaced L with
L̄ := (1/n)

∑
j Lj .
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Random coordinate descent
Comparison with gradient descent

One always has:

max
j

Lj ≤ L ≤

√√√√ n∑
j=1

L2
j ,

and in particular L̄ ≤ L. On the other hand:

L̄ = 1
n
∑

j
Lj ≤

1√
n

√√√√ n∑
j=1

L2
j .

In the worst case, the complexity of the random coordinate descent is similar
to the deterministic gradient descent;
If L is close to the upper bound

√∑
j L2

j then the complexity might be smaller
by a factor up to 1/

√
n (where n is the number of coordinates).
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Random coordinate descent
Comparison with gradient descent

One always has:

max
j

Lj ≤ L ≤

√√√√ n∑
j=1

L2
j ,

and in particular L̄ ≤ L. On the other hand:

L̄ = 1
n
∑

j
Lj ≤

1√
n

√√√√ n∑
j=1

L2
j .

In the worst case, the complexity of the random coordinate descent is similar
to the deterministic gradient descent;
If L is close to the upper bound

√∑
j L2

j then the complexity might be smaller
by a factor up to 1/

√
n (where n is the number of coordinates).
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Random coordinate descent
Extensions, variants

• For minimizing: f (x) +
∑n

i=1 ψi (xi ), one can replace the kth iteration with the
proximal iteration

xk+1
ik = (I + τik∂ψi )−1(xik − τik∇ik f (xk))

with τi = 1/Li . Then one gets similar results (Richtárik, Takáč,
Math. Program. 144, 2014).

• Acceleration: Fercoq, Richtárik, “Approx” algorithm (SIAM Rev. 58, 2016).
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Stochastic gradient descent

Typical “learning” problem (such as “SVM”, see later): minimize (for large n ≥ 1)
a sum of convex functions:

min
x

1
n
∑

i
fi (x) + ψ(x)

If ψ is strongly convex, one can derive a dual problem

max
y1,...,yn

−1
n
∑

i
f ∗i (yi )− ψ∗(− 1

n
∑

i
yi )

with now ψ∗ with Lipschitz gradient: proximal variant random coordinate descent
algorithm (previous slide). (See also “stochastic dual coordinate ascent” methods,
Shalev-Shwartz and Zhang 2013 [SDCA], 2016 [PSDCA] with acceleration.)
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Stochastic gradient descent

For a smooth f = 1
n
∑

i fi (and without ψ), one can use the gradient descent but if
n is too large it might not be a good idea to evaluate ∇f at each iteration.

Algorithm (“SGD”): choose x0. For each k ≥ 1, choose τ > 0 and pick
ik ∈ {1, . . . , n} with probability 1/n. Let:

xk+1 = xk − τ∇fik (xk).

The general idea is that xk+1 = xk − τgk where gk is a random process with
E(gk |xk) = ∇f (xk), hence the term “stochastic gradient”. Indeed for the choice
gk(xk) = ∇fik (xk) with probability 1/n, one has
E(gk |xk) =

∑
i

1
n∇fi (xk) = ∇f (xk).
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Stochastic gradient descent

One has: E(xk+1|xk) = xk − τE(gk |xk) = xk − τ∇f (xk).

As usual, one can write that for j = 1, . . . , n, if ik = i ,

fj(xk+1) ≤ fj(xk)− τ
〈
∇fj(xk), gk

〉
+ Ljτ

2

2 |gk |2

and summing (and /n):

f (xk+1) ≤ f (xk)− τ
〈
∇f (xk), gk

〉
+ τ2

2

(
1
n

n∑
j=1

Lj

)
|gk |2.
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Stochastic gradient descent

Now we can compute the expectation knowing xk , using that

E(gk |xk) = ∇f (xk),
E(|gk |2 |xk) = E(|gk −∇f (xk)|2 |xk) + |∇f (xk)|2 = Var(gk |xk) + |∇f (xk)|2.

We find, with L̄ := (1/n)
∑

j Lj :

E(f (xk+1)|xk) ≤ f (xk)− τ(1− τ L̄
2 )|∇f (xk)|2 + τ2L̄

2 Var(gk |xk).

Problem: for τ < 2/L̄, one expects that E(f (xk)) decreases until E(|∇f (xk)|2)
(which is of the order of |xk − xk+1|2) becomes comparable to τ× the variance.
Hence one needs either:

to decrease τ at each step (Robbins, Monro, 1951);
to find tricks to “reduce” the variance (SAG, SAGA: Le Roux, Schmidt, Bach
2012, Defazio, Bach, Lacoste-Julien 2014, SVRG: Xiao, Zhang, 2014).
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Stochastic gradient descent

Robbins, Monro 1951: reduce the step size. If we assume we have an estimate of

Var(g(x)) ≤ σ2

for x close to x∗ (provided we could show that xk remains close to x∗! which is not
a priori clear...)
Then, for τk ≤ 1/L̄:(n−1∑

k=0
τk

)
min

k=0,...,n−1
E(|∇f (xk)|2) ≤ f (x0) + L̄

2σ
2

n−1∑
k=0

τ2
k

so that:

min
k=0,...,n−1

E(|∇f (xk)|2) ≤
f (x0) + L̄

2σ
2∑n−1

k=0 τ
2
k∑n−1

k=0 τk
.
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Stochastic gradient descent

One obtains a rate which is governed by the ratio:∑n−1
k=0 τ

2
k∑n−1

k=0 τk
.

For instance: τk ∼ 1/k, the rate is ∼ C/ log n, for τk ∼ 1/
√

k, the rate is
∼ C log n/

√
n.

This is nearly optimal: if one knew all the parameters of the problem and fixed the
number of iterations, then letting L̄σ2nτ2/2 = f (x0), we get:

min
k=0,...,n−1

E(|∇f (xk)|2) ≤
f (x0) + L̄

2σ
2nτ2

nτ =

√
2L̄f (x0)
√

n σ
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Stochastic gradient descent
Reduced variance method

Simplest approach: mini-batching: one can reduce the variance by computing
several gradients simultaneously (but of course it is then more expensive, with the
full gradient as an extreme case and 0 variance)

Example: SAGA (Defazio, Bach, Lacoste-Julien, NeurIPS 2014): the idea is to
replace gk with an unbiased (that is E(gk |xk) = ∇f (xk)) approximation of the
gradient with a smaller variance, of the form:

gk = ∇fik (xk)− vik + 1
n
∑

j
vj

for some v ≈ ∇f depending on the previous iterates.
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Stochastic gradient descent
Reduced variance method

Simplest approach: mini-batching: one can reduce the variance by computing
several gradients simultaneously (but of course it is then more expensive, with the
full gradient as an extreme case and 0 variance)

Example: SAGA (Defazio, Bach, Lacoste-Julien, NeurIPS 2014): the idea is to
replace gk with an unbiased (that is E(gk |xk) = ∇f (xk)) approximation of the
gradient with a smaller variance, of the form:

gk = ∇fik (xk)− vik + 1
n
∑

j
vj

for some v ≈ ∇f depending on the previous iterates.
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Stochastic gradient descent
Reduced variance method: SAGA

One has
E(gk |xk) = ∇f (xk)− 1

n
∑

i
vi + 1

n
∑

j
vj = ∇f (xk)

and
Var(gk |xk) = 1

n
∑

i

∣∣∣∇fi (xk)− vi − 1
n
∑

j
(∇fj(xk)− vj)

∣∣∣2
= 1

n
∑

i
|∇fi (xk)− vi |2 −

∣∣∣ 1n (
∑

j
(∇fj(xk)− vj)

∣∣∣2
≤ 1

n
∑

i
|∇fi (xk)− vi |2

which gets small if vi is close to ∇fi (xk). But vi should not depend on ik (only on
the past) and of course, the “ideal” choice vi = ∇fi (xk) consists in computing the
full gradient at each step.
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Stochastic gradient descent
Reduced variance method: SAGA

In practice, one choses for vi the last computed value of ∇fi (x l ), at a previous
iterate l .

Algorithm (SAGA): choose x0, vi = 0, v̄ = 0.
1 for each k ≥ 0: pick ik ∈ {1, . . . , n} with probability 1/n.
2 Let vold = vik ;
3 Let vik = ∇fik (xk) (“new”);
4 let xk+1 = xk − τ(vik − vold + v̄);
5 let v̄ = v̄ + 1

n (vik − vold).

One sees that at each iteration, v̄ is kept to 1
n
∑

j vj .
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Stochastic gradient descent
Reduced variance method: SAGA

Rate for SAGA:
If the fi ’s have L-Lipschitz gradient, then for τ = 1/(3L), one has, letting
x̄k := (1/k)

∑k
t=1 x t ,

E(f (x̄k)− f (x∗)) ≤ 4n
k

[2L
n ‖x

0 − x∗‖2 + Df (x0, x∗)
]

The method also allows for a prox-term +ψ(x);
Improved (linear) convergence rates if the fi are µ-convex with L-Lipschitz
gradient.
(Older) variants such as “SVRG” re-compute ∇f (x̄) at some point x̄ (which is
also kept) from time to time, with the advantage that it is not needed to store
all the v i ’s as above. Then one can use vi = ∇fi (x̄) (recomputed when
needed) and implement the same idea.
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Stochastic gradient descent
Reduced variance method: SAGA

Rate for SAGA:
If the fi ’s have L-Lipschitz gradient, then for τ = 1/(3L), one has, letting
x̄k := (1/k)

∑k
t=1 x t ,

E(f (x̄k)− f (x∗)) ≤ 4n
k

[2L
n ‖x

0 − x∗‖2 + Df (x0, x∗)
]

The method also allows for a prox-term +ψ(x);
Improved (linear) convergence rates if the fi are µ-convex with L-Lipschitz
gradient.
(Older) variants such as “SVRG” re-compute ∇f (x̄) at some point x̄ (which is
also kept) from time to time, with the advantage that it is not needed to store
all the v i ’s as above. Then one can use vi = ∇fi (x̄) (recomputed when
needed) and implement the same idea.



Continuous
(convex)

optimisation

A. Chambolle

Large scale
problems
Alternating
minimization,
Coordinate descent

Random coordinate
descent

Stochastic gradient
descent

SAGA

Example...

(see notebook)
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