Fast Boundary Elements Methods and Applications

François Alouges <u>Matthieu Aussal</u>

Centre de Mathématiques Appliquées de l'École Polytechnique Route de Saclay - 91128 Palaiseau CEDEX France

> New Trends in Integral Equations February 4th-5th 2016

Industrials needs for 3D audio

Individual frequency filters functions of space and morphology :

 $\mathbb{R}^3 \times \mathbb{R}^+ \times \mathbb{M} \ \to \ \mathbb{C}$

$$(\mathbf{x}, f, \mathbf{m}) \rightarrow HRTF(\mathbf{x}, f, \mathbf{m})$$

Numerical simulation of HRTF

Microsoft Kinect and SYMARE mesh

Solve Helmholtz equation for scattering problem

Acoustic scattering problem

Notations :

Let a solution u defined in the full space $\mathbb{R}^3 \setminus \Gamma$ with :

- Γ smooth and oriented,
- $u^i = u|_{\Omega_i}$ and $u^e = u|_{\Omega_e}$,
- $\mu = [u] = u^e u^i$ and $\lambda = [\partial_n u] = \partial_n u^e \partial_n u^i$.

Theorem of integral representation

If u satisfies Helmholtz equation and Sommerfeld radiation condition :

$$\begin{cases} -(\Delta u^i + k^2 u^i) &= 0 \in \Omega^i, \\ -(\Delta u^e + k^2 u^e) &= 0 \in \Omega^e, \\ \lim_{r \to +\infty} r \left(\partial_r u^e + iku^e \right) &= 0, \end{cases}$$

then *u* satisfies :

$$\begin{aligned} u(\mathbf{x}) &= \mathcal{D}\mu(\mathbf{x}) - \mathcal{S}\lambda(\mathbf{x}) & \forall \mathbf{x} \in \Omega^i \cup \Omega^e, \\ \frac{1}{2}(u^i(\mathbf{x}) + u^e(\mathbf{x})) &= D\mu(\mathbf{x}) - S\lambda(\mathbf{x}) & \forall \mathbf{x} \in \Gamma, \\ \frac{1}{2}(\partial_n u^i(\mathbf{x}) + \partial_n u^e(\mathbf{x})) &= H\mu(\mathbf{x}) - D^t\lambda(\mathbf{x}) & \forall \mathbf{x} \in \Gamma. \end{aligned}$$

Boundary Element Method

• Single layer potential (idem for Double layer) :

$$S\lambda(\mathbf{x}) = \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \lambda(\mathbf{y}) d\Gamma_{y}, \quad G(\mathbf{x}, \mathbf{y}) = \frac{e^{-ik|\mathbf{x} - \mathbf{y}|}}{4\pi |\mathbf{x} - \mathbf{y}|}.$$

• Boundary finite elements $(\phi_n(\mathbf{x}))_{1 \leq n \leq N_{dof}}$:

$$\lambda(\mathbf{x}) \sim \lambda_{\phi}(\mathbf{x}) = \sum_{n=1}^{N_{dof}} \lambda_n \phi_n(\mathbf{x}).$$

• Discretization of Γ with a quadrature $(\mathbf{y}_q, \gamma_q)_{1 \leq q \leq N_q}$:

$$\mathcal{S}\lambda(\mathbf{x})\sim G\star\lambda_\phi(\mathbf{x})=\sum_{q=1}^{N_q}\gamma_qG(\mathbf{x},\mathbf{y}_q)\lambda_\phi(\mathbf{y}_q).$$

• Galerkin formulation (dense) :

$$[S]_{i,j} = \int_{\Gamma} \int_{\Gamma} \phi_i(\mathbf{x}) G(\mathbf{x}, \mathbf{y}) \phi_j(\mathbf{y}) d\Gamma_{\mathbf{x}} d\Gamma_{\mathbf{y}}.$$

Vectorized formalism for Matlab computation

Final galerkin formalism used :

$$S\lambda(\mathbf{x}) \sim \Phi_I \cdot G_{xy} \cdot \Phi_r$$

with:

- Φ_I : **sparse** integration matrix, from dof to **x** quadrature,
- G_{xy} : **full** interaction matrix between **x** and **y** quadrature,
- $\Phi_r = \Phi_l^t$: **sparse** from **y** quadrature to dof.

Singular interactions for $|\mathbf{x}-\mathbf{y}|<\epsilon$ are done with semi-analytical corrective patch :

$$S\lambda(\mathbf{x}) \sim \Phi_I \cdot (G_{xy} \cdot \Phi_r + G_{xddI}),$$

where G_{xddl} is also **sparse** matrix.

Galerkin finite elements ⇒ Points to points interactions

Points to points interactions

With N_0 depending on computer used :

- Direct method : Computing and storing dense matrix $O(N^2)$ operations, impossible for $N \ge N_0$.
- Iterative method : Only computing dense matrix $O(N^2)$ operations, slow for $N \ge N_0$.
- Fast iterative method : Split the variables \mathbf{x} and \mathbf{y} in $G(\mathbf{x},\mathbf{y})...$
 - ... O(N) operations, fast for $N \geq N_0$.

Example with a regular kernel

If
$$G(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 - 2\mathbf{x} \cdot \mathbf{y} + |\mathbf{y}|^2$$
, then
$$\forall i, \ v_i = \sum_j G(\mathbf{x}_i, \mathbf{x}_j) u_j = |\mathbf{x}_i|^2 \sum_j u_j - 2\mathbf{x}_i \cdot \sum_j \mathbf{x}_j u_j + \sum_j |\mathbf{x}_j|^2 u_j$$

- Separation of the variables x et $y \rightarrow Compression!$
- (A lot of) numerical and technical difficulties ...
 ... Complexity → O(N log N).

The Fast Multipole Method (FMM)

Firstly introduced by L. Greengard in 1987 for Laplace kernel.

The Hierarchical Matrices (\mathcal{H} -Matrix)

Firstly introduced by W. Hackbusch in 1999

mpedance $\begin{array}{c} ACA \ decomposition \\ with \ \tau \ threshold \\ \end{array}$

6 level hierarchy for 6 000 particles

Context

The Sparse Cardinal Sine Decomposition (SCSD)

- Introduced by F. Alouges & M. Aussal in 2014.
- Convolution in space ⇔ Product in Fourier domain.
- Fourier transform of the cardinal sine (S^2 = unit sphere) :

$$\mathcal{F}(\frac{\sin(|\mathbf{z}|)}{|\mathbf{z}|}) = 2\pi^2 \delta_{S^2} \qquad \forall \mathbf{z} \in R^3.$$

• Integral representation :

$$\frac{\sin(|\mathbf{z}|)}{|\mathbf{z}|} = \frac{1}{4\pi} \int_{S^2} e^{i\mathbf{s}\cdot\mathbf{z}} ds \qquad \forall \mathbf{z} \in \mathbb{R}^3.$$

• Imaginary part of G_{xy} , setting $\mathbf{z} = k(\mathbf{x} - \mathbf{y})$ for all $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^3$:

$$\mathfrak{Im}\left(G(\mathbf{x},\mathbf{y})\right) = \frac{\sin(k|\mathbf{x}-\mathbf{y}|)}{4\pi|\mathbf{x}-\mathbf{y}|} = \frac{k}{(4\pi)^2} \int_{S^2} e^{ik\mathbf{s}\cdot\mathbf{x}} e^{-ik\mathbf{s}\cdot\mathbf{y}} d\mathbf{s}.$$

• Simple separation of the variables ${\bf x}$ and ${\bf y}$.

First step towards a fast convolution

Context

Convolution for the imaginary part :

$$\mathfrak{Im}\left(G\right)\star\lambda_{\phi}(\mathbf{x}_{r})=\sum_{q=1}^{N_{q}}\gamma_{q}\left[\frac{k}{(4\pi)^{2}}\int_{S^{2}}e^{ik\mathbf{s}\cdot\mathbf{x}_{r}}e^{-ik\mathbf{s}\cdot\mathbf{y}_{q}}d\mathbf{s}\right]\lambda_{\phi}(\mathbf{y}_{q}).$$

• After discretization of S^2 with a quadrature $(\mathbf{s}_p; \sigma_p)_{1 \leq p \leq N_p}$:

$$\mathfrak{Im}\left(G\right)\star\lambda_{\phi}(\mathbf{x}_r)\sim rac{k}{(4\pi)^2}\sum_{p=1}^{N_p}e^{ik\mathbf{s}_p\cdot\mathbf{x}_r}\sigma_p\left[\sum_{q=1}^{N_q}e^{-ik\mathbf{s}_p\cdot\mathbf{y}_q}\gamma_q\lambda_{\phi}(\mathbf{y}_q)\right]_p.$$

• Fast evaluation thanks to a Non Uniform 3D Fourier Transform (NUFFT 3D type-III), in space \mathbf{x}_n and frequencies ξ_D :

$$NUFFT(f)_p = \sum_{n=1}^{N} e^{\pm i\xi_p \cdot \mathbf{x}_n} f_n$$

• Complexity $O(N \log N)$!

Trick for the real part of the Green kernel

Context

- **Principle** : $\mathfrak{Re}(G)$ is expressed using $\mathfrak{Im}(G)$
- Fourier transform of the cardinal cosine :

$$\mathcal{F}(\frac{\cos(|\mathbf{z}|)}{|\mathbf{z}|}) = \frac{4\pi}{|\xi|^2 - 1} \qquad \forall (\mathbf{z}, \xi) \in \mathbb{R}^3 \times \mathbb{R}^3.$$

• Integral representation of the Green kernel :

$$\frac{\cos(|\mathbf{z}|)}{|\mathbf{z}|} = \frac{1}{2\pi^2} \int_{\mathbb{R}^3} \frac{1}{|\xi|^2 - 1} e^{i\xi \cdot \mathbf{z}} d\xi.$$

Change variables from Cartesian to Spherical :

$$\frac{\cos(|\mathbf{z}|)}{|\mathbf{z}|} = \frac{1}{2\pi^2} \int_{\mathbb{R}^+} \frac{\rho^2}{\rho^2 - 1} \left(\int_{S^2} e^{i\rho \mathbf{s} \cdot \mathbf{z}} d\mathbf{s} \right) d\rho.$$

• Expression 1D of cosc as a function of sinc :

$$\frac{\cos(|\mathbf{z}|)}{|\mathbf{z}|} = \frac{2}{\pi} \int_{\mathbb{D}^+} \frac{\rho}{\rho^2 - 1} \frac{\sin(\rho|\mathbf{z}|)}{|\mathbf{z}|} d\rho.$$

Quadrature

$$rac{\cos(|\mathbf{z}|)}{|\mathbf{z}|} = rac{2}{\pi} \int_{\mathbb{R}^+} rac{
ho}{
ho^2 - 1} rac{\sin(
ho|\mathbf{z}|)}{|\mathbf{z}|} d
ho.$$

• We look for points and weights $(\rho_m; \alpha_m)_{1 \leq m \leq M}$

$$\frac{\cos(|\mathbf{z}|)}{|\mathbf{z}|} \sim \sum_{m=1}^{M} \alpha_m \frac{\sin(\rho_m |\mathbf{z}|)}{|\mathbf{z}|}.$$

• We solve in $(\rho_m; \alpha_m)_{1 \leq m \leq M}$ with a least square approximation, and $\rho_m = \frac{\pi}{b}(2m-1)$

$$\forall |\mathbf{z}_i| \in [a, b]: \quad \sum_{m=1}^{M} \alpha_m \sin(\rho_m |\mathbf{z}_i|) = \cos(|\mathbf{z}_i|) \Rightarrow A(\rho)\alpha = B.$$

• Fundamental result :

$$M \propto \frac{a+b}{a} |\log(\epsilon)|$$

Final SCSD-formalism

• For $k|\mathbf{x} - \mathbf{y}| \in [a, b]$:

$$\frac{\cos(k|\mathbf{x}-\mathbf{y})|)}{4\pi|\mathbf{x}-\mathbf{y}|} \sim \sum_{m=1}^{M} \alpha_{m} \frac{\sin(\rho_{m}k|\mathbf{x}-\mathbf{y})|)}{4\pi|\mathbf{x}-\mathbf{y}|}.$$

• We append $(\rho_m; \alpha_m)$ with $\alpha_{M+1} = -i$ and $\rho_{M+1} = 1$:

$$\frac{e^{-ik|\mathbf{x}-\mathbf{y}|}}{4\pi|\mathbf{x}-\mathbf{y}|} \sim \sum_{m=1}^{M+1} \frac{\alpha_m}{4\pi} \frac{\sin(\rho_m k|\mathbf{x}-\mathbf{y}|)}{|\mathbf{x}-\mathbf{y}|} = \sum_{m=1}^{M+1} \frac{\alpha_m}{(4\pi)^2} \int_{S_{k\rho_m}^2} e^{i\mathbf{s}\cdot\mathbf{x}} e^{-i\mathbf{s}\cdot\mathbf{y}} d\mathbf{s}.$$

• Quadrature of \mathbb{R}^3 with $(\xi_p \in \cup S^2_{k\rho_m}; \omega_p)_{1 \leq p \leq N_p}$:

$$G \star \lambda_{\phi}(\mathbf{x}) \sim rac{1}{(4\pi)^2} \sum_{p=1}^{N_p} e^{i\xi_p \cdot \mathbf{x}} \omega_p \left[\sum_{q=1}^{N_q} e^{-i\xi_p \cdot \mathbf{y}_q} \gamma_q \lambda_{\phi}(\mathbf{y}_q) \right]_p.$$

• Fundamental result : $N_p \propto \left(\frac{b}{a} |\log(\epsilon)|\right)^3$

Exemple of SCSD cosine quadrature (1)

Quadrature $(\rho_m; \alpha_m)_{1 \leq m \leq M}$ for unit sphere with k = 13.

Exemple of SCSD cosine quadrature (2)

Cosine approximation by a sum of sine function => Regular in 0.

Summary

ullet Quadrature of \mathbb{R}^3 with $(\xi_p\in \cup S^2_{k
ho_m};\omega_p)_{1\leq p\leq N_p}$:

$$G\star\lambda_{\phi}(\mathbf{x})\simrac{1}{(4\pi)^{2}}\sum_{
ho=1}^{N_{
ho}}e^{i\xi_{
ho}\cdot\mathbf{x}}\omega_{
ho}\left[\sum_{q=1}^{N_{q}}e^{-i\xi_{
ho}\cdot\mathbf{y}_{q}}\gamma_{q}\lambda_{\phi}(\mathbf{y}_{q})
ight]_{
ho}.$$

Mimicks

$$G \star \lambda_{\phi}(\mathbf{x}) = \mathcal{F}^{-1} \left(\hat{G}(\xi) \mathcal{F}(\lambda_{\phi} \delta_{\Gamma}) \right)$$
$$= \int_{\mathbb{R}^{3}} e^{i\xi \cdot \mathbf{x}} \hat{G}(\xi) \left[\int_{\Gamma} e^{-i\xi \cdot \mathbf{y}} \lambda_{\phi}(\mathbf{y}) d\mathbf{y} \right] d\xi$$

Theoretical complexity :

Ball : $O(N \log N)$ Sphere : $O(N^{6/5} \log N)$

Algorithm

- SCSD quadrature for **far** interactions (in [a, b]): $(\xi_p \in \mathbb{R}^3; \omega_p)_{1 \le p \le N_p}$.
- ② Type-III NUFFT $(\mathbf{y}_q)_{1\leq q\leq N_q}$ to $(\xi_p)_{1\leq p\leq N_p}$ on $(\gamma_q\lambda_\phi(\mathbf{y}_q))_{1\leq q\leq N_q}.$
- **3** Weighting of the result 2 with $(\omega_p)_{1 \leq p \leq N_p}$.
- Type-III NUFFT $(\xi_p)_{1 \leq p \leq N_p}$ to $(\mathbf{x}_i)_{1 \leq i \leq N_i}$ on the result ③ : $G_{far} \star \lambda_{\phi}(\mathbf{x}_i)_{1 \leq i \leq N_i}$.
- **Solution** Close interactions correction (in [0, a]): $G_{corr} \star \lambda_{\phi}(\mathbf{x}_i)_{1 \leq i \leq N_i}$.
- $\bullet \quad G \star \lambda_{\phi}(\mathbf{x}_i)_{1 \leq i \leq N_i} \sim (G_{far} + G_{corr}) \star \lambda_{\phi}(\mathbf{x}_i)_{1 \leq i \leq N_i}.$

Context

Context

- 4 cores at 2.7 GHz with 32 Go ram,
- Galerkin single layer operator $S\lambda$,
- BEM, SCSD and H-Matrix in native Matlab,
- FMM and NuFFT in native fortran 1,
- Full parallelism except for NuFFT,
- Up to 10^5 dof, equivalent to 6.10^5 particles

Helmholtz problem with adaptive wave number

Helmholtz problem at low frequency (k=1)

Laplace problem (k=0)

Validation on the unit sphere: Radar Cross Section

- Boundary conditions : Homogeneous Dirichlet or Neumann,
- Excitation : Plane wave

$$u_{pw}(\mathbf{x}) = e^{-i\mathbf{k}\cdot\mathbf{x}},$$

• Integral equation : Brackage-Werner formulation with $\beta \in \mathbb{C}$

$$\begin{cases} [ik\beta S - (\frac{Id}{2} + D)]\mu(\mathbf{x}) &= -u_{pw}(\mathbf{x}) & \forall \mathbf{x} \in \Gamma, \\ \lambda(\mathbf{x}) &= ik\beta\mu(\mathbf{x}), \end{cases}$$

$$\begin{cases} [-H - ik\beta(\frac{Id}{2} - D^{t})]\mu(\mathbf{x}) &= -\partial_{n}u_{pw}(\mathbf{x}) & \forall \mathbf{x} \in \Gamma, \\ \lambda(\mathbf{x}) &= ik\beta\mu(\mathbf{x}). \end{cases}$$

Radiation at infinity

RCS of the unit sphere at 1 000 dof (SCSD)

Helmholtz problem - Dirichlet Brackage Werner Mesh generated with Matlab - 1 000 degrees of freedom 0.3 kHz - 5 iterations - 2 seconds

RCS of the unit sphere at 1 000 000 dof (SCSD)

Helmholtz problem - Dirichlet Brackage Werner Mesh generated with Matlab - 1 000 000 degrees of freedom 10 kHz ($kr_{max}=369$) - 12 iterations - 20 minutes

MyBEM - A Matlab fast BEM library

Main features

- Galerkin approximation with Finite Elements type P^1 and RT on triangles
- Semi-analytical for singular integrations in close interaction
- New fast method SCSD with NUFFT mexfile ¹
- ullet Fast Multipole Method 1 and ${\cal H} ext{-Matrix}$ for comparisons
- Infinite, volumic and surfacic radiation
- LU preconditioning and Brackage-Werner regularization
- Indirect jump formulations
- Object-Oriented Programming
- High-level script call or standalone GUI
- Parallel loops (parfor)
- Non regression tests

Ears modes of human head

Helmholtz Problem - Neumann Brackage Werner Mesh from SYMARE project - 20 000 degrees of freedom 8 kHz - 17 iterations - 54 seconds

Resonance in a 3D cubic cavity

Helmholtz problem - Neumann Brackage Werner Mesh generated with Matlab - 10 000 degrees of freedom 600 Hz - 56 iterations - 1 minute

Surface current on Boeing 747

Maxwell problem - PEC CFIE Mesh from Gamma project - 150 000 degrees of freedom 5 GHz - Vertical polarisation - 164 iterations - 16 minutes

Surface current on NASA Almond

Maxwell problem - PEC CFIE Mesh of an industrial - 1 000 000 degrees of freedom 8.5 GHz ($kr_{max}=478$) - Vertical polarisation - 112 iterations - 2 hours

Surface current on NASA Almond

Maxwell problem - PEC CFIE

Mesh of an industrial - 1 000 000 degrees of freedom

8.5 GHz ($kr_{max}=478$) - Vertical polarisation - 112 iterations - 2 hours

Earth's magnetic field

Laplace problem - Double layer potential Mesh generated with Matlab - 10 000 degrees of freedom - 3 seconds

Gravitational interactions

Laplace problem - Double layer potential 10 000 degrees of freedom - Runge-Kutta 4 scheme (100 000 time step) - 10 minutes

Conclusion and future works

CONCLUSION:

- New SCSD fast convolution for many equation (Laplace, Helmholtz, Maxwell, Stokes),
- Creation of an object based Matlab library for fast BEM,
- Analytical validation up to 10⁶ degrees of freedom.
- Calculation of numerical Head Filters HRTF up tu 20 kHz

FUTURE WORKS:

- More kernels...,
- Preconditioning,
- High Performance Computing (parallelization of NuFFT),
- Domain Decomposition Method and coupled FEM/BEM,
- Benchmarks and industrial applications,
- Finish paper(s)...

Thanks for your attention

Alouges, F., Aussal, M. (2015) The Sparse Cardinal Sine Decomposition and its application for fast numerical convolution. Numerical Algorithms, 1-22.

Aussal, M. (2014) Méthodes numériques pour la spatialisation sonore, de la simulation à la synthèse binaurale. PhD thesis to be published.

Greengard, L., & Rokhlin, V. (1987). A fast algorithm for particle simulations. Journal of computational physics, 73(2), 325-348.

Greengard, L. (1988). The rapid evaluation of potential fields in particle systems. MIT press.

Greengard, L., & Lee, J. Y. (2004). Accelerating the nonuniform fast Fourier transform. SIAM review, 46(3), 443-454.

Lee, J. Y., & Greengard, L. (2005). The type 3 nonuniform FFT and its applications. Journal of Computational Physics, 206(1), 1-5.