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Industrials needs for 3D audio

Individual frequency filters functions of space and morphology :
R3 × R+ ×M → C
(x, f , m) → HRTF (x, f ,m)
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Numerical simulation of HRTF

Microsoft Kinect and SYMARE mesh

Solve Helmholtz equation
for scattering problem
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Acoustic scattering problem

Notations :

Let a solution u defined in the
full space R3 \ Γ with :

Γ smooth and oriented,
ui = u|Ωi and ue = u|Ωe ,
µ = [u] = ue − ui and
λ = [∂nu] = ∂nue − ∂nui .
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Theorem of integral representation

If u satisfies Helmholtz equation and Sommerfeld radiation
condition : 

−(∆ui + k2ui) = 0 ∈ Ωi ,
−(∆ue + k2ue) = 0 ∈ Ωe ,

lim
r→+∞

r (∂rue + ikue) = 0,

then u satisfies :

u(x) = Dµ(x)− Sλ(x) ∀x ∈ Ωi ∪ Ωe ,

1
2(ui(x) + ue(x)) = Dµ(x)− Sλ(x) ∀x ∈ Γ,

1
2(∂nui(x) + ∂nue(x)) = Hµ(x)− Dtλ(x) ∀x ∈ Γ.
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Boundary Element Method

Single layer potential (idem for Double layer) :

Sλ(x) =

∫
Γ

G(x, y)λ(y)dΓy , G(x, y) =
e−ik|x−y|
4π|x− y| .

Boundary finite elements (φn(x))1≤n≤Ndof :

λ(x) ∼ λφ(x) =
Ndof∑
n=1

λnφn(x).

Discretization of Γ with a quadrature (yq, γq)1≤q≤Nq :

Sλ(x) ∼ G ? λφ(x) =

Nq∑
q=1

γqG(x, yq)λφ(yq).

Galerkin formulation (dense) :

[S]i ,j =

∫
Γ

∫
Γ
φi(x)G(x, y)φj(y)dΓxdΓy .
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Vectorized formalism for Matlab computation
Final galerkin formalism used :

Sλ(x) ∼ Φl · Gxy · Φr

with :
Φl : sparse integration matrix, from dof to x quadrature,
Gxy : full interaction matrix between x and y quadrature,
Φr = Φt

l : sparse from y quadrature to dof.

Singular interactions for |x− y| < ε are done with semi-analytical
corrective patch :

Sλ(x) ∼ Φl · (Gxy · Φr + Gxddl) ,

where Gxddl is also sparse matrix.

Galerkin finite elements ⇒ Points to points interactions
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Points to points interactions

With N0 depending on computer used :
Direct method : Computing and storing dense matrix ...

... O(N2) operations, impossible for N ≥ N0.

Iterative method : Only computing dense matrix ...
... O(N2) operations, slow for N ≥ N0.

Fast iterative method : Split the variables x and y in
G(x, y)...

... O(N) operations, fast for N ≥ N0.
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Example with a regular kernel

If G(x, y) = |x− y|2 = |x|2 − 2x · y + |y|2, then

∀i , vi =
∑
j

G(xi , xj)uj = |xi |2
∑
j

uj − 2xi ·
∑
j
xjuj +

∑
j
|xj |2uj

Separation of the variables x et y → Compression !
(A lot of) numerical and technical difficulties ...
... Complexity → O(N logN).
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The Fast Multipole Method (FMM)
Firstly introduced by L. Greengard in 1987 for Laplace kernel.
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The Hierarchical Matrices (H-Matrix)

Firstly introduced by
W. Hackbusch in 1999

6 level hierarchy for 6 000 particles
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The Sparse Cardinal Sine Decomposition (SCSD)

Introduced by F. Alouges & M. Aussal in 2014.
Convolution in space ⇔ Product in Fourier domain.
Fourier transform of the cardinal sine ( S2 = unit sphere) :

F(
sin(|z|)
|z| ) = 2π2δS2 ∀z ∈ R3.

Integral representation :
sin(|z|)
|z| =

1
4π

∫
S2

eis·zds ∀z ∈ R3.

Imaginary part of Gxy , setting z = k(x− y) for all (x, y) ∈ R3 :

Im (G(x, y)) =
sin(k|x− y|)
4π|x− y| =

k
(4π)2

∫
S2

eiks·xe−iks·yds.

Simple separation of the variables x and y.
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First step towards a fast convolution

Convolution for the imaginary part :

Im (G) ? λφ(xr ) =

Nq∑
q=1

γq

[ k
(4π)2

∫
S2

eiks·xr e−iks·yqds
]
λφ(yq).

After discretization of S2 with a quadrature (sp;σp)1≤p≤Np :

Im (G)?λφ(xr ) ∼
k

(4π)2

Np∑
p=1

eiksp ·xrσp

 Nq∑
q=1

e−iksp ·yqγqλφ(yq)


p

.

Fast evaluation thanks to a Non Uniform 3D Fourier
Transform (NUFFT 3D type-III), in space xn and
frequencies ξp :

NUFFT (f )p =
N∑

n=1
e±iξp ·xn fn

Complexity O(N logN) !
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Trick for the real part of the Green kernel

Principle : Re(G) is expressed using Im(G)
Fourier transform of the cardinal cosine :

F(
cos(|z|)
|z| ) =

4π
|ξ|2 − 1 ∀(z, ξ) ∈ R3 × R3.

Integral representation of the Green kernel :
cos(|z|)
|z| =

1
2π2

∫
R3

1
|ξ|2 − 1 eiξ·zdξ.

Change variables from Cartesian to Spherical :
cos(|z|)
|z| =

1
2π2

∫
R+

ρ2

ρ2 − 1

(∫
S2

eiρs·zds
)

dρ.

Expression 1D of cosc as a function of sinc :
cos(|z|)
|z| =

2
π

∫
R+

ρ

ρ2 − 1
sin(ρ|z|)
|z| dρ.
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Quadrature

cos(|z|)
|z| =

2
π

∫
R+

ρ

ρ2 − 1
sin(ρ|z|)
|z| dρ.

We look for points and weights (ρm;αm)1≤m≤M

cos(|z|)
|z| ∼

M∑
m=1

αm
sin(ρm|z|)
|z| .

We solve in (ρm;αm)1≤m≤M with a least square
approximation, and ρm = π

b (2m − 1)

∀|zi | ∈ [a, b] :
M∑

m=1
αm sin(ρm|zi |) = cos(|zi |)⇒ A(ρ)α = B.

Fundamental result :

M ∝ a + b
a | log(ε)|
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Final SCSD-formalism

For k|x− y| ∈ [a, b] :

cos(k|x− y)|)
4π|x− y| ∼

M∑
m=1

αm
sin(ρmk|x− y)|)

4π|x− y| .

We append (ρm;αm) with αM+1 = −i and ρM+1 = 1 :

e−ik|x−y|
4π|x− y| ∼

M+1∑
m=1

αm
4π

sin(ρmk|x− y|)
|x− y| =

M+1∑
m=1

αm
(4π)2

∫
S2
kρm

eis·xe−is·yds.

Quadrature of R3 with (ξp ∈ ∪S2
kρm ;ωp)1≤p≤Np :

G ? λφ(x) ∼ 1
(4π)2

Np∑
p=1

eiξp ·xωp

 Nq∑
q=1

e−iξp ·yqγqλφ(yq)


p

.

Fundamental result : Np ∝
(
b
a | log(ε)|

)3
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Exemple of SCSD cosine quadrature (1)

Quadrature (ρm;αm)1≤m≤M for unit sphere with k = 13.
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Exemple of SCSD cosine quadrature (2)

Cosine approximation by a sum of sine function => Regular in 0.
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Summary

Quadrature of R3 with (ξp ∈ ∪S2
kρm ;ωp)1≤p≤Np :

G ? λφ(x) ∼ 1
(4π)2

Np∑
p=1

eiξp ·xωp

 Nq∑
q=1

e−iξp ·yqγqλφ(yq)


p

.

Mimicks

G ? λφ(x) = F−1
(
Ĝ(ξ)F(λφδΓ)

)
=

∫
R3

eiξ·xĜ(ξ)

[∫
Γ

e−iξ·yλφ(y) dy
]

dξ

Theoretical complexity :
Ball : O(N logN)
Sphere : O(N6/5 logN)
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Algorithm

1 SCSD quadrature for far interactions (in [a, b]) :
(ξp ∈ R3;ωp)1≤p≤Np .

2 Type-III NUFFT (yq)1≤q≤Nq to (ξp)1≤p≤Np on
(γqλφ(yq))1≤q≤Nq .

3 Weighting of the result 2© with (ωp)1≤p≤Np .
4 Type-III NUFFT (ξp)1≤p≤Np to (xi)1≤i≤Ni on the result 3© :

Gfar ? λφ(xi)1≤i≤Ni .
5 Close interactions correction (in [0, a]) : Gcorr ? λφ(xi)1≤i≤Ni .
6 G ? λφ(xi)1≤i≤Ni ∼ (Gfar + Gcorr ) ? λφ(xi)1≤i≤Ni .
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Context

4 cores at 2.7 GHz with 32 Go ram,
Galerkin single layer operator Sλ,
BEM, SCSD and H-Matrix in native Matlab,
FMM and NuFFT in native fortran 1,
Full parallelism except for NuFFT,
Up to 105 dof, equivalent to 6.105 particles

1. Mex-file from L. Greengard : www.cims.nyu.edu/cmcl
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Helmholtz problem with adaptive wave number
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Helmholtz problem at low frequency (k=1)
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Laplace problem (k=0)
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Validation on the unit sphere : Radar Cross Section

Boundary conditions : Homogeneous Dirichlet or Neumann,
Excitation : Plane wave

upw (x) = e−ik·x,

Integral equation : Brackage-Werner formulation with
β ∈ C{

[ikβS − ( Id2 + D)]µ(x) = −upw (x) ∀x ∈ Γ,
λ(x) = ikβµ(x),{

[−H − ikβ( Id2 − Dt)]µ(x) = −∂nupw (x) ∀x ∈ Γ,
λ(x) = ikβµ(x).

Radiation at infinity
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RCS of the unit sphere at 1 000 dof (SCSD)

Helmholtz problem - Dirichlet Brackage Werner
Mesh generated with Matlab - 1 000 degrees of freedom

0.3 kHz - 5 iterations - 2 seconds
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RCS of the unit sphere at 1 000 000 dof (SCSD)

Helmholtz problem - Dirichlet Brackage Werner
Mesh generated with Matlab - 1 000 000 degrees of freedom

10 kHz (krmax = 369) - 12 iterations - 20 minutes
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MyBEM - A Matlab fast BEM library
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Main features

Galerkin approximation with Finite Elements type P1 and RT
on triangles
Semi-analytical for singular integrations in close interaction
New fast method SCSD with NUFFT mexfile 1

Fast Multipole Method 1 and H-Matrix for comparisons
Infinite, volumic and surfacic radiation
LU preconditioning and Brackage-Werner regularization
Indirect jump formulations
Object-Oriented Programming
High-level script call or standalone GUI
Parallel loops (parfor)
Non regression tests

1. Mex-file from L. Greengard : www.cims.nyu.edu/cmcl
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Ears modes of human head

Helmholtz Problem - Neumann Brackage Werner
Mesh from SYMARE project - 20 000 degrees of freedom

8 kHz - 17 iterations - 54 seconds
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Resonance in a 3D cubic cavity

Helmholtz problem - Neumann Brackage Werner
Mesh generated with Matlab - 10 000 degrees of freedom

600 Hz - 56 iterations - 1 minute
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Surface current on Boeing 747

Maxwell problem - PEC CFIE
Mesh from Gamma project - 150 000 degrees of freedom
5 GHz - Vertical polarisation - 164 iterations - 16 minutes
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Surface current on NASA Almond

Maxwell problem - PEC CFIE
Mesh of an industrial - 1 000 000 degrees of freedom

8.5 GHz (krmax = 478) - Vertical polarisation - 112 iterations - 2
hours
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Surface current on NASA Almond

Maxwell problem - PEC CFIE
Mesh of an industrial - 1 000 000 degrees of freedom

8.5 GHz (krmax = 478) - Vertical polarisation - 112 iterations - 2
hours
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Earth’s magnetic field

Laplace problem - Double layer potential
Mesh generated with Matlab - 10 000 degrees of freedom - 3

seconds
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Gravitational interactions

Laplace problem - Double layer potential
10 000 degrees of freedom - Runge-Kutta 4 scheme (100 000 time

step) - 10 minutes
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Conclusion and future works
CONCLUSION :

New SCSD fast convolution for many equation (Laplace,
Helmholtz, Maxwell, Stokes),
Creation of an object based Matlab library for fast BEM,
Analytical validation up to 106 degrees of freedom.
Calculation of numerical Head Filters HRTF up tu 20 kHz

FUTURE WORKS :
More kernels...,
Preconditioning,
High Performance Computing (parallelization of NuFFT),
Domain Decomposition Method and coupled FEM/BEM,
Benchmarks and industrial applications,
Finish paper(s)...
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Thanks for your attention
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