The Sparse Cardinal Sine Decomposition applied to Stokes integral equation

François Alouges, Matthieu Aussal, Aline Lefebvre-Lepot, Franck Pigeonneau and Antoine Sellier

CMAP-LadHyX, Ecole Polytechnique
Laboratoire Surface du Verre et Interfaces, Saint Gobain

ICMF
23 May 2016
Let a fluid flow in full space \mathbb{R}^3, moving around solid body Ω:

- Γ boundary of Ω, smooth and oriented,
- n the unit normal directed to the liquid,
- μ the fluid viscosity,
- u the fluid velocity,
- σ the stress tensor,
- p the pressure.
Integral representation for Stokes equation

For Newtonian fluids, if u and p read the stokes equation:

$$
\begin{cases}
 -\mu \Delta u + \nabla p = 0 & \in \mathbb{R}^3 \setminus \Omega, \\
 \text{div}(u) = 0 & \in \mathbb{R}^3 \setminus \Omega,
\end{cases}
$$

then u satisfies for each Cartesian component:

$$
u_j(x) = -\frac{1}{4\pi\mu} \int_{\Gamma} \sum_i (\sigma \cdot n)_i(y) G_{ij}(x - y) d\Gamma_y
+ \frac{1}{4\pi\mu} \int_{\Gamma} \sum_{i,k} u_i(y) T_{ijk}(x - y) n_k(y) d\Gamma_y,
$$

with the so-called Stokeslet G_{ij} and Stresslet T_{ijk}:

$$
G_{ij}(x) = \frac{\delta_{ij}}{|x|} + \frac{x_i x_j}{|x|^3}, \quad T_{ijk}(x) = -6 \frac{x_i x_j x_k}{|x|^5}.
$$
Boundary Element Method with Galerkin approximation

- Single layer potential for each scalar Cartesian component:
 \[S \lambda(x) = \int_{\Gamma} G_{ij}(x - y) \lambda(y) d\Gamma_y, \quad [i,j] \in [1,3]^2. \]

- Boundary finite elements \((\phi_n(x))_{1 \leq n \leq N_{dof}}:\)
 \[\lambda(x) \sim \lambda(\phi(x)) = \sum_{n=1}^{N_{dof}} \lambda_n \phi_n(x). \]

- Discretization of \(\Gamma\) with a quadrature \((y_q, \gamma_q)_{1 \leq q \leq N_q}:\)
 \[S \lambda(x) \sim G_{ij} \ast \lambda(\phi(x)) = \sum_{q=1}^{N_q} \gamma_q G_{ij}(x - y_q) \lambda(\phi(y_q)). \]

- Galerkin formulation (dense):
 \[[S]_{a,b} = \int_{\Gamma} \int_{\Gamma} \phi_a(x) G_{ij}(x - y) \phi_b(y) d\Gamma_x d\Gamma_y. \]
Final formalism with points to points interactions

Considering \(\mathbf{r} = \mathbf{x} - \mathbf{y} \), final Galerkin formalism only needs the fast computation of Stokeslet and Stresslet:

\[
G(\mathbf{r}) = \frac{\delta}{|\mathbf{r}|} + \frac{\mathbf{r} \otimes \mathbf{r}}{|\mathbf{r}|^3}, \quad T(\mathbf{r}) = -6 \frac{\mathbf{r} \otimes \mathbf{r} \otimes \mathbf{r}}{|\mathbf{r}|^5},
\]

for each particles interactions.

- **Direct method**: Computing and storing dense matrix ...
 ... \(O(N^2) \) operations, impossible for \(N \geq N_0 \).

- **Iterative method**: Only computing dense matrix ...
 ... \(O(N^2) \) operations, slow for \(N \geq N_0 \).

- **Fast iterative method**: Split the variables \(\mathbf{x} \) and \(\mathbf{y} \) in \(G(\mathbf{x}, \mathbf{y}) \)...
 ... \(O(N) \) operations, fast for \(N \geq N_0 \).
Example with a regular kernel

If \(G(x, y) = |x - y|^2 = |x|^2 - 2x \cdot y + |y|^2 \), then

\[
\forall i, \quad v_i = \sum_j G(x_i, x_j)u_j = |x_i|^2 \sum_j u_j - 2x_i \cdot \sum_j x_j u_j + \sum_j |x_j|^2 u_j
\]

- Separation of the variables \(x \) et \(y \) \(\rightarrow \) Compression!
- (A lot of) numerical and technical difficulties ...
 ... Complexity \(\rightarrow O(N \log N) \).
The Fast Multipole Method (FMM)

Firstly introduced by L. Greengard in 1987 for Laplace kernel.
The Hierarchical Matrices (\(\mathcal{H}\)-Matrix)

Firstly introduced by W. Hackbusch in 1999

6 level hierarchy for 6 000 particles
The Sparse Cardinal Sine Decomposition (SCSD)

- Firstly introduced by F. Alouges & M. Aussal in 2014 to solve Laplace equation.
- Today extended to Helmholtz, Maxwell and Stokes problems.

Main Trick: For stokes equations, considering:

\[
L(r) = \frac{1}{|r|},
\]

\[
\nabla L(r) = -\frac{r}{|r|^3},
\]

\[
\nabla^2 L(r) = -\frac{\delta}{|r|^3} + 3\frac{r \otimes r}{|r|^5},
\]

Stokeslet \(G(r) \) and Stresslet \(T(r) \) are seen as linear combination of Laplace kernel \(L(r) \) and its derivatives.

⇒ Let’s detail Laplace green kernel convolution with SCSD!
Convolution in space \Leftrightarrow Product in Fourier domain.

Fourier transform of the cardinal sine :

$$\mathcal{F}(\frac{\sin(|r|)}{|r|}) = 2\pi^2 \delta S^2 \quad \forall r \in \mathbb{R}^3,$$

$$\frac{\sin(|r|)}{|r|} = \frac{1}{4\pi} \int_{S^2} e^{is \cdot r} ds \quad \forall r \in \mathbb{R}^3,$$

$$\frac{\sin(|r|)}{|r|} \ast \lambda_\phi(x) = \frac{1}{4\pi} \int_{S^2} e^{is \cdot x} \left[\int_{\Gamma} e^{-is \cdot y} \lambda_\phi(y) dy \right] ds$$

A Quadrature of the unit sphere $S^2 \ (s_p; \sigma_p)_{1 \leq p \leq N_p}$ leads to fast computation, with Non Uniform 3D Fourier Transform in space z_n and frequencies $s_p \ (NUFFT 3D \ type-III)$:

$$\mathcal{F}_f(s_p) = \sum_{n=1}^{N} e^{\pm is_p \cdot z_n} f_n.$$
Fast convolution with Laplace Green kernel

- \(L(r) \) is expressed as cardinal sine, using Fourier transform of the Laplace kernel:

\[
\mathcal{F}(L|r|) = \mathcal{F}\left(\frac{1}{|r|}\right) = \hat{L}(\xi) = \frac{4\pi}{|\xi|^2} \quad \forall (r, \xi) \in \mathbb{R}^3 \times \mathbb{R}^3.
\]

- A suitable sparse quadrature of the full Fourier space \(\mathbb{R}^3 \) \((\xi_p \in \mathbb{R}^3; \omega_p)_{1 \leq p \leq N_p}\) is numerically obtained, strictly restricted to \(|r| \in [r_{min}, r_{max}]\):

\[
L \ast \lambda_\phi(x) = \int_{\mathbb{R}^3} e^{i\xi \cdot x} \hat{L}(\xi) \left[\int_{\Gamma} e^{-i\xi \cdot y} \lambda_\phi(y) \, dy \right] d\xi,
\]

\[
= \mathcal{F}^{-1} \left(\hat{L}(\xi) \mathcal{F}(\lambda_\phi \delta_{\Gamma}) \right).
\]

- NUFFT are used to evaluate each discrete convolutions, with close corrections for \(|r| \in [0, r_{min}]\).

Complexity \(\rightarrow O(N^{6/5} \log N^{6/5}) \)!
SCSD expression for Stokeslet

\[G(\mathbf{r}) = \frac{\delta}{|\mathbf{r}|} + \frac{\mathbf{r} \otimes \mathbf{r}}{|\mathbf{r}|^3} \]

- Identity part is treated as Laplacian kernel:
 \[\frac{1}{|\mathbf{r}|} \approx \sum_{p=1}^{N_\xi} \omega_p e^{i\xi_p \cdot \mathbf{r}} \approx \sum_{p=1}^{N_\xi} e^{i\xi_p \cdot \mathbf{x}} \omega_p e^{-i\xi_p \cdot \mathbf{y}} \]

- Tensorial part is obtained by derivation:
 \[\frac{\mathbf{r} \otimes \mathbf{r}}{|\mathbf{r}|^3} \approx \sum_{p=1}^{N_\xi} (-i\omega_p \xi_p \otimes \mathbf{x}) e^{i\xi_p \cdot \mathbf{r}} + \sum_{p=1}^{N_\xi} (i\omega_p \xi_p) e^{i\xi_p \cdot \mathbf{r}} \otimes \mathbf{y} \]

- \(\mathbf{x} \) and \(\mathbf{y} \) are well separated and NUFFT is always available for fast convolution.
- Same approach with 2nd order derivative for Stresslet.
MyBEM - A fast BEM library in native Matlab
CPU time for Laplace convolution

1. MyBEM library, with FMM and NUFFT from www.cims.nyu.edu/cmcl
CPU time for Stokes convolution

2. Joint work with A. Lefebvre-Lepot
Multi-physical applications
Conclusion and future works

CONCLUSION :
- New SCSD fast convolution for many equation (Laplace, Helmholtz, Maxwell, Stokes),
- Comparison with FMM (in Fortran) and H-Matrix (in Matlab),
- Creation of an object based Matlab library MyBEM, for fast and easy BEM prototyping,
- Analytical validation and benchmarks up to 10^6 degrees of freedom for waves equations,
- First step already done for fluids.

FUTURE WORKS :
- Comparison with others BEM codes (LadHyx for example),
- Acceleration for vectorial kernels,
- Rigid spheres and bubbles moving in a fluid (with Saint Gobain research),
- Write paper(s)…

