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1. INTRODUCTION 

The HRTF represents the acoustic signature for human 

spatial hearing, characterizing the diffraction of sound 

waves by the anatomy of the listener. HRTFs vary 

greatly from person to person, representing a major 

issue in reproduction quality of spatial sources over 

headphones. As each individual is morphologically 

different, these functions are particularly difficult to 

transpose to other individuals without audible artifacts. 

Current research activities have explored a variety of 

different approaches to solve this problem, for example, 

numerical simulations [6, 3], statistical matching and 

selection [4, 8, 7], learning optimal HRTFs by listening 

[5], etc. 

In this paper, we focus on the personalization of the 

ITD through a principal component analysis (PCA), 

mainly for the following reasons: 

 ITD is the primary acoustic cue for spatial 

sound localization [14], 

 ITD is a real real-valued spatial function, 

simpler than the HRTF which is a complex 

spatial function in the frequency domain, 

 PCA analysis on ITD provides interesting 

results, because output modes are physically 

interpretable. While individual values vary, the 

underlying cause of the ITD is common across 

people, that being two ears on either side of a 

somewhat spherical head sitting atop a torso. 

The Listen database [9], with HRIR measurement 

on 51 subjects, was used to compute modal values of 

ITD by PCA. As this measurement set has a hole, with 

no data below -45° elevation, spherical harmonic 

interpolation was evaluated in order to fill this void in 

the measurement grid. So, the aim of this paper is first to 

evaluate spherical harmonic interpolation applied on 

ITD values, with full-sphere measurements on a 

KEMAR mannequin. Second, an optimal order of 

interpolation is determined to build a full sphere model 

of ITD from PCA applied to the Listen database. 

Finally, this model may be compared with actual ITD 

KEMAR measurements in future work, to assess 

performance. 

2. SPHERICAL HARMONIC DECOMPOSITION 

In this section, a theoretical summary of spherical 

harmonic decomposition is presented. The main purpose 

is to introduce classical notations and knowledge 

foundations for the practical use of this decomposition. 

Actually, spherical harmonic basis is nothing more than 

an equivalent for the ℝ3
 sphere of the (e

inθ
)n∈ℤ basis for 

the ℝ2
 circle case [12]. For this reason, the term 

“Fourier Bessel expansion” is sometimes used to 

describe this tool [10]. This basis is widely used in many 

domains of computer graphics and physics, including in 

particular that of acoustics. 
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2.1 Theoretical construction 

Spherical harmonics of order l can be introduced as the 

trace on the unit sphere S
2
 of harmonic homogeneous 

polynomials of degree l. They have two notable 

properties: 

1. Spherical harmonics of different orders are 

orthogonal for the scalar product in L
2
(S

2
), the 

space of square integrable functions on the unit 

sphere. 

2. Spherical harmonics of order l form a vector 

space whose dimension is 2l + 1. 

These two points lead to the following fundamental 

theorem, key to the practical use of spherical harmonics. 

Theorem: Let ∀ l ∈ ℕ, -l ≤ m ≤ l and -1 < x < 1, Plm the 

Legendre function associated to the Legendre 

polynomials Pl defined by 

 

(1) 

In spherical coordinates (r, θ, ϕ) with colatitude 

convention, the family (Ylm) defined by 

 

(2) 

form an orthonormal basis of L
2
(S

2
), which diagonalizes 

the Laplace Beltrami operator Δ on the sphere S
2
: 

 

(3) 

Thus, any function u ∈ L
2
(S

2
) can be written as 

 

(4) 

where αlm are the coefficients of the Fourier Bessel 

expansion. 

This orthonormal basis of L
2
(S

2
) can now be used 

to represent many data types measured on a sphere. 

Indeed, as the ITD is a function of L
2
(S

2
), it can be 

projected onto this basis. In addition, a global 

interpolation for new data is possible, for example over 

the hole in the Listen database measurement grid. 

2.2 Calculation of the decomposition coefficient 

As explained in [2], in numerical practice we truncate 

the summation at a fixed value L called the truncation 

number, in such a way that we take αlm = 0, ∀ l > L. 

There is a total of M = (L + 1)
2
 terms in the spherical 

decomposition Eq. (4), and, for a discrete set of 

measurements, u(θ,ϕ) is known at N spatial position 

{u1,...,uN} on the sphere S
2
. We therefore fit the M 

unknowns αlm using a regularized fitting approach, by 

writing N linear equation 

 

In short form, Eq. (5) is rewritten as Yα = U, where 

Y is an N×M matrix of spherical harmonics in Eq. (2) at 

measurement points, α is the unknown M vector of 

Fourier Bessel coefficients, and U is the N vector of 

values at measurements points. 

2.3 Truncation order 

The formulation in spherical harmonics, Eq. (4), has the 

advantage of condensing all spatial information 

available on the unit sphere S
2 

as a set of coefficients 

αlm, depending on the order L. In theory, the greater L, 

the more spatially accurate the decomposition in 

spherical harmonics will be. In contrast, as L decreases, 

the decomposition in spherical harmonics will represent 

a spatial averaging. Mathematically, this principle is 

inherent to Eq. (2), where the width of the lobes depends 

on the order 0 < l < L. 

In our approach (Eq. (5)), it is necessary to pay 

special attention to the order of truncation. Indeed, the 

resolution matrix of the system depends on the number 

of measurement points, defined for each database. Also, 

it is necessary to ensure that an increased precision 

given by a high truncation order L for reconstructed 

values does not induce errors, due to solving an 

overdetermined system, in regions where no 

measurements are available. Numerous studies exist on 

this subject, and the determination of optimal order for 

the decomposition is still an active research question. 

2.4 Matrix conditioning and regularization  

As the system in Eq. (5) is solved in the least squares 

sense, it is important to note that the condition number 

of matrix Y also plays an important role, being primarily 

dependent on the spatially distribution of the measured 

data. For example, most databases have a hole at low 

elevations (Listen, CIPIC, etc.), which leads in practice 

to an ill-conditioned matrix Y, and requires 

regularization methods [13]. 
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Tikhonov Regularization: Let us consider the linear 

system Eq. (5) that we rewrite under the form Yα = U, 

where Y is generally not square. The classical approach 

to solve an over/underdetermined system of linear 

equations is to minimize the norm of the residual  

∥Yα - U∥2
. In order to favor a particular solution with 

properties that seem relevant, a regularization term Γ is 

introduced in this minimization: 

 

(6) 

The “Tikhonov matrix” Γ must be carefully chosen for 

the given problem. To smooth solutions, including large 

instabilities in areas where information is missing, 

regularization by Eq. (6) is often performed using a 

normalization of the variations. In the present case, as α 

is the weighting vector of spherical harmonics, it was 

decided to emphasize the “low” spatial frequencies to 

avoid abrupt variations, such as mentioned in [2]. The 

linear system of Eq. (5) then becomes 

 

(7) 

with D = Γ
T
Γ = diag(1+l(l+1)), (diag being the diagonal 

operator), and l the degree of the corresponding 

spherical harmonic Eq. (2). 

3. CASE STUDY ON PRECISION 

As the fundamental theory of interpolation by 

spherical harmonics is now introduced, we focus on the 

application of this interpolation for the KEMAR 

mannequin ITD, measured on a full-sphere using a 

particularly dense grid. In order to study the effects of 

truncation order, incomplete spherical grids, and 

interpolation, it was necessary to have a complete HRTF 

measurement set over the entire sphere measured with a 

high spatial resolution. 

3.1 Reference dataset 

The HRTF of a dummy head was measured in an 

anechoic chamber. Microphones (DPA 4060) where 

placed at the entrance of the ear canals (blocked meatus) 

of a KEMAR mannequin. Three loudspeakers, spaced at 

5° intervals, were mounted on a movable arm at a 

distance of 1.95 m from the center of the head. The 

mannequin was installed on a rotating turntable and 

wore a fleece jumper and felt brimless cap in order to 

provide realistic absorption characteristics. 

Measurements were made for elevations of -45° to +90°, 

in 5° steps, with the turntable rotating in 15° increments. 

Using the three speakers, this resulted in a grid roughly 

5°×5°. HRIRs were obtained using a sweepsine 

excitation signal [18] and recorded at 192 kHz sample 

rate (RME Fireface 800). 

In order to obtain a complete spherical dataset, the 

mannequin was then installed in an inverted position, 

with the inter-aural axis at the same position, and the 

measurement was repeated. Following equalization for 

the measurement chain, the two datasets were merged. 

This was accomplished through a panning between the 

two sets at coincident measurement points. A linear 

panning was employed, after assuring time alignment of 

the two HRIRs using the peak of the cross-correlation to 

minimize any potential comb filtering errors. The 

resulting dataset comprised 1710 positions (see Fig. 1a). 

The ITD was estimated from the measured HRIR by 

calculating the centroid value of the inter-aural cross-

correlation between the envelopes of left and right 

HRIRs for each position (see [16]), which offers a more 

stable ITD estimate than the more commonly used 

maximum IACC method (e.g. [15]). 

a)  b)  

c)  d)  

Figure 1 - Top view of KEMAR measurement 

grid (a) every 5°, and coarse versions at (b) 10°, 

(c) 15°, and (d) 20° resolution.  

 

Figure 2 - Measured KEMAR ITD (μs). 
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3.2 Errors measurements 

For the following section, in order to evaluate the 

spherical harmonic decomposition for ITD, some error 

measurements need to be properly defined. 

First, as seen in Fig. 2, the maximum ITD for the 

KEMAR dataset is ~790 μs. The localization precision 

of human hearing is of the order of 2° at best. Therefore, 

the just-noticeable-difference (JND) for ITD can be 

estimated to be ~8 μs/°. Even if the JND increases with 

azimuth, the maximal acceptable error can be 

considered to be on the order of 16 μs, and we hereafter 

use this value as a reference. 

Second, as previously discussed, it would be 

relevant to compare these errors to the condition number 

of the linear system Eq. (5). Indeed, the condition 

number measures the sensitivity of the solution to errors 

in the data, and gives an indication of the accuracy of 

the results. Values of conditioning near unity indicate a 

well-conditioned matrix, while greater values are signs 

of ill-conditioned systems, with poorer results. 

3.3 Spatial resolution and truncation order 

In order to meet the assumptions of the theoretical 

considerations detailed in the previous section, we first 

study harmonic interpolation in the case of a complete 

sphere, without regularization. For this, the initial mesh 

has been coarsened (Fig. 1b, 1c, and 1d), and two types 

of points are now considered. 

1. The first set of points consists of Reconstructed 

Points (RP), which are the points retained as 

input data for the spherical harmonic 

decomposition in order to compute the Fourier 

Bessel coefficients αlm in Eq. (5). It is expected 

that the measured error of these points 

decreases with the truncation order L. 

2. The second set contains the Interpolated Points 

(IP), defined as all points present in the 

original mesh not contained in the set RP, and 

therefore, not used for the computation of αlm 

in Eq. (5). Errors related to this set reflect the 

effectiveness of the spherical harmonics for 

interpolation. 

Measures of error e were calculated for both sets of 

points, RP and IP (Fig. 3). 

As expected, e(RP) converge with spherical 

harmonic truncation order L. The coarser the mesh, the 

smaller the size of set RP, which results in a quicker 

converging process, and is consistent with the theory. 

However, for coarsened meshes, e(IP) is unstable for 

some truncation orders L. Indeed, the problem becomes 

ill-conditioned when too many spherical harmonics are 

used in relation to the number and density of points on 

the measurement grid. 

To overcome this problem, the Tikhonov 

regularization in Eq. (7) has been performed, and results 

are shown in Fig. 4. The effectiveness of this 

regularization method is seen due to the fact that e(RP) 

and e(IP) are convergent, even if emax(IP) can be further 

improved. The choice of the matrix Γ and the weight ϵ 

in Eq. (7) should be studied more thoroughly in order to 

improve this convergence. However, data used as 

references are physical measures, and suffer from 

inaccuracy. Also, the inherent smoothing of the 

interpolation by spherical harmonics may produce 

“errors”, which can ultimately prove beneficial. Finally, 

it is interesting to notice that e(RP) does not tend 

towards zero when the Tikhonov regularization is used. 

Indeed, as this method performs a smoothing of the 

results, reconstructed values RP are included. But these 

errors are well below the proposed limit of 16 μs, which 

remains acceptable. 

3.4 Effect of a data hole 

Having addressed the case of the complete sphere, we 

are now interested in the accuracy of spherical harmonic 

decomposition when the dataset has a hole. Because of 

the complexity of measurements of HRIRs at low 

elevations, most databases do not have measurements in 

this area. The linear system in Eq. (5) is therefore ill-

conditioned, which is a real problem. 

The results for two mesh resolutions, the original 

one and a mesh coarsened to 15° resolution, are 

presented here (see Fig. 5 and 6). In both cases, the 

Tikhonov regularization in Eq. (7) has been applied. 

e(RP) and e(IP) are now not only functions of 

truncation order L, but also of the hole size (varied here 

as a function of elevation below which data are excluded 

from set RP. In the first case (Fig. 5), e(IP) applies only 

to points in the hole to focus attention solely on the 

presence of this hole in the harmonic interpolation. The 

second case (Fig. 6) is more general since it allows one 

to obtain an optimal truncation order L empirically, in 

the case of the Listen database (measurements every 

15°, hole at ϕ = -45°). 

Conditioning: Both cases (Fig. 5 and 6) show that 

despite regularization, the conditioning of linear system 

Eq. (7) deteriorates with increased hole size and also 

with increasing order. This is not surprising since we are 

attempting to solve a problem more precisely with L 

increasing, though using less and less information. 
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Reconstruction error: emax(RP) clearly converges in 

both cases (see Fig. 5 and 6), even if the truncation 

order L = 30 is insufficient to see emax(RP) < 16 μs on 

the original mesh. Moreover, it converges more quickly 

when the number of points used for reconstruction 

decreases, as predicted by theory. 

Interpolation error on 5 Mesh: In Fig. 5, e(IP) 

generally follows the conditioning of the matrix, with 

some exceptions. We find that the larger the hole, the 

poorer the interpolated values in the hole. Indeed, the 

interpolation over the hole does not correspond to 

reality, but to the model that we have imposed by the 

Tikhonov regularization in Eq. (7). 

Interpolation error on 15 Mesh: In Fig. 6, e(IP) is the 

combination of errors generated by the hole, as well as 

errors generated by the data surrounded by points of 

reconstruction. It appears that the error generated by the 

hole is still present, but it is compensated by the 

accuracy of the interpolation in the area where 

measurements exist. So, even if emax(IP) does not 

converge, emean(IP) is rather good at L ~ 18. We 

therefore use this value in the following section. 

4. ITD INDIVIDUALIZATION VIA PCA 

In considering the ITD as a simple single valued 

function at any given point in space (ITD as a function 

of frequency is not considered in this initial study) it can 

be imagined that it would be possible to predict the ITD 

for an individual given sufficient morphological 

information. This phase of the study concerns the 

prediction of approximate ITD values using a limited 

number of morphological parameters and statistical 

analysis of an HRTF/morphological database. 

4.1 PCA 

Principal Component Analysis (PCA) is a powerful 

statistical tool that uses an orthogonal transformation to 

convert a set of observations of possibly correlated 

variables into a set of values of uncorrelated variables 

called principal components, hierarchically ordered. 

This procedure can be used to reduce the complexity of 

datasets while finding commonalities across 

observations. 

Using the publicly available Listen HRTF 

dataset [9], the ITD of each individual in the dataset was 

calculated. This dataset (at the time of this study) 

contained HRIRs for 51 individuals, sampled at 187 

positions from -45° to +90° in elevation, with sampling 

spacing of approximately 15° in azimuth and elevation. 

The ITD was estimated using the same method 

described in Sec. 3. 

Applying the PCA analysis to this set of ITD results 

in the generation of a series of spatial basis functions 

and associated scalar weightings for each individual, 

which when recombined allow for the reconstruction of 

the original dataset. The first three PCA components, or 

spatial functions, are shown in Fig. 7. These functions 

have a value range of ~±2. Their contributions to the 

reconstructed ITD can be examined by values of the 

associated weighting functions. The corresponding three 

individual weighting functions have respective 

means(standard deviations) of 357.5(16.7), -0.13 (22.8), 

and 0.13(18.1) for an ITD in μs. Visual inspection of 

these results highlights that the first component contains 

the primary and fundamental information associated 

with the ITD, clearly defining variations with respect to 

the median plane, with extreme values being near the 

extreme azimuthal positions. The second and third 

components appear to offer refinements in the ITD 

spatial function along either the generalized front/back 

or up/down directions. The mean error in the 

reconstructed ITD over all subjects and positions using 

only these three PCA components was -0.75±25.52 μs, 

with the mean unsigned error being 16.47±19.51 μs. 

Overall, the reconstructed ITD results via PCA are 

within the perceptual error limits described previously, 

though there is some degree of variation that extends 

beyond these limits. Inspection of the estimated ITD 

from measurements highlights some variations which are 

possibly due to individual subject errors. The goal of the 

PCA method is to provide a generalized solution to an 

ITD prediction method, and therefore some error may 

exist for a given individual. If, for example, there are 

any anomalies in the measurement results for an 

individual, at some given position, the PCA 

reconstruction will act as a form of smoothing, removing 

this anomaly (unless it is present in all subjects). As 

such, the calculated error could be high, while the actual 

perceived error for the subject could be lower, if not 

even improved with respect to the measurements. 

4.2 Morphological prediction 

In addition to the measured HRIR data, the Listen 

database [9] also included morphological data measured 

on the various subjects following the parameters defined 

in the CIPIC database [17]. Using the available 

morphological parameters, the individual weights are 

predicted using a directed linear regression analysis 

technique. Of the 51 subjects in the database, 38 

subjects had sufficient associated head and torso 

morphological data (parameters relative to the pinnae 

morphology were not included). 

The procedure consisted of calculating the best 

linear regression fit using all available morphological 
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data (using the MatLab function robustfit). From these 

first results, those parameters whose contribution was 

judged to be relevant to the prediction  

(p-value < 0.15) were retained and the robust regression 

was recalculated with only these select parameters. This 

procedure was performed for the three sets of individual 

weights. Results showed that the morphological 

parameters that were most correlated with the different 

weights, and therefore identified as contributing to the 

respective spatial functions were: 

- PCA 1: Head_Circumference_x16 and 

Shoulder_Circumference_x17, 

- PCA 2: Head_Depth_x3 and 

Torso_Top_Width_x9, 

- PCA 3: Head_Depth_x3, 

Pinna_Offset_Back_x5, Neck_Width_x6, and 

Neck_Height_x7. 

Correlations of the resulting prediction models to 

the computed PCA weighting function resulted in values 

of 0.86, 0.34, and 0.50 for the three functions 

respectively. The prediction model for the first and 

primary principal component performs well, requiring 

only two simple parameters which seem relevant to the 

acoustics inherent in the ITD. The second component, 

associated with front/back variations, presents the 

poorest performance. The third component performs 

moderately, with several additional parameters. These 

results, combined with the presence of somewhat 

unexpected morphological parameters such as neck 

height, may be indicative of the difficulty in obtaining 

reliable values for the more “obvious” parameters. We 

note that while the CIPIC protocol presents numerous 

measures, the precise definitions are not apparent when 

applied to real-world individuals. As such, parameters 

such as head depth, or ear offset, may exhibit more 

variability due to experimenter protocol which may 

render the results less pertinent. At the same time, 

simpler to measure parameters, such as those relating to 

the neck and torso, while not having obvious acoustical 

impact may be anatomically correlated to the more 

difficult to measure parameters. 

The mean error across all participating subjects was 

-0.63±37.56 μs, with the mean unsigned error being 

28.04±25.00 μs, slightly higher but still quite 

comparable to the results for the PCA reconstruction. 

Mean results over subjects of a correlation analysis 

between the overall estimated ITD and both the PCA 

decomposition and the PCA reconstruction using the 

morphological predictions for the individual weighting 

functions are equal to 0.99. 

4.3 Spherical harmonics applied to PCA ITD 

The goal of the application of a spherical harmonic 

decomposition to the proposed ITD prediction method is 

to improve the interpolation of ITD values far from 

those points in the measured dataset. The main 

advantage of this method over linear interpolation is that 

it is a global interpolation, not local. Moreover, it is 

particularly suited to the spherical distribution of data, 

which is generally the case for measurements of HRIR. 

Finally, the Tikhonov regularization provides a 

smoothing of interpolated values, controllable by the 

matrix regularization. This can impose some desired 

properties on the solution sought. Using the results from 

Sec. 3, spatial decomposition of the three PCA spatial 

functions has been performed with the order limits 

determined according to the spatial resolution and 

spatial distribution corresponding to the Listen 

measurement dataset (roughly 15° spacing with no data 

below -45° elevation). This corresponds to a model 

order of L = 18, as determined in the previous section. 

The ITD predication process for the simple PCA 

recomposition (Sec. 4.1) and the recomposition using 

PCA and the morphological model for the PCA 

weighting functions (Sec. 4.2) was repeated using the 

reconstructed three PCA basis functions using spherical 

harmonics. The mean error relative to the measured ITD 

across all subjects and positions for the PCA 

reconstruction using the spherical harmonic 

decomposition was found to be -0.78 ± 25.81 μs, with 

the unsigned mean error being 16.59 ± 19.78 μs, almost 

identical to the results for the pure PCA reconstruction. 

The mean error for the ITD reconstructed using the 

morphological method for individual weighting 

functions was -0.66±37.74 μs, with the mean unsigned 

error being 28.23±25.06 μs. These results show little to 

no degradation due to the spherical harmonic 

decomposition of the PCA basis functions. 

A more detailed analysis of the error is provided as 

a function of azimuth angle in Fig. 8. Results show good 

performance for the proposed method for azimuths near 

the median plane, while errors for azimuths approaching 

the interaural axis exhibited the largest errors, with the 

maximum errors a lateral angle of 105°. This region 

offers a variety of difficulties in ITD analysis, which are 

beyond the scope of this paper. 

The results here suggest that for the majority of 

potential source positions, using the spherical harmonic 

decomposition of the PCA model combined with the 

morphological model for the individual weighting 

functions provides an architecture for the prediction of 

individual ITD values for any desired source position. 

The errors are typically below 20 μs, near the 
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approximate JND limit of 16 μs. While some variations 

beyond this limit are observed, it remains to be verified 

if these errors are actually perceptible. 

 

5. CONCLUSION 

The decomposition of ITD using PCA resulted in 

the first three components offering spatial variations 

which present variations relevant to physical 

interpretations. Correlations of weighting functions for 

PCA components with individual morphological data 

showed high correlations with physically relevant 

parameters. While the determination of high relevance 

of some parameters was not always obvious, variability 

and difficulty in the measurement of some of the finer 

parameters may explain their absence in the statistical 

results, and biological correlations between indirect 

measurements may offer justification for these final 

results. 

Otherwise, results for the morphological prediction 

of PCA weighting functions are encouraging. While not 

perfect, the proposed method offers a new approach for 

addressing the need for individualized HRTF data 

(currently only addressing the ITD) in the case when 

actual measured data for the individual is not available. 

As a final evaluation of the proposed methodology, 

the ITD estimate based on the morphology of the 

KEMAR mannequin has to be compared to the 

corresponding measured ITD. As this measured ITD 

employed a finer resolution spatial grid over the entire 

sphere, the accuracy of the predicted ITD should be 

compared both at intermediate positions relative to the 

Listen measurement grid for which the PCA basis 

functions were calculated, as well as at lower elevations 

where the Listen dataset had no data. Our results for 

spherical harmonic interpolation are a significant step 

towards achieving this in the near future. 

Finally, additional studies should be carried out 

concerning the perceptual validation of the method with 

regards to prediction errors, as well as interpolation 

errors. 
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FIGURES 

Figure 3 - Absolute error of reconstruction e(RP) (top) and interpolation e(IP) (bottom) on 

the full sphere, without Tikhonov regularization. 

 

 

Figure 4 - Absolute error of reconstruction e(RP) (top) and interpolation e(IP) (bottom) on 

the full sphere, after Tikhonov regularization. 
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Figure 5 - Errors due to a data hole on the 

original mesh (5°), as a function of truncation 

order L and hole elevation. 

Figure 6 - Errors due to a data hole on a coarse 

mesh (15°), as a function of truncation order L 

and hole elevation. 

 

Figure 7 - First three PCA components for ITD reconstruction, from left to right. 

 

 

Figure 8 - Boxplots of unsigned errors in ITD reconstruction relative to measured data 

over all subjects vs. azimuth angle magnitude: direct reconstructions (PCA), and 

reconstructions using morphologically predicted individual weighting function (Morph) 

using the original PCA basis function or spherical harmonic (SH) decompositions of the 

PCA basis functions. 


