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Abstract
As Fast Multipole Method (FMM), adap-

tive cross approximation (ACA) or H-matrices,
various algorithms for fast convolution on un-
structured grids have been developed for many
applications (e.g. electrostatics, magnetostatics,
acoustics, electromagnetics, etc.). The goal is
to reduce the complexity of matrix-vector pro-
ducts, from O(N2) to O(N logN).

In [1], we described a new efficient numeri-
cal method (SCSD), based on a suitable Fou-
rier decomposition of the Green kernel, sparse
quadrature formulae and Type-III Non Uniform
Fast Fourier Transform (type-III NUFFT) [5,6].
This talk summarizes the approach and gives re-
sults of an application of our new open-source
boundary element solver, MyBEM.

1 Fast formulation with SCSD
Boundary element formulations lead to the

classical single layer potential expression, defi-
ned as :

Sλ(x) =
∫

Γ
G(x,y)λ(y)dΓy, ∀x ∈ R3,

where G(x,y) is the Green kernel and Γ the
boundary. Using a discrete quadrature of Γ, this
convolution product needs a fast computation of
discrete sums as :

G ? f(x) ∼
N∑
n=1

G(x,yn)fn, (1)

where the potential (fn)1≤n≤N is known for all
yn.

In the case of the tridimensional Helmholtz
Green kernel, defined as :

G(x,y) = e−ik|x−y|

4π|x− y| ,

the imaginary part can be evaluated on the unit
sphere S2 by spherical integral representation :

Im (G(x,y)) = k

(4π)2

∫
S2
eiks·xe−iks·yds.

Since in this formula, the variables x and y are
well separated, the imaginary part of the dis-
crete Green convolution (1) can obtained by a
standard quadrature (sm;σm)1≤m≤M on S2 :

Im (G ? f(x)) ∼ k

(4π)2

M∑
m=1

eikx·smgm,

with gm = σm

N∑
n=1

e−iksm·ynfn,

where each sum is fastly and successively com-
puted using a type-III NUFFT (complexityN logN).

For the real part, we have proposed a qua-
drature rule to approximate the cosine function
as sum of (dilated) sine functions (e.g. [1, 2]),
enough sparse on a large interval of k|x− y|. It
leads to a final quadrature (ξl;ωl)1≤l≤L of the
full space R3, constructed as concentric spheres.
The final formalism for eq. (1) is :

G ? f(x) ∼ k

(4π)2

L∑
l=1

eikx·ξlhl,

with hl = ωl

N∑
n=1

e−ikξl·ynfn,

where each sum is evaluated by type-III NUFFT.
The complexity has been theoretically studied
for the Green Laplace kernel in [1], numerically
evaluated for Helmoltz kernel in [2], and the fi-
nal mono-level algorithm goes as N

6
5 logN .

2 Test case, a Dirichlet problem
To evaluate the approach, a Matlab solver

with Galerkin boundary element approximation
has been developed, firstly for Helmholtz equa-
tion. This library, called MyBEM, provide di-
rect BEM resolution, iterative FMM (from L.
Greengard [3, 4]) and new SCSD computation.
This library was parallelized, using the Matlab
Parallel Toolbox, and an 8-core computer ca-
denced at 3GHz was used.

For this validation, analytical results from
infinite spherical scattering u∞ is compared to
the numerical solution u provided by MyBEM,
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SNR (dB) BEM F MM SCSD

Ndof f (Hz) krmax SNR2 SNR∞ SNR2 SNR∞ SNR2 SNR∞

103 300 5 0.017 0.032 0.033 0.067 0.016 0.032
104 1000 19 0.002 0.008 0.017 0.060 0.009 0.024
105 3200 118 - - 0.011 0.039 0.019 0.073
106 10000 368 - - 0.021 0.120 0.014 0.090

TOTAL TIMES (s) BEM F MM SCSD

Ndof f (Hz) krmax Time (s) Time (s) Niter Time (s) Niter

103 300 5 2.91 1.76 5 1.67 5
104 1000 19 162 15.7 7 8.07 7
105 3200 118 - 197 9 95.8 9
106 10000 368 - 2700 12 1400 12

Figure 1 – Time and accuracy comparison beetween direct BEM, FMM and SCSD computation.

and following signal to noise ratio gives the ac-
curacy :

SNR2 =

√√√√ 1
n

n∑
i=1

[
20 log 10

(∣∣∣∣∣ uiu∞i
∣∣∣∣∣
)]2

,

SNR∞ = max
i∈[1,n]

∣∣∣∣∣20 log 10
(∣∣∣∣∣ uiu∞i

∣∣∣∣∣
)∣∣∣∣∣ .

In this case, a piecewise linear approximation
with Brackage-Werner formulation was used to
solve boundary integral equation. As shown in
figure 1, MyBEM provides a good accuracy from
103 to 106 degrees of freedom Ndof . Moreover,
the SCSD seems to be significantly faster than
the FMM.

3 Conclusion
We provide a new promising fast convolu-

tion on unstructured grid method, and first re-
sults from concrete implementation in numeri-
cal solver gives good matching with well known
methods as FMM. Same results obtained by
MyBEM, not detailed in this abstract, are ob-
tained for the Maxwell equations.
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