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Aymeric Dieuleveut, École Polytechnique, Paris
Hadrien Hendrikx, INRIA Grenoble

We are looking for exceptional candidates for an internship and PhD thesis, jointly
supervised by Aymeric Dieuleveut and Hadrien Hendrikx, (École Polytechnique and Inria
Grenoble), on the topic of robust aggregation. Competitive funding for the PhD is already
available (with travel support, etc.).

The internship and PhD will focus on decentralized optimization, with a theoretically focused
approach. The objective is to understand and improve stochastic learning algorithms in the decentralized
context, with different constraints.

This direction of research is very dynamic, offers great possibilities and results in numerous
applications. We briefly describe the topic hereafter.

Feel free to contact us for questions of applications (with a CV and transript): Aymeric Dieuleveut
aymeric.dieuleveut@gmail.com, & Hadrien Hendrikx hadrien.hendrikx@epfl.ch.

1 Introduction

In the vast majority of distributed algorithms, nodes collaborate by averaging their parameters. In
decentralized optimization, nodes rely on so-called ‘gossip’ communications, i.e., frequent approximate
averaging through multiplication by a gossip matrix W . In Federated Averaging, nodes perform
infrequent full averaging of their parameters. However, averaging models might not always be the best
way to communicate, for instance:

• In byzantine-robust optimization, when nodes actively try to perturb optimization. The mean is
a brittle estimate in this case, as it can be arbitrarily changed by only one participant.

• In non-convex optimization, where different nodes might be in different modes. In this case,
averaging two good models can lead to a bad one.

• In privacy-preserving optimization, where less sensitive aggregation procedures can lead to better
privacy guarantees.

• To reduce the communication cost. Most current approaches are based on compression + averaging,
but different procedures might be more efficient.

Ad-hoc solutions have been developed for each problem, involving for instance computing medians
instead of means, or clipping the individual gradients before averaging them. However, the convergence
guarantees of these solutions are not always very clear, especially when it comes down to precisely
evaluating convergence speed, or speeding up convergence using standard tricks on top.

The goal of this project is to obtain new communication procedures through a principled approach.
This will then pave the way for more robust distributed algorithms, that leverage the power of standard
optimization analyses out of the box.
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2 Dual approach

(Primal-)Dual methods are a very efficient way to build decentralized algorithms, but their standard
formulation leads to ‘gossip communications’ . Thus, a natural idea is to modify this framework to
obtain similar algorithms with different guarantees. In standard problems, we write:

min
x∈Rd

n∑
i=1

fi(x) ⇔ min
X∈Rn×d,Xi=Xj ,i∼j

n∑
i=1

fi(Xi)

Then, we dualize the right part and we apply standard algorithms on the resulting problem. In the
case of robust optimization, we probably don’t want a strict equivalence, because solving the initial
problem exactly can lead to arbitrary results in the presence of an omniscient adversary (that could for
instance send gradients of f0 = g −

∑
i>0 fi. Thus, the first step is to choose the right reformulation.

Some natural ones that come to mind are the ‘f-robust problem’:

min
X∈Rn×d,

∑
j∼i 1{Xi ̸=Xj}≤f

n∑
i=1

fi(x), (1)

in which each node is allowed to disagree with at most f neighbors. A more subtle formulation is the
median one:

min
X∈Rn×d,Xi=med({Xj ,i∼j})

n∑
i=1

fi(x). (2)

In this case, the constraints are again satisfied by the solution to the global problem, but there might be
some other solutions that have lower error. Note that in the previous formulations, it might be better
to state that some nodes do not need to agree with anyone (so that some arbitrarily different node does
not change the objective too much). Other constraint sets that might be suited to different cases are
{d(Xi, Xj) ≤ ε} for some norm (edge-version), or the {

∑
j∼i d(Xi, Xj) ≤ ε} (node-version). Note that

the latter generalizes the f-robust problem, that is obtained by taking d(x, y) = ∥x− y∥0 and ε = f .
When we change the problem in this way, the first thing we need to think about is what is the

new solution? Does it have desirable properties?.

3 Deriving new algorithms

From these new problems, we would like to derive new algorithms. We detail in this section the standard
dual approach [SBB+17, HBM21]. In particular, we can rewrite those as:

min
X∈Rn×d

F (X) + δ(X). (3)

Then, Lagrangian multipliers can be introduced for the linear constraints. Minimizing over X, we
obtain the convex conjugate of the initial objective function. More specifically, we rewrite the problem
as:

min
X∈Rn×d

max
Y ∈Rn×d

δ(X) +X⊤Y − F ∗(Y ) ⇔ max
Y ∈Rn×d

−δ∗(−Y )− F ∗(Y ) (4)

The standard dual formulation is obtained by using the fact that if δ(X) = 1{A⊤X = 0}, then δ∗(−Y )
finite implies that Y = Aλ for some λ. In particular, the dual problem becomes:

min
λ∈Rn×d

F ∗(Aλ), (5)

which is very convenient because taking gradients of this objective has a direct decentralized interpreta-
tion. Then we can leverage standard tools such as acceleration, splitting etc...

The main question for us in this case is to evaluate δ∗, and see if it has some nice properties
(we can ‘easily’ take gradients/prox for instance). We can also consider δ+α∥ · ∥2 by transfering
some of the strong convexity from F if it helps (does this also make sense in the standard formulation?).
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4 The project

The main challenge of the project now comes down to finding the right formulation and in particular
the right constraint indicator δ to balance the two aspects presented above:

• The solutions of the problem have ‘good properties’ (robustness for instance)

• Efficient algorithms can be derived to solve it (because we know how to compute prox or gradients
of δ or δ∗ for instance).

In the standard case, the ‘good property’ is to not change the minimum, and the efficient algorithm comes
from the fact that the dual objective has a very simple form amenable to decentralized optimization.
Now, let’s be creative and find out others!

We will first focus on two main problems:

• (Byzantine) Robustness, in which we want to be robust against a set of nodes that would behave
arbitrarily [BEMGS17].

• Non-convex optimization, in which we would like aggregators that make sense even though agents
end up at different modes. A first step could be to study diagonal linear networks [VKR19,
PPVF21].

5 Material Conditions

The internship is expected to lead to a Ph.D. thesis, starting September 2023, for which funding is
available, as well as support funding for travel and missions.

The thesis will be co-supervised by Aymeric Dieuleveut and Hadrien Hendrikx, and will be hosted
at École Polytechnique, CMAP, with the possibility to spend time at Grenoble on a regular basis.

École Polytechnique offers competitive Ph.D. salaries and an extremely dynamic environment for
research. During the course of the thesis, an internship abroad may be organized, e.g., at EPFL or in
the US.
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