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Anything that happens, happens.



Anything that, in happening, causes something else to happen, causes something else to
happen.



Anything that, in happening, causes itself to happen again, happens again.



It doesn’t necessarily do it in chronological order, though.

Douglas Adams,

Mostly Harmless
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The first occurrence of the number 43 in the Fibonacci sequence is 433494437.
Apart from 43 (twice + once reversed), the remaining digits, are 4,9 and 7.
Observe that 4 × 9 + 7 = 43.
One could call that a coincidence.



This number is u43. Maybe it’s destiny.

Personal discovery, 2007
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Abstract

The design of new algorithms for artificial intelligence is one of the major challenges of our
time. The extraordinary progress made in recent years has been enabled by a combination
of factors: on the one hand, the simultaneous growth of available data sets and computing
power; on the other hand, algorithmic innovations that have played a decisive role in
making it possible to move to the next scale. During the last years, the field of Federated
Learning (FL) has gained a lot of importance.

In Federated Learning, several organizations or devices seek to collaboratively train a
model under the orchestration of a central server, while keeping individual datasets on
their respective local storage. Federated Learning has emerged as a fundamental setting
to tackle new societal and industrial challenges in machine learning. Indeed, privacy
has become a major concern for both society (individuals participating into the training
want to protect their privacy) and industries (facing legal constraints preventing them
from exploiting valuable data). Overall, it becomes necessary to train the models without
centralizing the data, either because of those privacy constraints, or sometimes because
extremely large datasets have to be distributed over networks of storing devices. Con-
sequently, new optimization challenges are arising, taking into account communication
constraints, and new opportunities to improve the models to adapt to the users are being
explored.

Developing new algorithms for Federated Learning is thus a key challenge. It will simulta-
neously positively impact society, by protecting individual data and restoring public trust
and confidence in machine learning technologies, and unlock countless novel opportu-
nities of collaboration between entities willing to collaborate without centralizing their
datasets; a crucial situation in medical applications, fraud detection, IOT, and many other
domains.

The design and analysis of algorithms and techniques for optimization and for optimiza-
tion in FL have been at the core of my research interests over the last few years. Designing
new techniques requires an in-depth understanding of both the (first-order) optimization
techniques and the specificities of the federated context.

In this manuscript, I summarize my research activities over the last years and pro-
vided a detailed description of some featured contributions, especially in the do-
main of Federated Learning with communication constraints, in the first part of the
manuscript, and fundamental results on classical first-order optimization, in the sec-
ond part.

Keywords: stochastic approximation, first-order optimization, federated learning, com-
pression, performance estimation.



Résumé

La conception de nouveaux algorithmes pour l’intelligence artificielle est l’un des défis ma-
jeurs de notre époque. Les progrès extraordinaires réalisés ces dernières années ont été
rendus possibles par une combinaison de facteurs : d’une part, la croissance simultanée
des ensembles de données disponibles et de la puissance de calcul ; d’autre part, les inno-
vations algorithmiques qui ont joué un rôle décisif pour permettre le passage à l’échelle
supérieure. Au cours des dernières années, le domaine de l’apprentissage fédéré (FL) a
pris beaucoup d’importance.

Dans le cadre de l’apprentissage fédéré, plusieurs organisations ou dispositifs cherchent à
former un modèle en collaboration sous l’orchestration d’un serveur central, tout en con-
servant les ensembles de données individuels sur leur stockage local respectif. L’apprentissage
fédéré est apparu comme un cadre fondamental pour relever les nouveaux défis socié-
taux et industriels de l’apprentissage automatique. En effet, le respect de la vie privée
est devenu une préoccupation majeure tant pour la société (les individus participant à
l’apprentissage veulent protéger leur vie privée) que pour les industries (confrontées à
des contraintes légales les empêchant d’exploiter des données précieuses). Globalement,
il devient nécessaire d’entraner les modèles sans centraliser les données, soit en raison
de ces contraintes de confidentialité, soit parfois parce que des ensembles de données ex-
trêmement volumineux doivent être distribués sur des réseaux de dispositifs de stockage.
Par conséquent, de nouveaux défis d’optimisation apparaissent, en tenant compte des con-
traintes de communication, et de nouvelles possibilités d’améliorer les modèles pour les
adapter aux utilisateurs sont explorées.

Le développement de nouveaux algorithmes pour l’apprentissage fédéré constitue donc
un défi majeur. Il aura simultanément un impact positif sur la société, en protégeant
les données individuelles et en rétablissant la confiance du public dans les technologies
d’apprentissage automatique, et débloquera d’innombrables opportunités inédites de col-
laboration entre des entités désireuses de collaborer sans centraliser leurs ensembles de
données ; une situation cruciale dans les applications médicales, la détection des fraudes,
l’IOT et bien d’autres domaines.

La conception et l’analyse d’algorithmes et de techniques d’optimisation et d’optimisation
en FL ont été au coeur de mes intérêts de recherche au cours des dernières années. La
conception de nouvelles techniques nécessite une compréhension approfondie à la fois des
techniques d’optimisation (de premier ordre) et des spécificités du contexte fédéré.

Dans ce manuscrit, je résume mes activités de recherche au cours des dernières an-
nées et j’ai fourni une description détaillée de certaines contributions marquantes,



notamment dans le domaine de l’apprentissage fédéré avec contraintes de commu-
nication, dans la première partie du manuscrit, et des résultats fondamentaux sur
l’optimisation classique du premier ordre, dans la seconde partie.
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Contributions and manuscript outline

Research directions and featured contributions.

Over the last few years, my research interests have been centered around several aspects
of optimization for machine learning. Building on the work done during my PhD thesis,
centered on stochastic algorithms for high-dimensional learning, I have kept an active
line of research on stochastic optimization, with a significant focus on the distributed and
federated frameworks, in which multiple agents participate in the optimization process.
Simultaneously, I also worked on “classical” optimization, to provide guarantees in the
context of centralized optimization.

Some results from these two research directions are highlighted in this manuscript,
organized in two main parts. In the first part of the manuscript, the first chapter provides
a general summary of the framework and the results. The subsequent chapters give more
detailed results of some selected contributions.

Beyond these contributions, I have also maintained several other lines of work, espe-
cially on prediction with missing data, machine learning for time series and uncertainty
quantification with conformal prediction.

Part I: Contributions to Federated Learning.

In the first part of the manuscript, I highlight results on learning algorithms and methods
for federated learning with communications constraints.

In Chapter 2, we describe how control variates can be used to alleviate the impact
of heterogeneity in FL methods relying on compression. We provide convergence results
for both the convex framework, with bi-directional compression [P1], and non-convex
frameworks in the case of the EM algorithm [C6]. Similar results were also obtained for
Langevin algorithms [C8] (this latest example is not featured in the manuscript).

In Chapter 3, we show how model preservation, which relies on compensating the
errors made by the downlink compression in a federated scheme can be used to recover
nearly optimal convergence rate in the context of bi-directional compression [C7].

My line of work on the federated framework was initiated at the end of my postdoc
at EPFL, and driven by my work with my first PhD student Constantin Philippenko, who
I have supervised since December 2019 and is expected to defend in Spring 2023. The
other papers featured in the manuscript correspond to other collaborations.

Several other contributions, that are not highlighted in the manuscript, were made
on that topic. This includes convergence analysis for homogeneous distributed stochas-
tic algorithms with local updates [C1], differential privacy with heterogeneity [C10], a
benchmarking suite with a consortium of collaborators [C13], as well as multiple ongoing
works.
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Part II: Contributions to first-order optimization

The second part of the manuscript focuses on contributions made on centralized optimiza-
tion. Relying on an in-depth understanding of optimization algorithms is crucial to adapt
them to distributed frameworks. In this part, I chose to highlight recent contributions on
deterministic first order optimization. An important part of our work in that direction re-
lies on computer assisted proofs for optimization, especially with performance estimation
programs. Performance estimation programs enable the numerical derivation of conver-
gence rates for large classes of algorithms.

In Chapter 4, I describe PEPit, a Python package for performance estimation devel-
oped with Baptiste Goujaud (who started his PhD under my supervision in October 2020)
and collaborators [P2]. PEPit enables the automatic derivation of numerical worst-case
analyses of a large family of first-orderoptimization methods possibly involving gradient,
projection, proximal, or linear optimization oracles, along with their approximate, or Breg-
man variants. We leveraged this framework to obtain optimal convergence rates for non-
smooth functions that have a quadratic growth around the optimal point [P4].

In Chapter 5, I present several results on the particular case of quadratic optimization,
a simple yet powerful framework to provide refined analysis of algotihms. First, in [W1],
a joint work with Baptiste and Adrien Taylor we show how to incorporate momentum
in Polyak step-size algorithm an open question that admits a remarkably simple answer
in that framework, linked to conjugate gradient algorithms. Then we show how a faster
acceleration than the one achieved by Polyak momentum can be achieved on quadratic
optimization that have clustered eignevalues. This is obtained by using cyclical step-sizes,
an idea that was motivated by techniques widely used in deep-learning [C9].

Results on stochastic methods, including convergence diagnostics for constant step size
in SGD [C4], that follows our refined analysis of constant learning rate SGD [J3]; as well
as results from my PhD thesis on least squares regression and in the infinite dimensional
regime [J1, J2] are not featured in the manuscript.

Other contributions

1. Times series and applications. I became more interested in time series during my
postdoc at EPFL. With Jean-Yves Franceschi, whose internship at EPFL I supervised,
and Martin Jaggi, we proposed a novel approach to obtain unsupervised represen-
tations of times series [C2], based on a triplet loss and causal convolutional neural
networks. This work, published in Neurips 2019, was very well received by the com-
munity. It was successfully reproduced in the Neurips reproducibility challenge, and
has been widely re-used (300+ stars, 80+ forks on github).

Working on time series was a strong motivation to supervise Margaux Zaffran’s
CIFRE PhD thesis with EDF (French Electricity group) on the prediction of spot
price on electricity markets, started in December 2020. Our work, focused on un-
certainty prediction for time series with conformal methods [C11], was published
at ICML2022, and introduces a novel algorithm for conformal prediction for time
series.

2. Prediction with missing data. Finally, my the last notable and active line of work
is the theoretical study of prediction with missing data. In [C5] we provided fast
convergence rates for stochastic gradient descent for least squares regression with
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missing data. With Erwan Scornet and Claire Boyer, we supervise the PhD of Alexis
Ayme, who started in September 2021. His first article [C12], published at (ICML
2022) provides a minimax rate for prediction with missing data.

Supervision

1. PhD supervision

• Constantin Philippenko, started December 2019, supervised with Eric Moulines.

• Baptiste Goujaud, started October 2020, supervised with Eric Moulines.

• Margaux Zaffran, started December 2020, supervised with Julie Josse, Olivier
Féron, Yannig Goude.

• Alexis Ayme, started September 2021, supervised with Claire Boyer and Erwan
Scornet.

2. Internships supervision

• Scott Pesme, spring-summer 2019, at EPFL (with Nicolas Flammarion), now
PhD student with N. Flammarion, EPFL.

• Jean-Yves Franceschi, spring-summer 2019, at EPFL (with Martin Jaggi), fin-
ished his PhD in 2021, now researcher at Criteo

• Maxence Noble, spring-summer 2021, at Polytechnique (with Aurélien Bellet),
now PhD student with A. Durmus, Polytechnique.

• K.K. Patel, spring summer 2018, now PhD student with N. Srebro, TTIC.
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1
General introduction to Federated Learning

- summary of the main contributions

This introducing chapter aims at introducing the context of Federated Learning with con-
strained communication, and the challenges posed by the use of compression.

We first recall the federated learning framework and describe how compression can
be used, the specificities of compression in the context of distributed optimization, as well
as the main research directions that have been explored and the contributions made, that
are detailed in Chapters 2 and 3.

1.1 Federated Learning and Communication constraints

Federated Learning context. In modern large scale machine learning applications, op-
timization has to be processed in a distributed fashion, using a potentially large number
N of workers. In the data-parallel framework, each worker only accesses a fraction of the
data.

Formally, we consider a number of features d ∈ N∗, and a (convex) cost function
F : Rd → R. We want to solve the following convex optimization problem:

min
w∈Rd

F (w) with F (w) = 1
N

N∑
i=1

Fi(w) , (1.1)

where (Fi)Ni=1 is a local risk function for the model w on the worker i. Especially, in
the classical supervised machine learning framework, we fix a loss ℓ and access, on a
worker i, ni observations (zik)1⩽k⩽ni

following a distribution Di. In this framework, Fi can
be either the (weighted) local empirical risk, w 7→ (n−1

i )
∑ni
k=1 ℓ(w, zik) or the expected

risk w 7→ Ez∼Di [ℓ(w, z)]. At each iteration of the algorithm, each worker will obtain an
unbiased oracle on the gradient of the function Fi (typically either by choosing uniformly
an observation in its dataset or in a streaming fashion, getting a new observation at each
step).

In this manuscript, we focus on first-order methods, especially Stochastic Gradient
Descent [10, 101]. In the framework we study, a central machine aggregates the compu-
tation of the N workers in a synchronized way. This includes both the distributed [e.g.
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70] and the federated learning [introduced in 64, 80] settings. In the federated context,
the functions Fi typically strongly depends on the worker i, a phenomenon referred to as
statistical heterogeneity.

Communication constraint and compression. The communication cost has been iden-
tified as an important bottleneck in the distributed settings [e.g. 115]. In their overview
of the federated learning framework, Kairouz et al. [57] underline (Section 3.5) two ways
reduce this cost: 1) Reducing the frequency of communication; and 2) compressing each
message exchanged between the workers and the central server. In the following chap-
ters and references [P1, C7, C6, C8, P5], we focus on the latter. There is also an
abundant literature on the first approach, including [112, 59, and following references],
and our works [C1, C10] are part of it.

The communication between the workers to the central server can be compressed in
both directions: we refer to uplink (worker to server) and downlink communication.

Bidirectional compression. While many papers leveraging compression to reduce the
communication cost [4, 2, 130, 58, 81, 53, 72, 51] focus on the uplink direction, and this
direction has arguably the highest potential to reduce the total runtime there are several
reasons to also consider downlink compression. First, the difference between upload and
download speeds is not significant enough at all to ignore the impact of the downlink
direction (see [95] for an analysis of bandwidth). If we consider for instance a small
number N of workers training a very heavy model – the size of Deep Learning models
generally exceeds hundreds of MB [16, 55] –, the training speed will be limited by the
exchange time of the updates, thus using downlink compression is key to accelerating
the process. Moreover, in a framework in which a network of smartphones collaborate
to train a large scale model in a federated framework, participants to the training would
not be eager to download a hundreds of MB for each update on their phone. Here again,
downlink compression appears to be necessary. To encompass all situations, we consider
compression in both directions with possibly different compression levels in [C7, P1].

1.1.1 Definitions, examples and assumptions on compression operator.

Numerous techniques have been proposed to perform compression. The simplest way to
transmit a d-dimensional vector requires to encode it over 32 × d or 64 × d bits. However,
such a precision (a) is not always required in applications, as the quantities exchanged
have some intrinsic randomness (b) the communication of such large quantities of data
would slow down the exchanges and saturate the bandwidth.

Definition 1.1 (Compression operator). A compression operator C on Rd is a (possibly ran-
dom) operator Rd → T , where T ⊂ Rd is potentially a random set. When the output is a
random variable, we say that C is randomized.

A compression operator generally satisfies that for most or any x, C(x) can be trans-
mitted without loss with a number of bits much lower than 64 × d. When the compression
operator is random, then this statement holds on average.

Insights on compression in the context of FL. The study of compression from an in-
formation theoretic point of view [6] and the construction of optimal coding schemes for
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an input distribution has been an active area of research over the second half of the 20th
century starting with the work of Shannon [108]. For classical tasks, on images or text,
the goal of compression is to be able to recover almost exactly the signal from its com-
pressed version. In the context of FL, the objective is very different. We highlight the most
important differences:

• Randomness. The information exchanged contains inherent randomness, and high-
precision or loss-less compression is not necessary. In supervised learning, stochastic
gradients are observed and exchanged: they serve as a proxy to the true gradient,
but typically suffer from a noise with variance σ2. A compression precision of the
order of σ may thus be sufficient.

• Unknown distribution. The distribution of the input source is unknown and has
little structure. For example, in the distribution of the gradients (e.g., in a high-
dimensional neural network) is far from fully understood.

• Repeated process. Finally, the learning algorithm often relies on the repeated com-
munication of multiple elementary elements (e.g., a sequence of stochastic gradi-
ents), computed over consecutive iterations and by multiple agents in a distributed
setting. It is then crucial to ensure that on average, i.e., in expectation, the infor-
mation transmitted is correct. In the following, we are thus interested in finding
compression schemes that are unbiased: for any x ∈ Rd E[C(x)] = x.

1.1.2 Unbiased compression operator with relatively bounded variance
(UCRBV).

Unbiased compression operators are necessarily randomized. Formally, we will rely on
two compression operators Cup and Cdwn, that will respectively be applied to any signal
transmitted from the local worker to the central server (uplink) and in the other direction
(downlink). We have a major focus on operators which have a variance scaling (at most)
proportionally to the squared norm of the compressed signal:

A1 (Unbiased compression with relatively bounded variance (UCRBV)). There exist con-
stants ωup

C , ωdwn
C ∈ R∗

+, such that the compression operators Cup and Cdwn verify the two
following properties for all ∆ in Rd, for dir ∈ {up, dwn}:{

E[Cdir(∆)] = ∆ ,

E[∥Cdir(∆) − ∆∥2] ⩽ ωdir
C ∥∆∥2 .

When only one direction is considered, we will simply denote C. Constants ωup
C and

ωdwn
C parametrize the strength of the compression, and can be considered as parameters

of the algorithm, as the compression levels can be chosen depending on the setting. This
assumption will be made and studied in chapters Chapters 2 and 3.

Variance reduction via unbiased compressors. In multiple applications under con-
sideration, multiple agents, measurement units or sources may communicate compressed
values of a similar quantity. The importance of unbiasedness is then most visible: indeed,
the error of the averaged message decreases with the number of measurements N . The
simplest situation is the case in which each communication corresponds to an independent
and identically distributed compression operators (Ck)Nk=1 of the same vector x ∈ Rd. The
aggregation N−1∑N

k=1 Ck(x), then admits a bias-variance decomposition of its quadratic
error: E[∥N−1∑N

k=1 Ck(x) −x∥2] = ∥E[C1(x)] −x∥2 +N−1E[∥C1(x) −E[C1(x)]∥2]. In words,
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the variance of the aggregated vector is reduced by a factor N−1 when averaging the N
messages, while the bias is independent of N . For example, if we use independent un-
biased compressors satisfying A 1 with a constant ω, N−1∑N

k=1 Ck(x) satisfies A1 with a
constant ω/N . A similar dependence is observed in subsequent convergence results, e.g.,
in Chapters 2 and 3, in which the impact of the uplink compression will be reduced by a
factor N , while biased compression operators do not benefit from such a reduction [38].

1.2 Construction of UCRBV and examples

In this section, we review the main approaches to perform unbiased compression. We
consider a possibly random mapping C : Rd → T , following Definition 1.1. Compressing
the information means that any element of the set T can be stored or communicated
using a limited number of bits. In most situations, T is (or has a one-to-one mapping to)
either a finite set ΨM (called a codebook) with cardinality M , a low dimensional space Rh,
h ≪ d, or the combination of both Rh × ΨM . The latest requires 32h+ log2(M)-bits to be
transmitted in a standard precision regime.

As a consequence, compression operators typically belong to two main categories:
quantization-type, that rely on a codebook ΨM [as in 4, 107, 136, 128, 100, 53] and
sparsification-type, that correspond to projections onto (random) spaces (of average di-
mension h ≪ d) [as in 114, 3, 5, 60].

In the following, we describe the most important examples through a principled ap-
proach.

1.2.1 Sparsification: compression via (random) projections

The simplest way of transforming the vector to reduce the number of bits to communicate
is to apply a (random) projection onto a smaller dimensional subspace of dimension h ≪ d.
Noticeable examples include projections that do not depend on x:

Definition 1.2 (Rand-h). We transmit a subset of h coordinates out of d. This corresponds to
projecting orthogonally on a subspace selected uniformly among Cdh possible subspaces, gener-
ated by exactly h canonical vectors. In order to obtain un-biasedness, the random projection
is then scaled by a factor d/h.

Definition 1.3 (p-sparsification). We transmit each coordinate with probability p, indepen-
dently of each other. This corresponds to projecting onto a random subspace with dimension
B(p, d) a binomial law of parameters (p, d). In order to obtain un-biasedness, the random
projection is then scaled by a factor p−1.

Definition 1.4 (Gaussian projection). We sample a Gaussian matrix G of size d × h and
transmit G⊤x ∈ Rh, then reconstruct G(G⊤G)−1G⊤x ∈ Rd.

Definition 1.5 (Partial-participation). We transmit the full input x/p with probability p.

The latest example is of particular interest as device partial participation is a well
identified challenge in distributed systems. If all devices participate independently of each
other with probability p, then this can be seen as identified as a particular compression
scheme.

Those compression schemes are not typically the most efficient in practice as they
result in transmitting with high precision a small part of x and completely ignoring the
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ΨM (0,0) (1,0) (0,1) (1,1) QE

C1 : λi(x0) 0.07 0.63 0.03 0.27 0.3
C2 : λi(x0) 0 0.1 0.7 0.2 0.3
C3 : λi(x0) 0.1 0 0.6 0.3 0.3

Figure 1.1: Three possible compression schemes for a vector x0 = (0.3, 0.9) on a given
codebook ΨM . The orange diamond corresponds to the point to compress, and the blue
points to the codebook. The width of the green line corresponds to the weight assigned to
each codeword. . The table provides the exact weights and quadratic error (QE)

rest. However, their linearity C(x1) − C(x2) = C(x1 − x2) can be helpful to enhance the
stability of algorithms see e.g., Chapter 2.

1.2.2 Unbiased quantization on a deterministic codebook.

The other main approach to obtain an unbiased compression scheme consists in rescaling
the input vector, then selecting an element of a codebook. For a given codebook, we
first introduce, this technique to quantize a vector x in the convex hull of the codebook
elements Conv(ΨM).

Unbiased quantization on a deterministic codebook on its convex hull. We first in-
troduce the set of unbiased compression on a codebook.

Definition 1.6 (Unbiased quantization on a codebook). We consider a codebook ΨM of
cardinal M ⊂ RM and x ∈ X = conv(ΨM ). An unbiased compression scheme with codebook
ΨM is a random mapping:

CΨM
: X → ΨM

x 7→ ψi with probability λi(x) .

such that for all x ∈ X ,

E [CΨM
(x)] =

M∑
i=1

λi(x)ψi = x (1.2)

We denote UVQ(ΨM) the set of unbiased vector quantization operators with codebook
ΨM . The quadratic error of such a compression operator at a point x ∈ X is then

E[∥x− CΨM
(x)∥2] =

M∑
i=1

λi(x)∥ψi − x∥2 . (1.3)

In this class, the codebook ΨM is considered deterministic, and the only randomness
comes from the sampling of the codeword ψi. The resulting codeword ψi can be encoded
via logM bits. Such a code is optimal under the assumption that the dictionary atoms are
uniformly sampled (which corresponds to an assumption on the input distribution X ).

Remark 1.7. For a given codebook, several such compression schemes may exist in UVQ(ΨM).
In Figure 1.1 we propose three possible unbiased quantization on Ψ4 = {(0, 0), (0, 1), (1, 0), (1, 1)}
for an example vector x0 = (0.3, 0.9) ∈ [0; 1]2 = Conv(Ψ4).
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Schemes in the class UVQ-ΨM are restricted to the set X = Conv(ΨM). E.g., for the
codebook in Figure 1.1, we have X = B∞(0, 1) in dimension 2. In order to compress any
vector x ∈ Rd, we :

• Rescale x such that x/∥x∥p ∈ X .
• Transmit ∥x∥p and C(x/∥x∥p,ΨM ).
• Output ∥x∥p × C(x/∥x∥p,ΨM ).

One observes that the unbiased property is preserved, as E[∥x∥p × C(x/∥x∥p,ΨM )] = x.
This can be seen as a gain-shape transform.

Gain-shape and bin splitting Before quantization, a typical strategy [35, Chap 3 Sec-
tion12.10] is to separate a vector x ≜ g.s ∈ RD into g ≜ ∥x∥p, also known as gain, and
s ≜ x

∥x∥p
which is also referred to as the shape. Moreover, the shape s ∈ RD is itself parti-

tioned in bins s = (si)i⩽k ∈ (Rd)k, so that D = d × k. Each bin (aka bucket) is quantized
separately in Rd.

We have the straightforward link between the variance of an operator in UVQ(ΨM)
and A 1.

Lemma 1.8 (Gain-shape transform and A1.). If B2(1) ⊂ Conv(ΨM) and if the quadratic
error of CΨM

is uniformly upper bounded on Conv(ΨM) by a constant ω, then the operator
performing the gain shape transform QΨM

: x 7→ ∥x∥2CΨM

(
x

∥x∥2

)
satisfies A1 with constant

ω.

Remark 1.9 (Communication cost for unconstrained UVQ). Combining gain-shape trans-
formation with an unbiased compression onto a codebook ΨM corresponds to a compression
operator which output is in R × ΨM . The communication cost is then, a priori, 32-bits to
transmit in a loss-less fashion ∥x∥p and log(M) bits to transmit the codeword index i ∈ [M ].
In many applications, it is reasonable to also quantize the gain ∥x∥p with a one dimensional
scalar-quantizer.

This lemma has been widely used in the design of compression schemes for machine
learning applications. We now present two techniques to obtain such UVQ. The most
widely used consists on compressing independently each coordinate, which is requires to
use a codebook on a grid.

Grid codebooks and scalar quantization (SQ) over B∞(0, 1) A scalar quantization
scheme is such that each coordinate is compressed independently, or more formally that
for any x ∈ X , (CQ,ΨM

)i=1,...,d are mutually independent.

Definition 1.10 (Grid codebook). We say that a codebook ΨM ⊂ Rd is
• a grid if ΨM = Ld, where L = {ℓ0, . . . , ℓL} is a finite subset of R with cardinal L+ 1.
• a evenly-spaced grid if furthermore L = {ℓ0 + k ℓL−ℓ0

L , 0 ⩽ k ⩽ L}.

Working with a grid codebook allows to quantize independently each coordinate to
obtain an unbiased vector quantization scheme,

Definition 1.11 (Scalar quantization for a grid Ld). A Scalar quantization method with
codebook ΨM = Ld is the quantization operator in UVQ(ΨM) such that, for any x ∈ [ℓ0; ℓL]d

and i ∈ [d]:

(CQ,ΨM
(x))i = ℓji

x
+Xi(ℓji

x+1 − ℓji
x
), (1.4)



1.2. Construction of UCRBV and examples 13

where jix is the only index such that ℓji
x
⩽ xi < ℓji

x+1, and Xi ∼ B(
xi−ℓji

x
ℓ

ji
x+1−ℓ

ji
x

), and (Xi)1⩽i⩽d

are mutually independent. If xi = ℓL, then we use by convention jix = L− 1.

Scalar quantizer were originally used in signal processing [35, Chap 2] and re-introduced
for applications in Federated Learning in the celebrated QSGD paper by Alistarh et al. [4].

Example 1.12. In most implementations, the codebook is an evenly spaced grid with resolu-
tion s:

ΨM = Ldreg,s =
{
k

2s
, k ∈ {−2s, . . . , 2s}

}d
.

ΨM has a log-cardinality of log2(M) = d log2(2s+1 + 1) ≃ d(s+ 1)

Such a codebook ensures that B∞(0, 1) ⊂ Conv(ΨM), and the compression scheme
can thus be applied on any ball Bp(0, 1). The strongest compression corresponds to s = 0,
for which ΨM = {−1, 0, 1}d, and each coordinate is compressed onto log2(3)-bits. In
Figure 1.1, SQ corresponds to the first line C1.

Computation: SQ has several noticeable advantages. The main advantage is that the
output can be computed efficiently and in a trivially parallelizable fashion over the d

coordinates. Moreover, the grid can be optimized and the cost of storing it is negligible.
The main drawback is that the number of atoms in the codebook scales exponentially with
the dimension: in other words, the compression rate cannot be stronger that 1-bit per
coordinate (thus a maximal compression rate of 32).

Remark 1.13 (Quadratic Error decomposition). The quadratic error of CQ,Ld decomposes
over coordinates:

E
[
∥x− CQ,Ld(x)∥2

]
=

d∑
i=1

E
[
(xi − CQ,L(xi))2

]
Remark 1.14 (Optimal scalar grid L.). The best scalar grid has been studied for X ∈
{B2,B∞}.

• For X = B∞(1), the evenly spaced grid Lreg,s corresponds to grid resulting in the mini-
mal worst-case quadratic error. It is clear from Remark 1.13 and because in dimension
1,

sup
xi∈[−1;1]

E
[
(xi − CQ,L(xi))2

]
=

supj∈[L](ℓj+1 − ℓj)2

4
.

• This grid is also optimal in terms of averaged performance against a uniform distribu-
tion on B∞(1), i.e., x ∼ U [−1; 1]d.

• For X = B2(1), such a grid is not worst case optimal anymore, on the contrary, a
geometrically spaced grid Lτ = {±τ−j , j ∈ [L]} is showed to be optimal in [99].

Remark 1.15 (Codewords sampling distribution and optimal encoding.). In most situ-
ations, it is impossible to compute the probability that each codeword is sampled without
making distributional assumptions on the input distribution, and the general practice is to
encode each codeword with a code of fixed length log2(M). This corresponds to the optimal
code if x ∼ U(B∞(0, 1)), and ΨM = Ldreg,s.

One noticeable exception is the case of X = B2(1). Indeed, for any x ∈ B2(1), CQ,Ld
reg,s

is

unevenly distributed over Ldreg,s. For example for s = 0, E[∥CQ,ΨM
(x)∥0] = ∥x∥1 ⩽

√
d, thus,

the expected number of non-zero coordinates of the codeword is bounded by
√
d for any x. As

a consequence, for any distribution on B2(1), it is possible to encode CQ,ΨM
(x) in 2

√
d bits.
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ΨM (0,0) (0.3,0.3) (1,0) (0,1) (1,1) QE

C1 : λi(x0) 0 0.57 0.1 0 0.33 0.25
C2 : λi(x0) 0 0 0.5 0.4 0.1 0.49

Figure 1.2: Two possible compression schemes for a vector x0 = (0.6, 0.95) on a given
codebook ΨM with 5 atoms. The orange diamond corresponds to the point to compress,
and the blue points to the codebook. The width of the green line corresponds to the
weight assigned to each codeword. The table provides the exact weights and quadratic
error (QE).

While scalar quantization has noticeable advantages, several questions remain. Espe-
cially: (1) does there exist a better convex decomposition to minimize the quadratic error?
(2) can we find a better codebook with same cardinality that reduces the quadratic error?
and (3), more crucially, how can one achieve stronger compression (going below the 1-bit
per coordinate threshold, thus excluding grid codebooks)? Delaunay quantization pro-
vides a systematic way to minimize the quadratic error among UVQ(ΨM) for a general
codebook.

Delaunay Quantization (DQ) The Delaunay quantization operator is defined, for a
codebook ΨM and x ∈ Conv(ΨM) as the unbiased vector quantizer over ΨM minimiz-
ing at any point the quadratic error.

CD,ΨM
(x) =

(
arg min

C∈UVQ(ΨM)
E[∥x− CΨM

(x)∥2]
)

(x) (1.5)

For any x, this is equivalent to solving the following problem over the M dimensional-
probability simplex - finding the best λD,ΨM

(x) such that:

λD,ΨM
(x) ∈ arg min

λ∈[0,1]M ,
∑M

i=1 λi=1∑M

i=1 λiψi=x

M∑
i=1

λi∥ψi − x∥2 . (1.6)

DQ was introduced in [129], as dual-quantization. The main advantage of DQ is that
the quadratic error is minimized at any point x. Its main bottleneck is that computing
the optimal λD,ΨM

(x) is not straightforward. However, eq. (1.6) is a convex problem
and can be solved efficiently. In most situations, Delaunay quantization corresponds to
partitioning the convex hull of ΨM into polytopes supported by (at most) d+1 codewords,
Conv({ψij , j ∈ [d + 1]}). An example of DQ is given in Figure 1.2.

Delaunay and Scalar quantization. Interestingly, for a grid codebook Ld, any decompo-
sition over the 2d points

∏d
i=1{ℓji

x
, ℓji

x+1} results in the exact same quadratic error. For
example in Figure 1.1, one can observe that the quadratic error is the same for all three
quantizations.

Lemma 1.16 (Scalar quantization is Delaunay optimal on Ld). For a grid codebook Ld, the
scalar quantization on the grid (as defined in Definition 1.11) is a Delaunay decomposition,
i.e., satisfies Equation (1.5).
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As a consequence, when using a scalar grid (evenly-spread) or not, SQ achieves op-
timality in the sense the the convex decomposition obtained by the decomposing coordi-
nates independently

The techniques described above in a principled way constitute the most popular ap-
proaches to perform compression. UCRBV can also be combined, as for any two indepen-
dent operators C1, C2 satisfying A1 with constant ω1, ω2, C1 ◦ C2 satisfies A1 with constant
(1 + ω1)(1 + ω2) − 1.

Contribution. In [P5], we introduce new compression schemes based on Delaunay
compression with non grid codebooks. We also introduce a novel compression ap-
proach, based on codebook randomization, that enables to reduce by a factor 2 or 3
the ω constant in A1 for a given codebook cardinality.

1.3 Assumptions on the optimization problem

In the following paragraphs, we summarize some of the assumptions requires to obtain
convergence guarantees in Part I. In Section 1.3.1, we present the assumptions typically
made on the functions to be optimized or on the sequence of gradient oracles, and in
Section 1.3.2 the assumptions on the task heterogeneity.

We consider the optimization problem Equation (1.1), distributed over N agents. In
most of part I, unless explicitly mentioned, we will assume all functions to be differentiable
and the optimization domain to be Rd.

1.3.1 Assumptions on the objective function and stochastic gradients

Assumptions on the optimization problem Equation (1.1). In the following chapters
on optimization, we will make some of the following classical assumptions on F : Rd → R.
Assumptions are regrouped early in this chapter as they will be used at several places, but
not all assumptions will be made simultaneously. For example, we will provide results
both in the non convex case and in the convex case.

A 2 (Convexity). F is convex, that is for all vectors w, v in Rd: F (v) ⩾ F (w) + (v −
w)T∇F (w) .

Moreover, to obtain linear convergence rates, we will rely on strong convexity.

A3 (Strong convexity). F is µ-strongly convex, that is for all vectors w, v in Rd: F (v) ⩾
F (w) + (v − w)T∇F (w) + µ

2 ∥v − w∥2
2 .

Remark that we do not typically need each Fi to be convex or strongly-convex, but only
F . Moreover, for many of the results (e.g., Theorem 2.1) the assumption can be made only
for v = w∗. Finally, we will rely on the smoothness of F :

A4 (Smoothness). F is twice continuously differentiable, and is L-smooth, that is for all
vectors w, v in Rd: ∥∇F (w) − ∇F (v)∥ ⩽ L∥w − v∥.
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Assumptions on the stochastic oracle model. We will rely on stochastic optimization
methods. That means that over multiple iterations k ∈ N, each worker i ∈ J1;NK will
query a stochastic oracle of the gradient, denoted gik, such that, if we denote (Fk)k⩾0 a
filtration such that for k, and all i ∈ J1;NK, gik is Fk measurable

A5 (Unbiased gradients). For all k ∈ N, and all i ∈ J1;NK:
E[gik|Fk−1] = ∇Fi.

We will also assume in Chapter 3 that the variance of the noise is uniformly controlled.
As the oracle is generally computed on a mini-batch of size b, that results in a reduced
variance, we incorporate this fact in the assumption:

A6 (Bounded noise variance on stochastic gradients oracle). The noise over stochastic gradi-
ents for a mini-batch of size b, is uniformly bounded: there exists a constant σ ∈ R+, such that
for all k in N, for all i in J1, NK and for all w in Rd we have: E[∥gik(w) − ∇F (w)∥2|Fk−1] ⩽
σ2/b.

However, in convex optimization, this assumption is typically a bit too strong, and we
prefer to only assume the variance to be controlled at the optimal point w∗. The following
assumption is made in Chapter 2.

A7 (Noise over stochastic gradients computation). The noise over stochastic gradients at
the global optimal point, for a mini-batch of size b, is bounded: there exists a constant σ∗ ∈ R,
s. t. for all k in N, for all i in J1, NK , we have a.s.: E[∥gik(w∗) − ∇Fi(w∗)∥2|Fk−1] ⩽ σ2

∗
b .

The constant σ2
∗ is null, e.g. if we use deterministic (batch) gradients, but also more

general settings, e.g. in interpolation regimes, for example for a well specified linear
regression problem in which all observations satisfy Yj = X⊤

j w∗.
In order to obtain fast convergence rates for stochastic optimization with bounded

noise variance at only the optimal point, we will need to control the average regularity of
the stochastic gradients. Below, we introduce cocoercivity [see 137, for more details about
this hypothesis].

A8 (Cocoercivity of stochastic gradients (in quadratic mean)). We suppose that for all k in
N, stochastic gradients functions (gik)i∈J1,NK are L-cocoercive in quadratic mean. That is, for
k in N, i in J1, NK and for all vectors w, v in Rd, we have:

E[∥gik(w) − gik(v)∥2] ⩽ L ⟨∇Fi(w) − ∇Fi(v) | w − v⟩ .

E.g., this is true under the much stronger assumption that stochastic gradients func-
tions (gik)i∈J1,NK are almost surely L-cocoercive, i.e.: ∥gik(w)−gik(v)∥2 ⩽ L

⟨
gik(w) − gik(v)

∣∣ w − v
⟩

.
Remark that this assumption implies that all (Fi)i∈J1,NK are L-smooth. Finally, we point
that other general assumptions on the oracle’s regularity could be made, e.g. expected
smoothness [46].

1.3.2 Assumptions on task heterogeneity

The data distribution depends on each worker: there are multiple ways to quantify this het-
erogeneity, between the functions. For example, it is possible to compare the function val-
ues Fi, or, if they exist the values of the individual optimal points w∗

i := arg minw∈Rd Fi(w).
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In this manuscript, we will rely in Chapters 2 and 3 on an assumption that describes the
difference between the gradients.

More precisely, in the convex setting in which F admit a global minimum w∗, the
local gradient at the optimal point ∇Fi(w∗) may not vanish. We consider the following
quantity:

A9 (Bounded gradient at w∗). There exists a constant B ∈ R+, s.t.:

1
N

N∑
i=0

∥∇Fi(w∗)∥2 ⩽ B2 .

This is not, strictly speaking, an assumption, but more a definition of a constant B2,
that quantifies the amount of heterogeneity. Especially, in the homogeneous framework
(e.g., in the streaming i.i.d. setting – D1 = · · · = DN and F1 = · · · = FN) the assumption
is satisfied with B = 0.

Remark that there can exist heterogeneous frameworks in which all functions are not
equal, yet w∗

i = w∗
j = w∗ for any i, j ⩽ N . In such case, we can have B2 = 0. This

is not an issue, as we will show that such a condition is sufficient to almost recover the
convergence of the homogeneous case.

This assumption requires the existence of a global optimal point, so is best suited for
the convex case. It can be extended to the following assumption [59]:

A 10 ((G,B)-BGD or bounded gradient dissimilarity). There exist constants B ⩾ 0 and
G ⩾ 1 such that ∀w ∈ Rd

1
N

N∑
i=1

∥∇Fi(w)∥2 ⩽ B2 +G2∥∇F (w)∥2.

If {Fi} are convex, we can relax the assumption to ∀w ∈ Rd

1
N

N∑
i=1

∥∇Fi(w)∥2 ⩽ B2 + 2βG2 (F (w) − F ⋆) .

1.4 Summary of the main results - main challenges and
insights for algorithms with compression

For a first order algorithm, adding compression raises multiples interconnected questions.
I choose to highlight in the manuscript contributions addressing those various questions.

1. How does a naive incorporation of bi-compression into a learning algorithm impact
convergence?

7→ In Chapter 2, we show that incorporating compression into algorithms results in
an increased variance, especially in the presence of worker heterogeneity, and quantify
the resulting convergence in the case of bi-directional compression. Relying on a con-
vergence in Wasserstein distribution, we describe the exact asymptotic variance of the
resulting process. (Based on [P1])

2. Can we adapt the learning algorithm to reduce the impact of heterogeneity?
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7→ In Chapter 2, we also show how to adapt the learning algorithm to recover with
compression a convergence (nearly) similar to the one in the homogeneous setting. We
rely on a client-wise control variate, that enables to learn the client dissimilarity and
annihilate its impact on convergence. We provide convergence rates for the convex case
and for a federated EM algorithm. (Based on [C6, P1, C8, C10])

3. Can we modify the algorithm to (nearly) recover the rate of un-compressed
algorithms?

7→ In Chapter 3, we consider a bi-directional compression framework. We introduce the
concept of preserved model: when communicating to the workers, the central server
sends a compressed version of its update, but makes a different update locally, without
suffering from the downlink compression. We show that this annihilates the impact of
downlink compression, up to negligible second order terms. (Based on [C7])

4. Open directions: can we go beyond worst-case quadratic bound on the compres-
sion operator’s variance?

7→ In the Open directions chapter , I briefly describe some ongoing lines of work, that
enable to obtain a refined understanding of the behavior of compression operators.
Especially, we study:

• Second order moments of the compression operator: several compression op-
erators that satisfy the same assumption A1 can have different asymptotic conver-
gence rates.

• Higher order moments of the compression operator. We show how two com-
pression operators that satisfy the same assumption A1 can have different higher
order moments and how this impacts convergence.

• Lack of regularity. A typical feature of quantization is that it degrades the reg-
ularity of the process: typically E[∥C(x) − C(y)∥2] ≫ ∥x − y∥2 when x − y → 0.
We show how this impacts the stability of the algorithm, to obtain generalization
bounds.

Each of these questions and the (partial) answers we provide are part of a broad
community effort to better understand the impact of compression. A short summary of
these chosen contributions is given in the next chapters.



2
Federated learning with heterogeneity and

compression

This chapter is based on [P1], Artemis: tight convergence guarantees for bidirectional com-
pression in Federated Learning, C. Philippenko and A.D.; and [C6] Federated-EM with het-
erogeneity mitigation and variance reduction, A.D., G. Fort, E. Moulines, G. Robin, Neurips
2021;

Both these papers tackle Federated optimization with compression and heterogeneity,
and investigate the interaction between those two aspects.

References [C10, C8] are also relevant, and are briefly mentioned in the chapter.

2.1 Intuition: link between heterogeneity and compression
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Figure 2.1: Schematic illustration of
FL in a convex heterogeneous setting

The relation between heterogeneity and compres-
sion can be understood intuitively. Let us con-
sider the Federated optimization problem (1.1)
with heterogeneity and in a convex case. A
schematic illustration is given in Figure 2.1. Each
function Fi may have a different minimizer wi∗,
which makes w∗ a non-equilibrium point for each
function Fi, in other words, ∇Fi(w∗) ̸= 0 (while
∇F (w∗) = 0).

We consider compression operators C satisfy-
ing A 1: this means that their variance scales
proportionally to the squared norm of the com-
pressed vector. A simple example to grasp the
impact of compression with heterogeneity is the
one of compressed distributed GD, i.e.

wt = wt−1 − γ
N∑
i=1

C(∇Fi(wt−1)).

While without compression, this algorithm is GD and would converge at a linear rate for
strongly convex functions, introducing compression induces a noise, whose variance scales
with ∥∇Fi(w∗)∥2, asymptotically, if wt → w∗. This thus strongly hinders convergence.
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A particularly simple case is the one of partial participation, that can be seen as a com-
pression scheme (see Section 1.2). If only one agent it out of the N = 3 agents participate
at each iteration t, the algorithm wt = wt−1 − γ∇Fit(wt−1) will not be converging for any
constant learning rate γ > 0, contrary to the full participation regime (i.e., uncompressed
algorithm).

In order to recover (linear) convergence, a sufficient solution would be to correct each
function Fi such that all functions have the same optimal point. This can be achieved by
adding a linear correction to each function Fi, setting F̃i : w 7→ Fi(w) − ⟨∇Fi(w∗), w⟩.
Such a transformation does not change the average objective as

∑N
i=1 Fi =

∑N
i=1 F̃i, but

the resulting functions all have w∗ as a critical point, as for all i ⩽ N , ∇F̃i(w∗) = 0.
Obviously, the values ∇Fi(w∗) are unknown (as finding w∗ is the goal of our ap-

proach). In practice, at iteration k ∈ N we introduce a control variate hit (sometimes
coined memory), that asymptotically approaches ∇Fi(w∗), and work on the function F̃i,t :
w 7→ Fi(w) − ⟨hit, w⟩. This corresponds to subtracting hit to the (stochastic) gradients of Fi
before compression.

More generally, this can be understood as a form of client-wise variance reduction.
Variance reduction ideas originate in the work on Schmidt et al. [106].

In the following, we first present some of the results obtained in [P1], in the case of
convex optimization, then some of the results of [C6], that rely on a similar approach to
obtain rates for a Federated EM algorithm with compressed communication.

Summarized contributions: The two contributions presented in Sections 2.2 and 2.3
rely on this central idea. In Section 2.2, the first contribution is to quantify how a
naive implementation bi-directional compression impacts the convergence of stochastic
gradient descent, in a convex optimization regime. This highlights that compression is
particularly detrimental to the convergence in the heterogeneous case. We then show
how incorporating control variates into the algorithm, corresponding to a client-wise
variance reduction scheme, enables to recover a convergence rate similar to the one in
the homogeneous case. In Section 2.3, we describe how to incorporate compression
into a federated EM algorithm, by acting on the space of sufficient statistics. Although
the optimization problem is non-convex, we show that similar control variates enable
to obtain convergence rates that do not suffer from the task heterogeneity.

w

Wa

W

W

W

Figure 2.2: Schematic illustration of
client drift

Duality with local iterations, [C10]. A very
similar phenomenon happens when using local
iterations to limit the communication cost. The
behavior or Local-SGD (also coined FedAvg) in
the homogeneous case [112], [C1], is substan-
tially better than in the heterogeneous case [71].
Intuitively, if one performs too many local iter-
ations, then each workers’ sequence of iterates
converges to the local optimum wi∗, and the ag-
gregation w̄∗ := 1

N

∑N
i=1w

i
∗ differs from w∗. This

phenomenon is called client-drift. In that con-
text, Karimireddy et al. [59] proposed to introduce control variates to correct the het-
erogeneity. Again, the control variates correspond to linear adjustment of each objec-
tive function that enable to recover the same critical point asymptotically. Scaffold
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algorithm has become very popular in practice.

In [C10], Differentially private federated learning on heterogeneous data, M. Noble, A.
Bellet, and A.D., AISTATS 2022, we extend Scaffold to incorporate differential privacy,
providing precise privacy/utility tradeoffs for algorithms with local iterations, hetero-
geneity, and privacy.

2.2 Artemis: unified framework for SGD with bi-compression

In this section, we consider the problem of learning in a distributed or federated setting
with communication constraints problem (1.1) with convex losses. We assume that there
exist at least one optimal point which we denote w∗.

A stochastic gradient gik+1 is provided at iteration k in N to the device i in J1, NK. This
function is then evaluated at point wk: we will use gik+1 = gik+1(wk) and gik+1,∗ = gik+1(w∗)
to denote the stochastic gradient vectors at points wk and w∗ on device i. In the classical
centralized framework (without compression), for a learning rate γ, SGD corresponds to:

wk+1 = wk − γ
1
N

N∑
i=1

gik+1. (2.1)

In Artemis, to alleviate the communication cost of distributed algorithms, we focus
on bi-directional compression, as introduced in Section 1.1, and use two compression
operations we denote Cup and Cdwn, satisfying A1. Moreover, we focus on a heterogeneous
setting, as described in Section 1.3.2, and denote hi∗ = ∇Fi(w∗), for i in J1, NK.

To reduce the impact of heterogeneity, we show that it is necessary to incorporate
a memory process that reduces the size of the signal to compress, and consequently the
error [81, 72]. Instead of directly compressing the gradient, we first approximate it by
the memory term and, afterwards, we compress the difference. As a consequence, the
compressed term tends in expectation to zero, and the error of compression is reduced. At
each iteration, we thus have the following steps:
1. First, each active local node sends to the central server a compression of gradient dif-

ferences: ∆̂i
k = Cup(gik+1 − hik), and updates the memory term hik+1 = hik + α∆̂i

k with
α ∈ R∗. The server recovers the approximated gradients’ values by adding the received
term to the memories kept on its side.

2. Then, the central server sends back the compression of the sum of compressed gradi-
ents: Ωk+1 = Cdwn

( 1
N
∑N
i=1 ∆̂i

k + hik

)
.

Constants γ, α ∈ R∗ × R+ are learning rates for respectively the iterate sequence and the
memory sequence. The update is thus given by, as summarized in Figure 2.3.:

∀i ∈ J1, NK , ∆̂i
k = Cup

(
gik+1 − hik

)
Ωk+1 = Cdwn

( 1
N
∑N
i=1(∆̂i

k + hik)
)

wk+1 = wk − γΩk+1

. (2.2)

Artemis framework encompasses in particular four algorithms: the variant with uni-
directional compression (ωdwn

C = 0) w.o. or with memory (α = 0 or α ̸= 0) recovers QSGD
defined by Alistarh et al. [4] and DIANA proposed by [81]. The variant using bidirectional
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Figure 2.3: Summary of Artemis. At iteration k ∈ N. wk is the model’s parameter, Cup
and Cdwn are the compression operators, γ is the step size, α is the learning rate for the
memory mechanism.

compression (ωdwn
C ̸= 0) w.o memory (α = 0) is called Bi-QSGD. The last and most effec-

tive variant combines bidirectional compression with memory and is the one we refer to
as Artemis if no precision is given. A comparison of the algorithms is given in Table 2.1.

Assumptions. We consider assumptions A1, 3 and 7 to 9, introduced in Chapter 1. As-
sumption A7 differed from previously used assumptions in the literature. Unlike Diana
[81, 72], Dore [74], Dist-EF-SGD [135], for Double-Squeeze [118], we assumed the
variance of the noise to be bounded only at optimal point w∗ and not at any point w in Rd.
When the variance is null (σ2

∗ = 0) at optimal point, we obtain a linear convergence while
previous results obtain such convergence only if the variance is null at any point (i.e. only
for deterministic GD). We hereafter state the general guarantee on Artemis.

Theorem 2.1 (Convergence of Artemis). Under A1, 3 and 7 to 9, there exists a γmax such
that for any step size γ ⩽ γmax, for a learning rate α ∈ {0, (ωup

C + 1)−1} and for any k in N,
the mean squared distance to w∗ decreases at a linear rate up to a constant of the order of
Eα:

E
[
∥wk − w∗∥2

]
⩽ (1 − γµ)k

(
δ2

0 + (ωup
C + 1)γ2τ0

)
+ 2γEα

µN
,

with, E0 = (ωdwn
C + 1)

(
(ωup

C + 1)σ
2
∗
b + ωup

C B2
)

and E(ωup
C +1)−1 = σ2

∗
b (2ωup

C + 1)(ωdwn
C + 1).

The constant τ0 depends on
∑N
i=1 ∥hi0 − hi∗∥2, and can be made independent of B2.

We can make the following remarks:
1. Linear convergence. The convergence rate given in Theorem 2.1 can be decomposed

into two terms: a bias term, forgotten at linear speed (1−γµ)k, and a variance residual
term which corresponds to the saturation level of the algorithm. The rate of conver-
gence (1 −γµ) does not depend on the variant of the algorithm. However, the variance
and initial bias do vary.

2. Variance term and memory. The variance depends a) on both σ2
∗/b, and the distribu-

tions’ difference B2 without memory b) only on the gradients’ variance at the optimum
σ2

∗/b with memory. Similar theorems in related literature [74, 4, 81, 132, 118, 135] sys-
tematically had a worse bound for the variance term depending on a uniform bound of
the noise variance or under much stronger conditions on the compression operator. [P1]
and [74] were the firsts to give a linear convergence up to a threshold for bidirectional
compression.



2.2. Artemis: unified framework for SGD with bi-compression 23

Table 2.1: Comparison of frameworks for main algorithms handling (bidirectional) com-
pression. References: see [4] for QSGD, [81] for Diana, [51] for [HR20], [74] for Dore,
[C7] for MCM and [118] for DoubleSquezze

.
QSGD Diana [HR20] Dore

Double
Squeeze

Dist
EF-SGD

MCM
Artemis
(new)

Data i.i.d. non i.i.d. non i.i.d. non i.i.d. i.i.d. i.i.d. non i.i.d. non i.i.d.

Bounded variance Uniformly Uniformly Uniformly Uniformly Uniformly Uniformly Uniformly
At optimal

point
Compression One-way One-way One-way Two-way Two-way Two-way Two-way Two-way
Error-feedback ✓ ✓ ✓ ✓
Memory ✓ ✓ ✓ ✓
Device sampling ✓ ✓ ✓

3. Impact of memory. This work was one the first ones on double compression that
explicitly tackled the non i.i.d. case. We prove that memory makes the saturation
threshold independent of B2 for Artemis.

4. Variance term. The variance term increases with a factor proportional to ωup
C for the

unidirectional compression, and proportional to ωup
C × ωdwn

C for bidirectional. This is
the counterpart of compression, each compression resulting in a multiplicative factor
on the noise. A similar increase in the variance appears in [81] and [74]. The noise
level is attenuated by the number of devices N , to which it is inversely proportional.

5. Link with classical SGD. For variant of Artemis with α = 0, if ωup/dwn
C = 0 (i.e. no

compression) we recover SGD results: convergence does not depend on B2, but only
on the noise’s variance.
Overall, it appears that Artemis is able to efficiently accelerate the learning during first

iterations, enjoying the same linear rate as SGD with lower communication complexity, but
it saturates at a higher level, proportional to σ2

∗ and independent of B2.

Extensions: in [P1], we provide a convergence rate for Polyak-Ruppert averaging with-
out strong convexity, resulting from Theorem 2.1, with a sequence of step size decaying
to 0 with the horizon. A detailed discussion onthe maximal learning rate and constants
is also provided. These results are omitted here for the sake of brevity.

Convergence in distribution and lower bound To prove that the increase in the vari-
ance in Theorem 2.1 is not an artifact of the proof, we prove the existence of a limit
distribution for the iterates of Artemis, and analyze its variance. More precisely, we show
a linear rate of convergence for the distribution Θk of wk (launched from w0), w.r.t. the
Wasserstein distance W2 [126]: this gives us a lower bound on the asymptotic variance.
Here, we further assume that the compression operator is random sparsification [128].

Theorem 2.2 (Convergence in distribution and lower bound on the variance). Under A1,
3 and 7 to 9, for γ ⩽ γmax, α ∈ {0, (ωup

C + 1)−1} and:
1. There exists a limit distribution πγ,v depending on the variant v of the algorithm, s.t. for

any k ⩾ 1, W2(Θk, πγ,v) ⩽ (1 − γµ)kC0, with C0 a constant.
2. When k goes to ∞, the second order moment E[∥wk − w∗∥2] converges to Ew∼πγ,v [∥w − w∗∥2],

which is lower bounded by Ω(γEα/µN) as γ → 0 with Eα as in Theorem 2.1.

Interpretation. The second point (2.) means that the upper bound on the saturation
level provided in theorem 2.1 is tight w.r.t. σ2

∗, ω
up
C , ωdwn

C , B2, N and γ. Especially, it proves
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that there is indeed a quadratic increase in the variance w.r.t. ωup
C and ωdwn

C when using
bidirectional compression. Altogether, these three theorems prove that bidirectional com-
pression can become strictly worse than usual stochastic gradient descent in high precision
regimes.

Proof and assumptions. This theorem also naturally requires, for the second point, A
1, 7 and 9 to be “tight”: that is, e.g. Var(gik+1,∗) ⩾ Ω(σ2

∗/b).

Extension: in [P1], we provide a detailed discussion on partial participation and how
to tackle it.

Experiments Numerical experiments confirm the theoretical findings in Theorem 2.1,
and highlight the impact of the memory. We focus on five of the algorithms covered by
our framework: Artemis with bidirectional compression (simply denoted Artemis), QSGD,
Diana, Bi-QSGD, and usual SGD without any compression.

We here report the results on two synthetic and two real-world dataset: superconduct
[see 49, with 21 263 points and 81 features] and quantum [see 12, with 50 000 points
and 65 features] with N = 20 workers. They correspond to respectively logistic regression
(LR) and least-squares regression (LSR). We simulate non-i.i.d. and unbalanced workers,
by splitting the dataset in heterogeneous groups More experiments and details are given
in [P1]. In all experiments, we display the logarithm excess error log10(F (wk) − F (w∗))
w.r.t. the number of iterations k or the number of communicated bits. We use a quantiza-
tion scheme (defined in Section 1.2) with s = 20 in full participation settings. Curves are
averaged over 5 runs, and we plot error bars on all figures.

Convergence and complexity. Figure 2.4a presents the convergence of each algorithm
w.r.t. the number of iterations k. During first iterations all algorithms make fast progress.
However, because σ2

∗ ̸= 0, all algorithms saturate; and the saturation level is higher for
double compression (Artemis, Bi-QSGD), than for simple compression (Diana, QSGD), or
than for SGD. This corroborates findings in Theorem 2.1 and Theorem 2.2. Figure 2.4b
illustrates the linear convergence under null variance at the optimum. Saturation is
observed in Figure 2.4a, but not if we consider a situation in which σ2

∗ = 0, and where
the uniform bound on the gradient’s variance is not null. Experiments also confirm that
the control variate is only beneficial with heterogeneity: while in Figure 2.4a, data is
i.i.d. on machines, and Artemis is thus not expected to outperform Bi-QSGD (the differ-
ence between the two being the α > 0), in Figures 2.4c and 2.4d we use heterogeneous
datasets.

On Figures 2.4c and 2.4d, the loss is plotted w.r.t. the theoretical number of bits ex-
changed after k iterations for the quantum and superconduct dataset. This confirms that
double compression should be the method of choice to achieve a reasonable precision
(w.r.t. σ∗), whereas for high precision, a simple method like SGD results in a lower com-
plexity.

Conclusion We propose Artemis, a framework using bidirectional compression to re-
duce the number of bits needed to perform distributed or federated learning. On top of
compression, Artemis includes a memory mechanism which improves convergence over
non-i.i.d. data. As PP is a classical setting, we designed an approach (PP2) to tackle it
while leveraging the full impact of memory, outperforming existing solutions. We provide
three tight theorems giving guarantees of a fast convergence (linear up to a threshold),



2.3. Federated Expectation Maximization with compression 25

0 25 50 75 100
Number of passes on data

−4

−2

0

lo
g 1

0(
F
(w

k
)
−
F
(w

∗
))

SGD

QSGD

Diana

BiQSGD

Artemis

(a) LSR, homog., σ2
∗ ̸= 0

0 100 200 300 400
Number of passes on data

−15

−10

−5

0

lo
g 1

0(
F
(w

k
)
−
F
(w

∗
))

SGD

QSGD

Diana

BiQSGD

Artemis

(b) LSR, heter., σ∗ = 0.

105 107

Communicated bits

−4

−3

−2

−1

lo
g 1

0(
F
(w

k
)
−
F
(w

∗
))

SGD

QSGD

Diana

BiQSGD

Artemis

(c) Quantum

105 107

Communicated bits

−1.5

−1.0

−0.5

lo
g 1

0(
F
(w

k
)
−
F
(w

∗
))

SGD

QSGD

Diana

BiQSGD

Artemis

(d) Superconduct

Figure 2.4: (a)&(b): synthetic datasets (a) illustration of the saturation when σ∗ ̸= 0 and
data is i.i.d., (b) illustration of the memory benefits when σ∗ = 0, with non-i.i.d. data.
(c)&(d) Real datasets, with heterogeneity, σ∗ ̸= 0, N = 20 workers, p = 1, b > 1 (150 iter.).
X-axis in # bits.

highlighting the impact of memory, analyzing Polyak-Ruppert averaging and obtaining
lowers bound by studying convergence in distribution of our algorithm. Altogether, this
improves the understanding of compression combined with a memory mechanism and
sheds light on challenges ahead.

Extension. We refer to [P1] for more experiments, proofs, and a discussion the bi-
directional compression framework.

2.3 Federated Expectation Maximization with compression

Summary of [C6]: The Expectation Maximization (EM) algorithm is the default algo-
rithm for inference in latent variable models. As in any other field of machine learning,
applications of latent variable models to very large datasets makes the use of advanced
parallel and distributed architectures mandatory. In [C6] we introduced FedEM, which
was one of the first extension of the EM algorithm to the federated learning context.
FedEM is a communication efficient method, which handles partial participation of lo-
cal devices, and is robust to heterogeneous distributions of the datasets. To alleviate
the communication bottleneck, FedEM compresses appropriately defined complete data
sufficient statistics. We also developed and analyzed an extension of FedEM to further
incorporate a variance reduction scheme. In all cases, we derived finite-time complexity
bounds for smooth non-convex problems. Numerical results are presented to support
our theoretical findings, as well as an application to federated missing values imputa-
tion for biodiversity monitoring.

2.3.1 Introduction to EM algorithm.

The Expectation Maximization (EM) algorithm is the most popular approach for inference
in latent variable models. The EM algorithm, a special instance of the Majorize/Minimize
algorithm [66], was formalized by [19] and is without doubt one of the fundamental
algorithms in machine learning. Applications include among many others finite mixture
analysis, latent factor models inference, and missing data imputation; see [83, 79, 33]
and the references therein. As in any other field of machine learning, training latent
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variable models on very large datasets make the use of advanced parallel and distributed
architectures mandatory.

The conventional EM algorithm is not suitable for FL settings. We propose several new
distributed versions of the EM algorithm supporting compressed communication. More
precisely, our objective is to minimize a non-convex finite-sum smooth objective function

arg min
w∈W

F (w), F (w) def= 1
N

N∑
i=1

Li(w) +R(w) , W ⊆ Rd , (2.3)

where N is still the number of workers which are connected to the central server, and
the worker #i only has access to its local data; finally R is a penalty term which may
be introduced to promote sparsity, regularity, etc. In latent variable models, Li(w) =
−m−1∑m

j=1 log p(yij ;w), where {yij}mj=1 are the m observations available for worker #i,
and p(y;w) is the incomplete likelihood. p(y;w) is defined by marginalizing the complete-
data likelihood p(y, z;w) defined as the joint probability density function of the observa-
tion y and a non-observed latent variable z ∈ Z, i.e. p(y;w) =

∫
Z p(y, z;w)µ(dz) where

Z is the latent space and µ is a measure on Z. We focus in this section on the case where
p(y, z;w) belongs to a curved exponential family, given by

p(y, z;w) def= ρ(y, z) exp
{

⟨s(y, z), ϕ(w)⟩ − ψ(w)
}

; (2.4)

where s(y, z) ∈ Rq is the complete-data sufficient statistics, ϕ : W → Rq and ψ : W → R,
ρ : Y × Z → R+ are vector/scalar functions.

In absence of communication constraints, the EM algorithm is a popular method to
solve (2.3). It alternates between two steps: in the Expectation (E) step, using the current
value of the iterate wcurr, it computes a majorizing function w 7→ Q(w,wcurr) given up to
an additive constant by

Q(w,wcurr)
def= − ⟨̄s(wcurr), ϕ(w)⟩ + ψ(w) +R(w) where s̄(w) def= 1

N

N∑
i=1

s̄i(w) ; (2.5)

and s̄i(w) is the ith device conditional expectation of the complete-data sufficient statistics:

s̄i(w) def= 1
m

m∑
j=1

s̄ij(w) , s̄ij(w) def=
∫

Z
s(yij , z)p(z|yij ;w)µ(dz) , (2.6)

where p(z|yij ;w) def= p(yij , z;w)/p(yij ;w). As for the M step, an updated value of wcurr is
computed as a minimizer of w 7→ Q(w,wcurr). The majorizing function is then updated
with the new wcurr; this process is iterated until convergence. The EM algorithm is most
useful when for any wcurr ∈ W, the function w 7→ Q(w,wcurr) is a convex function of the
parameter w which is solvable in w either explicitly or with little computational effort. A
major advantage of the EM algorithm stems from its invariance under homeomorphisms,
contrary to classical first-order methods: the EM updates are the same for any continuous
invertible re-parametrization [65].

Challenges in FL. In the FL context, the vanilla EM algorithm is affected by two major
problems: the communication bottleneck and data heterogeneity.

1. Compression. As in the previous section, we use communication compression, but
contrary to Section 2.2, compression is not applied to stochastic gradients.
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2. Heterogeneity. Our model in Equations (2.3), (2.5) and (2.6) allows the local loss
functions to depend on the worker i ∈ {1, . . . , N} and the observations yij to be
independent but not necessarily identically distributed. In addition, our theoretical
results deal with specific behaviors for each worker i ∈ {1, . . . , N}, see e.g., A15
and 16. In the FL-EM setting, heterogeneity manifests itself by the non-equality
of the local conditional expectations of the complete-data sufficient statistics s̄i’s;
modifications to the algorithms must be performed to ensure convergence at the
central server.

Contributions:
• FedEM. The main highlighted contribution in this section is a new method called

FedEM, supporting communication compression, partial participation and data het-
erogeneity. In this algorithm, workers compute an estimate of the local complete-data
sufficient statistics s̄i using a minibatch of data, apply an unbiased compression oper-
ator to a noise compensated version (using the control variate technique highlighted
in this chapter) and send the result to the central server, which performs aggregation
and the M-step (i.e., parameter update).

• Theoretical analysis. EM in the curved exponential family setting converges to the
roots of a function h. We introduce a unified theoretical framework which covers the
convergence of FedEM and VR-FedEM algorithms in the non-convex case and establish
convergence guarantees for finding an ε-stationary point (see Theorem 2.3). We pro-
vide the number Kopt(ε) of optimization steps and the number KCE(ε) of computed
conditional expectations to reach ε-stationarity. This sheds light on the tradeoffs of
compression and the robustness of FedEM to data heterogeneity.

Extensions: In [C6], we also propose to improve FedEM by adding a variance reduction
on the individual datapoints, inspired by the SPIDER framework [29] which has recently
been extended to the EM framework [31]. VR-FedEM does not require the step sizes to
decrease with m and achieves state of the art iteration complexity to reach a precision
ε, while being robust to heterogeneity.

2.3.2 FedEM: Expectation Maximization algorithms for FL

Recall the definition of the negative penalized (normalized) log-likelihood F (w) from
(2.3). Along the entire section, we make the following assumptions A11 to A13:

A 11. The parameter set W ⊆ Rd is a convex open set. The functions R : W → R, ϕ :
W → Rq, ψ : W → R, and ρ(yij , ·) : Z → R+, s(yij , ·) : Z → Rq for i ∈ [N ]⋆ and
j ∈ [m]⋆ are measurable functions. For any w ∈ W and i ∈ [N ]⋆, the log-likelihood is finite:
−∞ < Li(w) < ∞.

A12. For all w ∈ W and i ∈ [N ]⋆, the conditional expectation s̄i(w) is well-defined.

A13. For any s ∈ Rq, the map s 7→ arg minw∈W {ψ(w) +R(w) − ⟨s, ϕ(w)⟩} exists and is
unique; the singleton is denoted by {T(s)}.

EM defines a sequence {wk, k ⩾ 0} that can be computed recursively as wk+1 = T ◦
s̄(wk), where the map T is defined in A13 and s̄ is defined in (2.5). On the other hand, the
EM algorithm can be defined through a mapping in the complete-data sufficient statistics,
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referred to as the expectation space. In this setting, the EM iteration defines a Rq-valued
sequence {Ŝk, k ⩾ 0} given by Ŝk+1 = s̄ ◦ T(Ŝk). Thus, we observe that the EM algorithm
admits two equivalent representations:

(Parameter space) wk+1 = T ◦ s̄(wk); (Expectation space) Ŝk+1 = s̄ ◦ T(Ŝk). (2.7)

In this section, we focus on the expectation space representation; see [65] for an interesting
discussion on the connection of EM and mirror descent. It has been shown in [18] that
if s⋆ is a fixed point to the EM algorithm in the expectation space, then w⋆

def= T(s⋆) is a
fixed point of the EM algorithm in the parameter space, i.e., w⋆ = T ◦ s̄(w⋆); note that the
converse is also true. Define the functions hi and h from Rq to Rq by h(s) def= 1

N

∑N
i=1 hi(s)

with hi(s)
def= s̄i ◦ T(s) − s .

h(s) def= 1
N

N∑
i=1

hi(s) , hi(s)
def= s̄i ◦ T(s) − s . (2.8)

A key property is that the fixed points of EM in the expectation space are the roots of the
mean field s 7→ h(s) (see (2.5) for the definition of s̄). Therefore, convergence of EM-based
algorithms is evaluated in terms of ε-stationarity (see [36, 31]): for all ε > 0, there exists
a (possibly random) termination time K s.t.: E

[
∥h(ŜK)∥2

]
⩽ ε . Another key property of

EM is that it is a monotonic algorithm: each iteration leads to a decrease of the negative
penalized log-likelihood i.e. F (wk+1) ⩽ F (wk) or, equivalently in the expectation space
F ◦ T(Ŝk+1) ⩽ F ◦ T(Ŝk) (for sequences {wk, k ⩾ 0} and {Ŝk, k ⩾ 0} given by (2.7)). A14
assumes that the roots of the mean field h are the roots of the gradient of F ◦ T (see [18]
for the same assumption when studying Stochastic EM). A15 assumes global Lipschitz
properties of the functions hi’s.

A14. The function W def= F ◦ T : Rq → R is continuously differentiable on Rq and its gradient
is globally Lipschitz with constant LẆ. Furthermore, for any s ∈ Rq, ∇ W(s) = −B(s)h(s)
where B(s) is a q × q positive definite matrix. In addition, there exist 0 < vmin ⩽ vmax such
that for any s ∈ Rq, the spectrum of B(s) is in [vmin, vmax].

A15. For any i ∈ [N ]⋆, there exists Li > 0 such that for any s, s′ ∈ Rq, ∥hi(s) − hi(s′)∥ =
∥(̄si ◦ T(s) − s) − (̄si ◦ T(s′) − s′)∥ ⩽ Li∥s− s′∥ .

Finally, we recall that we assume A1 on the compression operator. As the compression
is only performed in the uplink direction, we denote ω := ωup.

Schematic visualization of a naive Federated EM algorithm. On Figure 2.5, we pro-
vide a schematic representation of a simplified version of FedEM. The left part represents
the expectation space, the right part parameter space. In short, we alternate between
stochastic approximation steps to estimate the sufficient statistic, based on each workers
i ∈ [N ] oracle, aggregation steps, and optimization steps (computing T). For visualiza-
tion purpose, the compression step is omitted on the figure, but importantly, the memory
term Vk,i and the compression are applied onto the statistics space (left space), before the
communication to the central server and the aggregation step.
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Algorithm 1: FedEM with partial participation

Data: kmax ∈ N⋆; for i ∈ [N ]⋆, V0,i ∈ Rq; Ŝ0 ∈ Rq; a positive sequence
{γk+1, k ∈ [kmax − 1]}; α > 0; a coefficient p = EA∼PPP [card(A)]/N .

Result: The FedEM-PP sequence: {Ŝk, k ∈ [kmax]}
1 Set V0 = N−1∑N

i=1 V0,i
2 for k = 0, . . . , kmax − 1 do
3 Sample Ak+1 ∼ PPP
4 for i ∈ Ak+1 do
5 (worker #i)
6 Sample Sk+1,i, an approximation of s̄i ◦ T(Ŝk)
7 Set ∆k+1,i = Sk+1,i − Vk,i − Ŝk
8 Set Vk+1,i = Vk,i + α C(∆k+1,i).
9 Send C(∆k+1,i) to the central server

10 for i /∈ Ak+1 do
11 (worker #i)
12 Set Vk+1,i = Vk,i (no update)

13 (the central server)
14 Set Hk+1 = Vk + (Np)−1∑

i∈Ak+1
C(∆k+1,i)

15 Set Ŝk+1 = Ŝk + γk+1Hk+1
16 Set Vk+1 = Vk + αN−1∑

i∈Ak+1
C(∆k+1,i)

17 Send Ŝk+1 and T(Ŝk+1) to the N workers

Si
si Sai

S

Si
sa

S

Figure 2.5: Schematic visu-
alization on a naive Feder-
ated EM

The FedEM algorithm , is described by algorithm 1. The
algorithm encompasses partial participation of the workers:
at iteration #(k + 1), only a subset Ak+1 of active workers
participate to the training, see line 3. The averaged frac-
tion of participating workers is denoted p. Each of the ac-
tive workers #i computes an unbiased approximation Sk+1,i
(line 6) of s̄i ◦ T(Ŝk); conditionally to the past, these approx-
imations are independent. The workers then transmit to the
central server a compressed information about the new suffi-
cient statistics.
Control variates (Vk,i)i∈[N ]. A naive solution would be to
compress and transmit Sk+1,i − Ŝk, but data heterogeneity between servers often prevents
these local differences from vanishing at the optimum, leading to large compression er-
rors and impairing convergence of the algorithm (as described in Section 2.1). Following
the approach highlighted in this chapter, a memory Vk,i (initialized to hi(Ŝ0) at k = 0) is

introduced; and the differences ∆k+1,i
def= Sk+1,i − Ŝk − Vk,i are compressed for i ∈ Ak+1

(line 7 and line 9). These memories are updated locally: Vk+1,i = Vk,i + α C(∆k+1,i), at
line 8, with α > 0 (typically set to 1/(1 +ω) with ω the compression constant). On its side,
the central server releases an aggregated estimate Ŝk+1 of the complete-data sufficient
statistics by averaging the quantized difference (np)−1∑

i∈Ak+1
C(∆k+1,i) and by adding

Vk (line 14 and line 15). Then, it updates Vk+1 = Vk + αn−1∑N
i=1 C(∆k+1,i), see line 16.

The final step consists in solving the M-step of the EM algorithm, i.e. in computing T(Ŝk+1)
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(see A13).

The convergence analysis is under the following assumptions on the oracle Sk+1,i:
for any i ∈ [n]⋆, the approximations Sk+1,i are unbiased and their conditional variances
are uniformly bounded in k. For each k ∈ N, denote by Fk the σ-algebra generated by
{Sℓ,i,Aℓ; i ∈ [n]⋆, ℓ ∈ [k]} and including the randomness inherited from the quantization
operator C up to iteration #k.

A 16. For all k ∈ N, conditional to Fk, {Sk+1,i}Ni=1 are independent. Moreover, for any
i ∈ [N ]⋆, E [Sk+1,i|Fk ] = s̄i ◦ T(Ŝk) and there exists σ2

i > 0 such that for any k ⩾ 0

E
[
∥Sk+1,i − s̄i ◦ T(Ŝk)∥2

∣∣∣Fk

]
⩽ σ2

i .

A16 covers both the finite-sum setting described in the introduction, and the online
setting. In the finite-sum setting, s̄i is of the form m−1∑m

j=1 s̄ij . In that case, Sk+1,i can
be the sum over a minibatch Bk+1,i of size b sampled at random in [m]⋆, with or with-
out replacement and independently of the history of the algorithm: we have Sk+1,i =
b−1∑

j∈Bk+1,i
s̄ij ◦ T(Ŝk). In the online setting, the oracles Sk+1,i come from an online pro-

cessing of streaming informations; in that case Sk+1,i can be computed from a minibatch
of independent examples so that the conditional variance σ2

i , which will be inversely pro-
portional to the size of the minibatch, can be made arbitrarily small.

Convergence analysis. We now present in Theorem 2.3 our key result, from which
complexity expressions are derived.

Theorem 2.3. Assume A11 to A16 and set L2 def= n−1∑N
i=1 L

2
i , σ

2 def= N−1∑N
i=1 σ

2
i . Let

{Ŝk, k ∈ [kmax]} be given by algorithm 1, with ω > 0, α
def= (1 + ω)−1 and γk = γ ∈ (0, γmax]

where
γmax

def= vmin
2LẆ

∧
√
N

2
√

2L(1 + ω)
√
ω
. (2.9)

Denote by K the uniform random variable on [kmax − 1]. Then, taking V0,i = hi(Ŝ0) for
all i ∈ [N ]⋆:

vmin

(
1 − γ

LẆ
vmin

)
E
[
∥h(ŜK)∥2

]
⩽ 1
γkmax

(
W(Ŝ0) − min W

)
+ γLẆ

1 + 5ω
N

σ2 . (2.10)

When there is no compression (ω = 0 so that C(s) = s), we prove that the introduction
of the random variables Vk,i’s play no role whatever α > 0 and the choice of the V0,i’s, and
we have for any γ ∈

(
0, 2vmin/LẆ

)
in the supplemental)

(
1 − γ

LẆ
2vmin

)
E
[
∥h(ŜK)∥2

]
⩽ 1
γkmax

(
W(Ŝ0) − min W

)
+ γLẆ

σ2

N
. (2.11)

Optimizing the learning rate γ, we derive the following corollary.

Corollary 2.4 (of Theorem 2.3). Choose γ
def=
( (W(Ŝ0)−min W)n
kmaxLẆ(1+5ω)σ2

)1/2 ∧ γmax. We get

E
[
∥h(ŜK)∥2

]
⩽ 4
vmin

(√(W(Ŝ0) − min W
)
LẆ(1 + 5ω)σ2

nkmax
∨
(

W(Ŝ0) − min W
)

γmaxkmax

)
.
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Theorem 2.3 and Corollary 2.4 do not require any assumption regarding the distri-
butional heterogeneity of workers. These results remain thus valid when workers have
access to data resulting from different distributions a widespread situation in FL frame-
works. Crucially, without assumptions on the heterogeneity of workers, the convergence
of a “naive" implementation of compressed distributed EM (i.e. an implementation with-
out the variables Vk,i’s) would not converge.

Let us comment the complexity to reach an ε-stationary point, and more precisely how
the complexity evaluated in terms of the number of optimization steps depend on ω,N, σ2

and ε. Since KOpt(ε) = kmax, from Corollary 2.4 we have that: Kopt(ε) = O
(

(1+ω)σ2

nε2

)
∨

O
(

1
γmaxε

)
.

Maximal learning rate and compression. The comparison of Theorem 2.3 with the
no compression case (see (2.11)) shows that compression impacts γmax by a factor propor-
tional to

√
N/ω3/2 as ω increases (similar constraints were observed in the risk optimiza-

tion literature, e.g. in [52, 96]). This highlights two different regimes depending on the
ratio

√
N/ω3/2: if the number of workers N scales at least as ω3, the maximal learning

rate is not impacted by compression; on the other hand, for smaller numbers of workers
n ≪ ω3, compression can degrade the maximal learning rate. We highlight this conclu-
sion with a small example in the case of scalar quantization for which ω ∼ √

q/squant: for
q = 102 and squant = 4 (obtaining a compression rate of a factor 16), the maximal learning
rate is almost unchanged if N ⩾ 16.

Dependency on ε. The complexity Kopt(ε) is decomposed into two terms scaling
respectively as σ2ε−2 and γ−1

maxε
−1, the first term being dominant when ε → 0. This

observation highlights two different regimes: a high noise regime corresponding to γmax(1+
ω)σ2/(Nε−1) ≥ 1 where the complexity is of order σ2ε−2, and a low noise regime where
γmax(1 + ω)σ2/(Nε−1) ⩽ 1 and the complexity is of order γ−1

maxε
−1. An extreme example

of the low noise case is σ2 = 0, occurring for example in the finite-sum case (i.e., when
s̄i = m−1∑m

j=1 s̄ij) with the oracle Sk+1,i = s̄i ◦ T(Ŝk).
Impact of compression for ε-stationarity. As mentioned above, the compression si-

multaneously impacts the maximal learning rate (as in (2.9)) and the complexity Kopt(ε).
Consequently, the impact of the compression depends on the balance between ω,N, σ2

and ε, and we can distinguish four different “main” regimes. In the following tabular, for
each of the four situations, we summarize the increase in complexity Kopt(ε) resulting from
compression.

Complexity regime:

(Dominating term in Kopt(ε))
(1+ω)σ2

nε2
1

γmaxε

γmax regime:

(Dominating term in (2.9))
Example situation

High noise σ2,

small ε

Low σ2 (e.g., large minibatch)

larger ε
vmin
2LẆ

large ratio N/ω3 ×ω ×1
√
N

2
√

2L(1+ω)
√
ω

low ratio N/ω3 ×ω ×ω3/2/
√
N

Depending on the situation, the complexity can be multiplied by a factor ranging from
1 to ω ∨ (ω3/2/

√
N) . Remark that the communication cost of each iteration is typically

reduced by compression of a factor at least ω. Moreover, the benefit of compression is
most significant in the low noise regime and when the maximal learning rate is vmin/(2LẆ)
(e.g., when N large enough). We then improve the communication cost of each iteration
without increasing the optimization complexity, effectively reducing the communication
budget “for free”.
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Extension and experiments. We refer to [C6] for the extension to VR-FedEM in which
an observation-wise variance reduction scheme is also applied, and for the numerical
results.

Conclusions We introduced FedEM which is, to the best of our knowledge, the first algo-
rithm implementing EM in a FL setting, and handles compression of exchanged informa-
tion, data heterogeneity and partial participation. We further extended it to incorporate
a variance reduction scheme, yielding VR-FedEM. We derived complexity bounds which
highlight the efficiency of the two algorithms, and illustrated our claims with numerical
simulations, as well as an application to biodiversity monitoring data. In a simultaneously
published work, Marfoq et al. [78] consider a different Federated EM algorithm, in or-
der to address the personalization challenge by considering a mixture model. Under the
assumption that each local data distribution is a mixture of unknown underlying distribu-
tions, their algorithm computes a model corresponding to each distribution. On the other
hand, we focus on the curved exponential family, with variance reduction, partial partic-
ipation and compression and on limiting the impact of heterogeneity, but do not address
personalization.

Conclusion

This first chapter correspond to the first key idea in the domain of compression: (1) with
compression, heterogeneity hinders convergence (2) it is possible to reduce the negative
impact of heterogeneity relying on control variates. We gave two examples of such contri-
butions. Similar ideas were also central in our work on Langevin dynamics [C8].



3
Model preservation and error

compensation.

This chapter is based on [C7]: Preserved central model for faster bidirectional compression
in distributed settings, C. Philippenko, A.D., Neurips 2021.

The main contribution is to propose a method that takes advantage of the observation
of un-compressed quantity, before they are compressed.

Intuition: model preservation and error feedback In Chapter 2, we showed how to
recover the convergence rate of the homogeneous case with compression by relying on con-
trol variates, that learn the dissimilarity and modify the learning algorithm consequently.
Nevertheless, compression still degrades the convergence of the algorithm: it amplifies
the gradient noise by multiplicative factor. This is visible in Theorem 2.1: for Artemis, the
limiting noise is amplified.

In this Chapter, we explore a different direction. The fundamental observation is that,
when performing compression, the worker and the central server, who communicate a
compressed version of an update, can also compute, store and eventually use the differ-
ence between the update and its compression. Such strategies, coined Error Feedback,
were originally introduced to recover convergence for biased compression operators (e.g.,
signSGD, [58]). In [C7], we show that such a strategy is natural in the context of bi-
directional compression for FL, and we introduce a new error compensation scheme based
on unbiased compression and a memory scheme to control the variance of the process.

Summary of [C7]. We develop a new approach to tackle communication constraints
in a distributed learning problem with a central server. We propose and analyze a new
algorithm that performs bidirectional compression and achieves the same convergence
rate as algorithms using only uplink (from the local workers to the central server) com-
pression. To obtain this improvement, we design MCM, an algorithm such that the down-
link compression only impacts local models, while the global model is preserved. As a
result, and contrary to previous works, the gradients on local servers are computed on
perturbed models. Consequently, convergence proofs are more challenging and require a
precise control of this perturbation. To ensure it, MCM additionally combines model com-
pression with a memory mechanism. This analysis opens new doors, e.g. incorporating
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worker dependent randomized-models and partial participation.

Introduction As in Section 2.2 of Chapter 2, we consider the federated optimization
problem Equation (1.1) with bidirectional compression. Existing bidirectional algorithms
[118, 135, 104, 74, 95, 51, 131, 39] aggregate all the information they have received,
compress it broadcast the result. Both the main “global” model and the “local” ones per-
form the same update with this compressed information. Consequently, the model hold
on the central server and the one used on the local workers (to query the gradient oracle)
are identical. However, this means that the model on the central server has been artifi-
cially degraded: instead of using all the information it has received, it is updated with the
compressed information.

Here, we focus on preserving (instead of degrading) the central model: the update
made on the server’s side only weakly depends on the downlink compression. But si-
multaneously, the local models are different from the central model. The local gradients
are thus measured on a “perturbed model” (or “perturbed iterate”): such an approach re-
quires a more involved analysis and the algorithm must be carefully designed to control
the deviation between the local and global models [77]. For example, algorithms directly
compressing the model or the update would simply not converge.

We propose MCM - Model Compression with Memory - a new algorithm that 1) preserves
the central model, and 2) uses a memory scheme to reduce the variance of the local model.
We prove that the convergence of this method is similar to the one of algorithms using only
unidirectional compression.

Contributions:
1. We propose a new algorithm MCM, combining a memory process to the “preserved”

update. Gradients are observed at a random point, which, in expectation, is to
the preserved model.

2. We carefully control the variance of the local models w.r.t. the global one. We
provide a contraction equation involving the control on the local model’s variance
and show that MCM achieves the same asymptotic rate of convergence as single
compression in strongly-convex, convex and non-convex regimes.

3. We propose a variant, Rand-MCM incorporating diversity into models shared with
the local workers and show that it improves convergence for quadratic functions.

This is the first algorithm for double compression to focus on a preserved central
model. We underline, both theoretically and in practice, that we get the same asymp-
totic convergence rate for simple and double compression - which is a major improve-
ment. Our approach is one of the first to allow for worker dependent model, and to
naturally adapt to worker dependent compression levels.

In the rest of this chapter, we present a few selected results form [C7]. We first in-
troduce MCM, then provide one convergence rate in the convex case, that illustrates our
claims.

3.1 Algorithm design: Preserved model and MCM algorithm

We consider the minimization problem Equation (1.1), and focus here on the convex case,
assuming the existence of an optimal parameter w∗, and denoting F∗ = F (w∗).
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As in Chapter 2, we rely on a stochastic gradient descent (SGD) algorithm. A stochastic
gradient gik+1 is provided at iteration k in N to the device i in J1, NK. This gradient oracle
can be computed on a mini-batch of size b. We recall that we use two different compression
operators, respectively Cup and Cdwn to compress messages exchanged in each direction.

In classical algorithms with double compression, including Artemis& Dore, the update
is of the following form:

wk+1 = wk − γCdwn
(

1
N

∑N
i=1 Updatei(wk) + Correctioni

)
, (Degraded Update)

where Updatei and Correctioni vary depending on the algorithm, and are typically meant
to tackle heterogeneity. For example, we can have Updatei(w) = Cup(gik+1(w) − hik) and
Correctioni = hik, as in Artemis. This approach has a major drawback: the central server
receives and aggregates information 1

N

∑N
i=1 Received updatei + Correctioni. Yet, to be

able to broadcast it back, it compresses it, before applying the update. We refer to this
strategy as the degraded update approach. Its major advantage is simplicity, and it was used
in all previous papers performing double compression. As this appears to be a waste of
valuable information, we consider instead updating the global model wk+1 independently
of the downlink compression:

wk+1 = wk − γ 1
N

∑N
i=1 Updatei(ŵk) + Correctioni . (Preserved Update)

for a sequence ŵk (a) which is updated using a compressed message, such that (b) E[ŵk] =
wk, (conditional unbiasedness) and (c) Var(ŵk|wk) = E[∥ŵk − wk∥2|wk] is “small” (con-
trolled conditional variance). Building such a sequence ŵk is no easy task. For example,
setting:

ŵ♠
k := Cdwn(wk) or ŵ♣

k := ŵ♣
k−1 + Cdwn(wk − ŵ♣

k−1)

or ŵ♢
k := ŵ♢

k−1 + Cdwn
(
γ 1
N

∑N
i=1 Updatei(ŵ♢

k ) + Correctioni
)

would all satisfy (a) and (b), but would result in a large variance. To fix this issue, we
introduce another auxiliary model, denoted Hk, and coined downlink memory term, which
is available on both workers and central server. We define:{

ŵ♡
k = Hk−1 + Cdwn(wk −Hk−1)

Hk = Hk−1 + αdwnCdwn(wk −Hk−1).
(MCM-downlink)

For the uplink communication and update of the main sequencewk, we use (Preserved Update),
with Updatei and Correctioni as in Chapter 2 to tackle heterogeneitywk+1 = wk − γ

N

∑N
i=1 Cup(gik+1(ŵ♡

k ) − hik) + hik

hik+1 = hik + αupCup(gik+1(ŵ♡
k ) − hik) ∀i ∈ J1, NK (MCM-uplink)

MCM consists in alternating (MCM-uplink) and (MCM-downlink), starting from ŵ0 = H0 =
w0. In the following, we simple denote ŵk for ŵ♡

k , when no confusion can be made.
Rate αdwn. It is necessary to use αdwn < 1. Otherwise, the compression noise tends to
propagate and is amplified, because of the multiplicative nature of the compression. In
fact, for αdwn = 1, we get Hk ≡ ŵk and ŵ♡

k ≡ ŵ♣
k (and for αdwn = 0, we get Hk ≡ 0

and ŵ♡
k ≡ ŵ♠

k ) and both these solutions are not efficient. In Figure 3.1 we compare on a
numerical experiment the algorithms when using ŵ♠, ŵ♢, ŵ♣ and ŵ♡ (MCM), showing that
only the latest converges.
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Related work on Perturbed iterate analysis Analysis relies on
the theory of perturbed iterate, introduced by Mania et al. [77] to
deal with asynchronous SGD. More recently, it was used by Stich
and Karimireddy [113], Gorbunov et al. [39] to analyze the con-
vergence of algorithms with uplink compressions, error feedback
and asynchrony. When th support point ŵk satisfies E[ŵk|wk] = wk,
i.e., we are using gradients at randomly perturbed points, this can
also be seen as a form of randomized smoothing [105].

3.1.1 MCM vs Error Feedback

As mentioned in the introductory paragraph of this Chapter, our
approach is related to error feedback techniques, as introduced
by Seide et al. [107], and explored by [113]. Those techniques have been used mostly
with contractive compression operators, that are generally biased (e.g., Top-k compressor,
rescaled quantization, etc.) leading to some improvement in the context of double com-
pression Zheng et al. [135], Tang et al. [118] under much stronger assumptions (uniformly
bounded gradients and homogeneous tasks). For unbiased compression, as considered in
Dore, it did not lead to any theoretical improvement [Remark 2 in Sec. 4.1., 74]. On the
other hand, we combine three sequences: the preserved iterate sequence (wk), the memories
(Hk), and the sequence of support points ŵk. This makes the specificity of our approach.
Relying on the auxiliary variable Hk that we introduce appears to be key to obtaining the
desired properties for ŵk, especially conditional unbiasedness and controlled variance.

In the following plots, we instantiate the comparison between the approach
in Stich and Karimireddy [113] and MCM. For representation and comparison purposes,
we ignore the distribution (N = 1 on the plot) and the uplink compression on
that representation. We use an unbiased compression Cu while [113] uses a biased
contractive compression operator, Cb, that can be obtained as 1

ω+1Cu.
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The main steps are recalled hereafter:
In [113], Step 1: we start from w0 = ŵ0. We apply the update −γg1(w0) to obtain
w1. Step 2: we compute v1 = w1 − ŵ0, and compress it with Cb, and update
ŵ1 = ŵ0 + Cb(v1). Step 3: we compute −γg2(ŵ1), and apply it to w1, to get
w2 = w1 − γg2(ŵ1).
Step 4: we compute v2 = w2 − ŵ1, we compress v2 with Cb, and update
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ŵ2 = ŵ1 + Cb(v2).
In MCM, Step 1: same step, and we let H0 = w0.
Step 2: we compute v1 = w1 − H0, and compress it with Cu, and update
ŵ1 = H0 + Cu(v1), we have E[ŵ1] = w1. We update H1 = H0 + αdwnCu(v1), αdwn < 1.
Step 3: we compute −γg2(ŵ1), and apply it to w1, to get w2 = w1 − γg2(ŵ1).
Step 4: we compute v2 = w2 − H1, we compress v2 with Cu, and update
ŵ2 = H1 + Cb(v2), we have E[ŵ2|w2] = w2. We update H2 = H1 + αdwnCb(v2).

Extension. In [C7], we also introduce a randomized variant of the algorithm Rand-MCM,
in which each local worker is provided with a different local model at which the gradient
is evaluated. We show to which extent this variant enables to improve the convergence.
As the algorithm is originally only suitable in a cross-silo setting, as the central server
has to maintain a copy of a model for each user, we propose ways to extend it to the
cross-device setting.

3.2 Theoretical results

In this section, we provide a single representative result for the behavior of MCM, in the
homogeneous case (i.e., with Fi = Fj and αup = 0), for strongly convex functions to
highlight the impact of the memory mechanism on the downlink compression.

For k in N, we define a potential Vk = E[∥wk − w∗∥2] + 32γLω2
dwnE[∥wk −Hk−1∥2],

which serves as Lyapunov function. Vk is composed of two terms: the first one controls
the quadratic distance to the optimal model, and the second controls the variance of the
local models ŵk. We choose αdwn = (8ωdwn)−1, and denote

Φ(γ) := (1 + ωup)
(
1 + 64γLω2

dwn

)
.

Theorem 3.1 (Convergence of MCM in the homogeneous and strongly-convex case). Under
A1, A3, 4 and 6, with µ > 0, for k in N, for any sequence (γk)k⩾0 ⩽ γmax we have:

Vk ⩽ (1 − γkµ)Vk−1 − γkE [F (ŵk−1) − F (w∗)] + γ2
kσ

2Φ(γk)
Nb

, (3.1)

Consequently,
1. if σ2 = 0 (noiseless case), for γk ≡ γmax we recover a linear convergence rate: E[∥wk − w∗∥2] ⩽

(1 − γmaxµ)kV0;
2. if σ2 > 0, taking for all K in N, γK = 2/(µ(K + 1) + L̃), for the weighted Polyak-

Ruppert average w̄K =
∑K
k=1 λkwk−1/

∑K
k=1 λk, with λk := (γk−1)−1,

E [F (w̄K) − F (w∗)] ⩽ µ+ 2L̃
4µK2 ∥w0 − w∗∥2 + 4σ2(1 + ωup)

µKNb

(
1 + 64Lω2

dwn
µK

ln(µK + L̃)
)
.

(3.2)

Reduced Limit Variance (Equation (3.1)). For a constant γ, the variance term
(i.e., term proportional to σ2) in Equation (3.1) is upper bounded by γ2σ2

Nb (1 + ωup)(1 +
64γLω2

dwn). The impact of the downlink compression is attenuated by a factor γL. As γ
decreases, this makes the limit variance similar to the one of Diana, i.e., without downlink
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compression [81, Eq. 16 in Th. 2] and much lower than the variance for previous algo-
rithms using double compression for which the variance scales quadratically with the com-
pression constants as γ2σ2(1 +ωup)(1 +ωdwn)/N : (1) for Dore, see Corollary 1 in Liu et al.
[74] (who indicate (1 − ρ)−1 ⩾ (1 +ωup/N)(1 +ωdwn)), (2) for Artemis see Theorem 2.2,
(3) for Gorbunov et al. [39], see Theorem I.1. (with γD′

1 ∝ γ2σ2(1 + ωup)(1 + ωdwn)/N).
Bound 3.2 has a quadratic dependence on ωdwn, but the corresponding term is divided

by an extra factor K, the number of iterations.
Convergence and complexity: With a decaying sequence of steps, we obtain a con-

vergence rate scaling as O(K−1) in Equation (3.2), without dependency on the ωdwn in
the dominating term, which only appears in faster decaying terms scaling as K−2. The
iteration complexity (i.e., number of iterations to achieve ε expected error) is thus at first
order Oε→0(σ

2(1+ωup)
µεNb ). Again, this matches the complexity of Diana [53, see Theorem

1 and Corollary 1] and is smaller by a factor 1 + ωdwn than the one of Artemis, Dore,
DIANAsr-DQ (see Corollary I.1. in [39]).

Extensions. In [C7], we also include convergence results first, in the heterogeneous
case; and second, under weaker assumptions on the loss function, e.g., in the non-
strongly convex and non convex cases. We also discuss the impact on the maximal
learning rate. We summarize those elements in the following table:
Problem Diana Artemis, Dore MCM, Rand-MCM

Lγmax ∝ 1/(1 + ωup) 1/(1 + ωup)(1 + ωdwn) 1/(1 + ωdwn)
√

1 + ωup ∧ 1/(1 + ωup)
Lim. var. ∝ γ2σ2/n× (1 + ωup) (1 + ωup)(1 + ωdwn) (1 + ωup)(1 + γLω2

dwn)

µ-strg-convex Rate on init. cond. (1 − γµ)k (1 − γµ)k (1 − γµ)k

Complexity (1 + ωup)/µεN (1 + ωdwn)(1 + ωup)/µεN (1 + ωup)/µεN

Convex Complexity (ωup + 1)/ε2 (1 + ωup)(1 + ωdwn)/ε2 (ωup + 1)/ε2

3.3 Experiments

In this section, we illustrate the validity of the theoretical results given in the previous
section on both synthetic and real datasets, on (1) least-squares linear regression (LSR),
(2) logistic regression (LR), and (3) non-convex deep learning. We compare MCM with
classical algorithms used in distributed settings: Diana, Artemis, Dore and of course the
simplest setting - SGD, which is the baseline.

In these experiments, we provide results on the log of the excess loss F (wk) − F∗,
averaged on 5 runs (resp. 2) in convex settings (resp. deep learning), with errors bars
displayed on each figure, corresponding to the standard deviation of log10(F (wk) − F∗).
On Figure 3.3, the X-axis is respectively the number of iterations and the number of bits
exchanged.

Each experiment has been run with N = 20 workers using stochastic scalar quantiza-
tion [4], w.r.t. 2-norm. To maximize compression, we always quantize on a single level
(s = 20), unless for PP (s = 21) and neural network (the value of s depends on the
dataset). We used 10 datasets.
• One toy dataset devoted to linear regression in an homogeneous setting. This toy

dataset allows to illustrate MCM properties in a simple framework, and in particular to
ilustrate that when σ2 = 0, we recover a linear convergence1, see Figure 3.2b.

1Even stronger, we show in experiments that we recover a linear rate if we have σ∗ = 0 (the noise over
stochastic gradient computation at the optimum point w⋆).
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(c) MNIST with a CNN
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Figure 3.2: Convergence on neural networks.
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Figure 3.3: Experiments on real dataset with γ = 1/L, quantization with s = 1, LSR (a,b),
LR (c,d).

• Five datasets commonly used in convex optimization (a9a, quantum, phishing, super-
conduct and w8a). Experiments were conducted for heterogeneous tasks obtained by
clustering inputs.

• Four dataset in a non-convex settings (CIFAR10, Fashion-MNIST, FE-MNIST, MNIST).
All experiments are performed without any tuning of the algorithms, (e.g., with the

same learning rate for all algorithms and without reducing it after a certain number of
epochs). Indeed, our goal is to show that our method achieves a performance close to the
unidirectional-compression framework (Diana), while performing an important downlink
compression.

On Figure 3.3, we display the excess loss for quantum and a9a w.r.t. the number of
iteration and number of communicated bits. Similar plots of phising, superconduct and
w8a can be found on our github repository. We report their excess loss after 450 iterations
in Table 3.1.

Table 3.1: MCM- convex experiments, b is the batch size

.

Excess loss after 450 epochs SGD Diana MCM Dore Ref
a9a (b = 50) −3.5 −2.7 −2.7 −1.8 [13]
quantum (b = 400) −3.4 −3.2 −3.2 −2.6 [12]
phishing (b = 50) −3.7 −3.5 −3.4 −2.7 [13]
superconduct (b = 50) −1.6 −1.6 −1.55 −1.45 [49]
w8a (b = 12) −3.5 −3.0 −2.5 −1.75 [13]
Compression no uni-dir bi-dir bi-dir

Saturation level. All experiments are performed with a constant learning rate γ to
observe the bias (initial reduction) and the variance (saturation level) independently.
Stochastic gradient descent results in a fast convergence during the first iterations, and
then reaches a saturation at a given level proportional to σ2. Theory states that the vari-

https://github.com/philipco/mcm-bidirectional-compression/notebook
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ance of MCM is proportional to ωup, this is experimentally observed on Tables 3.1 and 3.2
and figures 3.2 and 3.3: MCM meets Diana while Artemis and Dore saturate at a higher
level (scaling as ωup ×ωdwn). These trade-offs are preserved with optimized learning rates.

Linear convergence when σ2 = 0. The six algorithms present a linear convergence
when σ2 = 0. This is illustrated by Figure 3.2b: we ran experiments with a full gradient
descent. Note that in these settings MCM has a slightly worse performance than other
methods; however, this slow-down is compensated by Rand-MCM.

Deep learning. Table 3.2 and figures 3.2c and 3.2d illustrate experiments with neural
networks. Again, MCM meets Diana rates as anticipated by the theory in the non-convex
case.

Table 3.2: Accuracy and train loss in non-convex experiments.

Algorithm MNIST Fashion MNIST FE-MNIST CIFAR-10

Accuracy after SGD: 99.0% 92.4% 99.0% 69.1%
300 epochs Diana: 98.9% 92.4% 98.9% 64.0%

MCM: 98.8% 90.6% 98.9% 63.5%
Artemis: 97.9% 86.7% 98.3% 54.8%
Dore: 97.9% 87.9% 98.5% 56.3%

Train loss af-
ter

SGD: 0.025 0.093 0.026 0.909

300 epochs Diana: 0.034 0.141 0.031 1.047
MCM: 0.033 0.209 0.030 1.096
Artemis: 0.075 0.332 0.052 1.342
Dore: 0.072 0.300 0.048 1.292

Overall, these experiments show the benefits of MCM and Rand-MCM, that reach the
saturation level of Diana while exchanging at 10x to 100x fewer bits.

Again, we refer to the paper for complementary experiments (e.g. with partial partici-
pation for Rand-MCM), experimental details, etc. All the code is provided on our github
repository.

Conclusion In this chapter, we described a new algorithm to perform bidirectional com-
pression while achieving the convergence rate of algorithms using compression in a single
direction. With MCM we stress the importance of not degrading the global model, a different
point of view on error feedback schemes. In addition, we add the concept of randomiza-
tion which allows to reduce the variance associated with the downlink compression. The
analysis of MCM is more challenging as the algorithm involves perturbed iterates. Propos-
ing such an analysis is also key to unlocking other challenges in distributed learning, e.g.,
proposing practical algorithms for partial participation, incorporating privacy-preserving
schemes after the global update is performed, dealing with local steps, etc. This approach
could also be pivotal in non-smooth frameworks, as it can be considered as a weak form
of randomized smoothing.

https://github.com/philipco/mcm-bidirectional-compression/
https://github.com/philipco/mcm-bidirectional-compression/
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4
PEPit: computer-assisted worst-case
analyses of first-order optimization

methods in Python

This chapter corresponds to the preprint [40], currently under review. My PhD student
Baptiste Goujaud is the main contributor of the package, which is a joint work with Céline
Moucer, François Glineur, Julien M. Hendrickx, Adrien B. Taylor, AD.

This package was crucial to our recent work [P4], mentioned at the end of the chapter.

Contribution: PEPit is a package enabling computer-assisted worst-case analyses of
first-order optimization methods. We cast the problem of performing a worst-case anal-
ysis, often referred to as a performance estimation problem (PEP), as a semidefinite
program (SDP) which can be solved numerically. To obtain such a guarantee, the pack-
age users only have to write FOM nearly as they would have implemented them. The
package then takes care of the SDP modelling parts, and the worst-case analysis is
performed numerically.
The package enables users to easily obtain worst-case analyses for most of the standard
FOM, class of problems, performance measures and initial conditions. This is useful to
numerically verify existing convergence guarantees, as well as to ease the development
of new analyses and methods. To this end, the toolbox contains tools for analyzing
classical scenarios of the first-order literature: standard problem classes (such as convex
functions, smooth convex functions, Lipschitz convex functions, etc.) and algorithmic
operations (such as gradient, proximal, or linear optimization oracles, etc.).
The package contains more than 50 examples and is designed in an open fashion, al-
lowing users to easily add new ingredients (e.g., their own problem classes, oracles, or
algorithms).

Introduction. Due to their low cost per iteration, first-order optimization methods (FOM)
became a major tool in the modern numerical optimization toolkit. Those methods are par-
ticularly well suited when targeting only low to medium accuracy solutions, and play a
central role in many fields of applications that include machine learning and signal pro-
cessing. Their simplicity further allows both occasional and expert users to use them. On
the contrary, when it comes to their analyses (usually based on worst-case scenarios), they
are mostly reserved to expert users. Our work allows a simpler and reproducible access to



4.1. PEPit: illustration on a simple example 43

worst-case analyses for FOM.
PEPit is a python package enabling computer-assisted worst-case analysis of a large

family of FOM. After being provided with a first-order method and a standard problem
class, the package reformulates the problem of performing a worst-case analysis as a
semidefinite program (SDP). This technique is commonly referred to as performance es-
timation problems (PEPs) and was introduced by [28, 27]. The package uses PEPs as
formalized by [123, 121].

In short, performing a worst-case analysis of a first-order algorithm usually relies on
four main ingredients: a FOM (to be analyzed), a class of problems (containing the as-
sumptions on the function to be minimized), a performance measure (measuring the qual-
ity of the output of the algorithm under consideration; for convenience here we assume
that the algorithm aims at minimizing this performance measure and our analysis aims at
finding a worst-case guarantee on it), and an initial condition (measuring the quality of
the initial iterate). Performing the worst-case analysis (i.e., computing worst-case scenar-
ios) corresponds to maximizing the performance measure of the algorithm on the class
of problems, under a constraint induced by the initial condition. It turns out that such
optimization problems can often be solved using SDPs in the context of FOM.

PEPs provide a principled approach to worst-case analyses, but usually relies on po-
tentially tedious semidefinite programming (SDP) modelling and coding steps. The PEPit
package eases the access to the methodology by automatically handling the modelling part,
thereby limiting the amount of time spent on this tedious task and the risk of introducing
coding mistakes in the process. In short, this work allows users to (i) write their first-order
algorithms nearly as they would have implemented them, and (ii) let PEPit (a) perform
the modelling and coding steps, and (b) perform the worst-case analysis numerically using
tools for semidefinite programming in python [82, 20, 89].

Related works. The PEPit package relies on performance estimation problems as formal-
ized in [121]. It also contains some improvements and generalization to other problem
and algorithmic classes such as monotone and nonexpansive operators [102, 73], stochas-
tic methods and verification of potential (or Lyapunov/energy) functions [54, 30, 119] as
inspired by the related control-theoretic IQC framework [69]. The package also contains
numerous examples; e.g., recent analyses and developments from [62, 125, 48, 63, 61,
73, 34, 120, 1]. The package can be seen as an extended open source python version of
the matlab package PESTO [122].

This chapter introducing PEPit is organized as follows. We first exemplify the PEP
approach on a very simple example, namely computing a worst-case contraction factor for
gradient descent, and show how to code this example in PEPit, we then give a broader
introduction to the contents of the package and mention other numerical examples.

4.1 PEPit: illustration on a simple example

In this section, we illustrate the use of the package for studying the worst-case properties
of a standard scenario: gradient descent for minimizing a smooth strongly convex func-
tion. The goal of this elementary example is twofold. First, we want to provide the base
mathematical steps enabling the use of semidefinite programming for performing worst-
case analyses, together with a corresponding PEPit code. Second, we want to highlight
the main ingredients that can be generalized to other problem setups (e.g., Theorem 4.1
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below providing “interpolation conditions” for the class of smooth strongly convex func-
tions), allowing to analyze more algorithms under different assumptions (which are listed
in Section 4.2).

For this example, we consider the convex optimization problem

min
x∈Rd

f(x), (4.1)

where f is L-smooth and µ-strongly convex (notation f ∈ Fµ,L(Rd), or f ∈ Fµ,L when d

is unspecified). So we assume f to satisfy
1. (L-smoothness) ∀x, y ∈ Rd we have that f(x) ⩽ f(y) + ⟨∇f(y);x− y⟩ + L

2 ∥x− y∥2
2,

2. (µ-strong convexity) ∀x, y ∈ Rd we have that f(x) ⩾ f(y)+⟨∇f(y);x−y⟩+µ
2 ∥x−y∥2

2.

Our goal for the rest of this section is to show how to compute the smallest possible τ(µ,L, γ)
(often referred to as the “contraction factor”) such that

∥x1 − y1∥2
2 ⩽ τ(µ,L, γ)∥x0 − y0∥2

2, (4.2)

is valid for all f ∈ Fµ,L and all x0, y0 ∈ Rd when x1 and y1 are obtained from gradient
steps from respectively x0 and y0. That is, x1 = x0 − γ∇f(x0) and y1 = y0 − γ∇f(y0).
First, we show that the problem of computing τ(µ,L, γ) can be framed as a semidefinite
program (SDP), and then illustrate how to use PEPit for computing it without going into
the SDP modelling details.

4.1.1 A performance estimation problem for the gradient method

It is relatively straightforward to establish that the smallest possible τ(µ,L, γ) for which (4.2)
is valid can be computed as the worst-case value of ∥x1 − y1∥2

2 when ∥x0 − y0∥2
2 ⩽ 1. That

is, we compute τ(µ,L, γ) as the optimal value to the following optimization problem:

τ(µ,L, γ) = max
f,d

x0,x1,y0,y1∈Rd

∥x1 − y1∥2
2

s.t. d ∈ N, ∥x0 − y0∥2
2 ⩽ 1,

f ∈ Fµ,L(Rd), x1 = x0 − γ∇f(x0), y1 = y0 − γ∇f(y0).
(4.3)

As written in (4.3), this problem involves an infinite-dimensional variable f . Our first step
towards formulating (4.3) as an SDP consists in reformulating it by sampling f (i.e., eval-
uating its function value and gradient) at the two points where its gradient is evaluated.
The condition f ∈ Fµ,L(Rd), x1 = x0 − γ∇f(x0), y1 = y0 − γ∇f(y0) in (4.3) is replaced
by:

∃f ∈ Fµ,L(Rd) :
{
f(x0) = fx0 ∇f(x0) = gx0

f(y0) = fy0 ∇f(y0) = gy0

, x1 = x0 − γgx0 , y1 = y0 − γgy0 ,

(4.4)
where we replaced the variable f by its discrete version, which we constrain to be “inter-
polable” (or “extendable”) by a smooth strongly convex function over Rd. The max is then
taken over d, fx0 , fy0 , (x0, x1, gx0 , y0, y1, gy0) ∈ Rd. To arrive at a tractable problem, we
use the following interpolation (or extension) result.

Theorem 4.1. [123, Theorem 4] Let I be an index set and S = {(xi, gi, fi)}i∈I be such that
xi, gi ∈ Rd and fi ∈ R for all i ∈ I. There exists a function F ∈ Fµ,L(Rd) such that fi = F (xi)
and gi = ∇F (xi) (for all i ∈ I) if and only if for all i, j ∈ I we have

fi ⩾ fj + ⟨gj ;xi − xj⟩ + 1
2L∥gj − gi∥2

2 + µL
2(L−µ)∥xi − xj − 1

L(gi − gj)∥2
2. (4.5)
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Using Theorem 4.1, we can formulate the problem of computing τ(µ,L, γ) as a (non-
convex) quadratic problem:

max
d,fx0 ,fy0

x0,gx0 ,y0,gy0 ∈Rd

∥(x0 − γgx0) − (y0 − γgy0)∥2
2

s.t. d ∈ N, ∥x0 − y0∥2
2 ⩽ 1,

fy0 ⩾ fx0 + ⟨gx0 ; y0 − x0⟩ + 1
2L∥gy0 − gx0∥2

2 + µL
2(L−µ)∥x0 − y0 − 1

L(gx0 − gy0)∥2
2,

fx0 ⩾ fy0 + ⟨gy0 ;x0 − y0⟩ + 1
2L∥gy0 − gx0∥2

2 + µL
2(L−µ)∥x0 − y0 − 1

L(gx0 − gy0)∥2
2.

Relying on a standard trick from semidefinite programming, one can convexify this prob-
lem using a Gram representation of the variable (this is due to maximization over d). That
is, we formulate the problem using a positive semidefinite matrix G ≽ 0 defined as

G ≜

 ∥x0 − y0∥2
2 ⟨x0 − y0; gx0⟩ ⟨x0 − y0; gy0⟩

⟨x0 − y0; gx0⟩ ∥gx0∥2
2 ⟨gx0 ; gy0⟩

⟨x0 − y0; gy0⟩ ⟨gx0 ; gy0⟩ ∥gy0∥2
2

 ≽ 0.

Using this change of variable, we arrive to

max
fx0 ,fy0 ,G

G1,1 − 2γ(G1,2 −G1,3) + γ2(G2,2 +G3,3 − 2G2,3)

s.t. G ≽ 0, G1,1 ⩽ 1,

fy0 ⩾ fx0 + 1
L−µ

(
µL
2 G1,1 − LG1,2 + µG1,3 + 1

2G2,2 −G2,3 + 1
2G3,3

)
,

fx0 ⩾ fy0 + 1
L−µ

(
µL
2 G1,1 − µG1,2 + LG1,3 + 1

2G2,2 −G2,3 + 1
2G3,3

)
,

which can be solved numerically using standard tools, see, e.g., [20, 82]. Using numerical
and/or symbolical computations, one gets τ(µ,L, γ) = max{(1 − Lγ)2, (1 − µγ)2}, i.e.

∥x1 − y1∥2
2 ⩽ max{(1 − Lγ)2, (1 − µγ)2}∥x0 − y0∥2

2, (4.6)

for all d ∈ N, f ∈ Fµ,L(Rd) and x0, y0 ∈ Rd when x1, y1 ∈ Rd are generated from gradient
steps from respectively x0 and y0. In the next section, we show how to perform this
analysis using PEPit, which automates the sampling and SDP-modelling procedures. In
more complex settings where more functions need to be sampled and/or more iterates
have to be taken into account, avoiding those steps allows to largely limit the probability
of making a mistake in the process of performing the worst-case analysis (numerically),
while sparing a significant amount of time.

4.1.2 Code

In the previous section, we introduced the PEP and SDP modelling steps for computing a
tight worst-case contraction factor for gradient descent in the form (4.2). Although this
particular SDP (4.1.1) might be solved analytically, many optimization methods lead to
larger SDPs with more complicated structures. In general, we can reasonably only hope to
solve them numerically. Next, we describe how to use PEPit for computing a contraction
factor without explicitly going into the modelling steps. Compared to previous section, we
allow ourselves to perform n ∈ N iterations and compute the smallest possible value of
τ(µ,L, γ, n) such that

∥xn − yn∥2
2 ⩽ τ(µ,L, γ, n)∥x0 − y0∥2

2, (4.7)
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where xn and yn are computed from n iterations of gradient descent with step-size γ

starting from respectively x0 and y0. As illustrated in the previous section for the case
n = 1, computing the smallest possible such τ(µ,L, γ, n) is equivalent to computing the
worst-case value of ∥xn − yn∥2

2 under the constraint that ∥x0 − y0∥2
2 ⩽ 1 (note that we

naturally have that τ(µ,L, γ, n) ⩽ (τ(µ,L, γ, 1))n). This is what we do in the following
lines using PEPit.
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1 from PEPit import PEP
2 from PEPit . functions import \
3 SmoothStronglyConvexFunction
4

5 problem = PEP ()

Imports. Before going into the example, we
have to include the right python imports.

Initialization of PEPit. First, we initialize a
PEP object. This object enables manipulating
the forthcoming ingredients of the PEP, such
as functions and iterates.

6 L = 1. # Smoothness
7 mu = .1 # Strong convexity
8 gamma = 1. / L # Step size
9 n = 1 # Nb. of iterations

For the sake of the example, let us pick some
simple values for the problem class and algo-
rithmic parameters, for which we perform the
worst-case analysis.

10 # Declare an L- smooth mu - strongly
11 # convex function named "func"
12 func = problem . declare_function (
13 SmoothStronglyConvexFunction ,
14 mu=mu , # Strong convexity param .
15 L=L) # Smoothness param .

Specifying the problem class. Second, we
specify our working assumptions on the func-
tion to be optimized, and instantiate a corre-
sponding object. Here, the minimization prob-
lem at hand was of the form (4.1) with a
smooth strongly convex function.

16 # Declare two starting points
17 x_0 = problem . set_initial_point ()
18 y_0 = problem . set_initial_point ()
19

20 # Initial cond. || x_0 - y_0 ||^2 <= 1
21 problem . set_initial_condition (
22 (x_0 - y_0) ** 2 <= 1)

Algorithm initialization. Third, we can in-
stantiate the starting points for the two gradi-
ent methods that we will run, and specify an
initial condition on those points. To this end,
two starting points x0 and y0 are introduced,
one for each trajectory, and a bound on the ini-
tial distance between those points is specified
as ∥x0 − y0∥2 ⩽ 1.

23 # Initialize the algorithm
24 x = x_0
25 y = y_0
26 # Run n steps of GD for the 2 sequences
27 for _ in range (n):
28 # Replace x and y by their next value
29 x = x - gamma * func. gradient (x)
30 y = y - gamma * func. gradient (y)
31 # calls to f ’(x), f ’(y)

Algorithm implementation. In this fourth
step, we specify the algorithm in a natural for-
mat. In this example, we simply use the iter-
ates (which are PEPit objects) as if we had to
implement gradient descent in practice using a
simple loop.

32 # Set the performance metric to the
33 # distance || x_n - y_n ||^2
34 problem . set_performance_metric ((x-y)**2)

Setting up a performance measure. We spec-
ify the metric for which we compute a worst-
case performance. Here, we chose to compute
the worst-case value of ∥xn − yn∥2.

35 # Solve the PEP
36 pepit_tau = problem .solve ()

Solving the PEP. This asks PEPit to perform
the modelling steps and call an appropriate
SDP solver to perform the worst-case analysis.

1 (PEPit) Setting up the pb: size of the main PSD matrix: 4x4
2 (PEPit) Setting up the pb: performance measure is minimum
3 of 1 element(s)
4 (PEPit) Setting up the pb: Adding initial conditions
5 and general constraints ...
6 (PEPit) Setting up the pb: initial conditions and general
7 constraints (1 constraint(s) added)
8 (PEPit) Setting up the pb: interpolation conditions for
9 1 function(s)

10 function 1 : Adding 2 scalar constraint(s) ...
11 function 1 : 2 scalar constraint(s) added
12 (PEPit) Compiling SDP
13 (PEPit) Calling SDP solver
14 (PEPit) Solver status: optimal (solver: SCS);
15 optimal value: 0.810001

Output. Running the above code, we obtain
(see PEPit/examples/) the following output.
(n = 1, L = 1, µ = .1 and γ = 1)

Note that the size of the SDP is larger than that
of Section 4.1 (4×4 instead of 3×3 in (4.1.1))
because the modelling step is done in a slightly
more generic way, which might not be exploit-
ing all specificities of the problem at hand. For
more complete examples of worst-case analy-
ses using PEPit, see the examples.

https://pepit.readthedocs.io/en/latest/examples/k.html#contraction-rate-of-gradient-descent


4.2. PEPit: general overview and content 48

It is also possible to run the code for different values of the parameters, as exemplified
on Figure 4.1. This simple example allows to observe that numerical values obtained from
PEPit match the worst-case guarantee (4.1a), and to optimize the step-size numerically in
Figure 4.1b.
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4.2 PEPit: general overview and content

Remark 4.2 (Important ingredients for the SDP reformulations). To understand what PEPit
can do, it is crucial to understand what elements allowed to cast the worst-case analysis as
such a semidefinite program (which is what we refer to as the “modelling” of the problem). In
short, the SDP reformulation of the worst-case computation problem was made possible due
to 4 main ingredients (see, e.g., [121, Section 2.2]):

1. the algorithmic steps can be expressed linearly in terms of the iterates and gradient
values (i.e., step-sizes do not depend on the function at hand),

2. the class of functions has “interpolation condition” 1 that are linear in G and F ,
3. the performance measure is linear (or convex piecewise linear) in G and F ,
4. the initial condition is linear in G and F .

Those ingredients allow using PEPs much beyond the simple setup of Section 4.1. That is,
PEPs apply for performing worst-case analyses involving a variety of first-order oracles, initial
conditions, performance measures, and problem classes.

In this section, describe the various choices of (i) elementary oracles used in algo-
rithms, (ii) problem or function classes, (iii) performance measures, and (iv) initial condi-
tions, that are naturally handled by PEPit. PEPit also allows studying methods for mono-
tone inclusions and fixed point problems, but we do not cover them in this summary. In
the optimization setting, the minimization problem under consideration has the form

F⋆ ≜ min
x∈Rd

{
F (x) ≡

K∑
i=1

fi(x)
}
, (4.8)

1Interpolation conditions characterize the existence of a function (that has particular function values
and gradients at given points) in the considered class by a list of constraints on those gradients, points, and
function values. Such interpolation theorems (see, e.g., Theorem 4.1) have been obtained in the literature
for various problem classes, see, e.g., [123, 121, 102].
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for someK ∈ N and where each fi is assumed to belong to some class of functions denoted
by Fi, encoding our working assumptions on fi. We further assume the algorithms to
gather information about the functions {fi}i only via black-box oracles such as gradient
or proximal evaluations.

Black-box oracles. The base black-box optimization oracles/operations available in PEPit
are the following:

(sub)gradient steps,• proximal steps,• linear optimization (or con-
ditional) steps

•

PEPit also allows for their slightly more general approximate/inexact and Bregman (or
mirror) versions. Those oracles might be combined with a few other operations, such as
exact line-search procedures.

Problem classes. A few base classes of functions are readily available:
• convex functions within different classes of assumptions possibly involving bounded

gradients (Lipschitz functions), bounded domains, smoothness, and/or strong con-
vexity. Those assumptions might be combined when compatible.

• Convex indicator functions, possibly with a bounded domain.
• Smooth nonconvex functions.

Beyond the pure optimization setting, PEPit also allows using operators within different
classes of assumptions (namely: nonexpansive, Lipschitz, cocoercive, maximally mono-
tone, and strongly monotone operators) for studying FOM for monotone inclusions and
variational inequalities.

Performance measures and initial conditions. The package allows a large panel of
performance measures and initial conditions. Essentially, everything that can be expressed
linearly (or slightly beyond) in function values and quadratically in gradient/iterates (i.e.,
linear in the Gram representation of Section 4.1) might be considered. Following the
notation of Section 4.1.2 (and denoting by x⋆ an optimal point of F ), typical examples of
initial conditions include:

∥x0 − x⋆∥2
2 ⩽ 1,• ∥∇F (x0)∥2

2 ⩽ 1, †• F (x0) − F (x⋆) ⩽ 1,•
any linear combination of the above (see, e.g., examples in the potential functions
folder).

•

Similarly, typical examples of performance measures include:

∥xn − x⋆∥2
2,• ∥∇F (xn)∥2

2, †• F (xn) − F (x⋆),•
linear combinations and minimum values of the above, e.g. min0⩽i⩽n ∥∇F (xi)∥2

2
†.•

†(when F is differentiable, otherwise similar criterion involving some subgradient of F might be used).

Contributing. PEPit is designed for allowing users to easily contribute to add features
to the package. Classes of functions (or operators) as well as black-box oracles can be
implemented by following the contributing guidelines from the documentation. We also
welcome any new example for analyzing a method/setting that is not already present in
the toolbox.

https://pepit.readthedocs.io/en/latest/contributing.html
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Examples. PEPit contains about 50 examples that can readily be used, instantiating the
different sets of black-box oracles, problem classes, and initial condition/performance
measures. Those examples can be found in the folder PEPit/examples/

Extensions: In [P2], we propose detail some other examples, namely an accelerated
gradient method [85], an accelerated Douglas-Rachford splitting [92], and point-
SAGA [17] (a proximal method for finite-sum minimization). Graphical results are
reported in Figure 4.2.
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Figure 4.2: Comparisons between (numerical) worst-case bounds from PEPit and ref-
erence established theoretical worst-case guarantees. Dashed lines correspond to es-
tablished worst-case bounds, where plain lines correspond to numerical worst-case
guarantees from PEPit.

Conclusion. The PEPit package provides a simplified access to worst-case analyses of
FOM in python. It implements the performance estimation approach while allowing to
avoid the possibly heavy semidefinite programming modeling steps. The first version of
the package already contains about 50 examples of FOM that can be analyzed through this
framework. Those examples allow either reproducing or tightening, numerically, known
worst-case analyses, or to provide new ones depending on the particular method and
problem class at hand. Overall, we believe that this package allows to quickly (in)validate
proofs (step towards reproducible theory) which should help both the development and
the review process in optimization. It is also a nice pedagogical tool for learning al-
gorithms together with their worst-case properties just by playing with them. Possible
extensions under consideration include an option for searching for Lyapunov (or poten-
tial/energy) functions, as well as a numerical proof assistant, and to incorporate recent
extensions of PEP/IQCs to distributed and decentralized optimization [116, 14].

Optimal convergence rates for a class of non smooth functions [P4], (B. Goujaud,
A. Taylor, AD) In this recent work, we analyze worst-case convergence guarantees of
FOM over a function class extending that of smooth and convex functions. This class
contains convex functions that admit a simple quadratic upper bound. Its study is
motivated by its stability under minor perturbations. We provide a thorough analysis of

https://pepit.readthedocs.io/en/latest/examples/k.html#contraction-rate-of-gradient-descent
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first-order methods, including worst-case convergence guarantees for several methods,
and demonstrate that some of them achieve the optimal worst-case guarantee over the
class. We support our analysis by numerical validation of worst-case guarantees using
performance estimation problems. A few observations can be drawn from this analysis,
particularly regarding the optimality (resp. and adaptivity) of the heavy-ball method
(resp. heavy-ball with line-search). Finally, we show how our analysis can be leveraged
to obtain convergence guarantees over more complex classes of functions. Overall, this
study brings insights on the choice of function classes over which standard first-order
methods have working worst-case guarantees.



5
Quadratic minimization: a testbed for first

order optimization

This chapter is composed by two main parts, corresponding to two recent works: [W1],
Quadratic minimization: From conjugate gradient to an adaptive Heavy-ball method with
Polyak step-sizes Baptiste Goujaud, Adrien Taylor, A.D., (under review, also accepted to
Neurips optimization workshop 2022), and [C9], Super-acceleration with cyclical step-sizes,
B. Goujaud, D. Scieur, A.D., A. Taylor, and F. Pedregosa, Aistats 2022.

In both these papers, we focus on the problem of optimizing quadratic functions.

5.1 From conjugate gradient to an adaptive Heavy-ball method
with Polyak step-sizes

In this work, we propose an adaptive variation on the classical Heavy-ball method for
convex quadratic minimization. The adaptivity crucially relies on so-called “Polyak
step-sizes”, which consists in using the knowledge of the optimal value of the optimiza-
tion problem at hand instead of problem parameters such as a few eigenvalues of the
Hessian of the problem. This method happens to also be equivalent to a variation of
the classical conjugate gradient method, and thereby inherits many of its attractive
features, including its finite-time convergence, instance optimality, and its worst-case
convergence rates.
The classical gradient method with Polyak step-sizes is known to behave very well in sit-
uations in which it can be used, and the question of whether incorporating momentum
in this method is possible and can improve the method itself appeared to be open. We
provide a definitive answer to this question for minimizing convex quadratic functions,
a arguably necessary first step for developing such methods in more general setups.

Consider the convex quadratic minimization problem in the form

min
x∈Rd

{
f(x) ≜ 1

2
⟨x, Hx⟩ + ⟨h, x⟩ ≜ 1

2
⟨x− x⋆, H(x− x⋆)⟩ + f⋆

}
(5.1)

where H ≽ 0 is a symmetric positive semi-definite matrix, and we denote f⋆ the minimum
value of f (a few instances of such problems are presented in Section 5.2.2). In the con-
text of large-scale optimization (i.e. d ≫ 1), we are often interested in using first-order
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iterative methods for solving eq. (5.1). There are many known and celebrated iterative
methods for solving such quadratic problems, including conjugate gradient, Heavy-ball
methods (a.k.a., Polyak momentum), Chebyshev methods, and gradient descent. Each of
those methods having different specifications, the choice of the method largely depends
on the application at hand. In particular, a typical drawback of momentum-based meth-
ods is that they generally require the knowledge of some problem parameters (such as
extreme values of the spectrum of H). This problem is typically not as critical for simpler
gradient descent schemes with no momentum, although it generally still requires some
knowledge on problem parameters if we want to avoid using linesearch-based strategies.
This limitation motivates the search for adaptive strategies, fixing step-size using past ob-
servations about the problem at hand. In the context of (sub)gradient descent, a famous
adaptive strategy is the so-called Polyak step-size, which relies on the knowledge of the
optimal value f⋆:

xt+1 = xt − γt∇f(xt), with γt = f(xt) − f⋆
∥∇f(xt)∥2 . (5.2)

Polyak steps were originally proposed in Polyak [98] for nonsmooth convex minimization;
it is also discussed in Boyd et al. [11] and a few variants are proposed by, e.g., [9, 75, 45]
including for stochastic minimization. In terms of speed, this strategy (and variants) enjoy
similar theoretical convergence properties as those for gradient descent. This methods
appears to perform quite well in applications where f⋆ can be efficiently estimated—see,
e.g., [50] for an adaptation of the method for estimating it online (although [50] con-
tains a number of mistakes, the approach can be corrected to achieve the claimed target).
Therefore, a remaining open question in this context is whether the performances of this
method can be improved by incorporating momentum in it. A first answer to this ques-
tion was provided by Barré et al. [9], although it is not clear that it can match the same
convergence properties as optimal first-order methods.
In this work, we answer this question for the class of quadratic problems. In short, it turns
out that the following conjugate gradient-like iterative procedure

xt+1 = argmin
x

{
∥x− x⋆∥2 s.t. x ∈ x0 + span{∇f(x0),∇f(x1), . . . ,∇f(xt)}

}
, (5.3)

can be rewritten exactly as an Heavy-ball type method whose parameters are chosen adap-
tively using the value of f⋆. This might come as a surprise, as the iteration eq. (5.3)
might seem impractical due to its formulation relying on the knowledge of x⋆. More pre-
cisely, eq. (5.3) is exactly equivalent to:

xt+1 = xt − (1 +mt) × ht∇f(xt) +mt(xt − xt−1), (5.4)

with parameters

∀t ⩾ 0, ht ≜
2(f(xt) − f⋆)

∥∇f(xt)∥2 , (5.5)

m0 ≜ 0 and ∀t ⩾ 1, mt ≜
−(f(xt) − f⋆)⟨∇f(xt),∇f(xt−1)⟩

(f(xt−1) − f⋆)∥∇f(xt)∥2 + (f(xt) − f⋆)⟨∇f(xt),∇f(xt−1)⟩
.(5.6)

In eq. (5.4), mt corresponds to the momentum coefficient and ht to a step-size. With the
tuning of eq. (5.5), this step-size is twice the Polyak step-size in eq. (5.2). This Heavy-ball
momentum method with Polyak step-sizes is summarized in Algorithm 2 and illustrated
in Figure 5.1. Due to its equivalence with eq. (5.3), the Heavy-ball method eq. (5.4)
inherits nice advantageous properties of conjugate gradient-type methods, including:
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(i) finite-time convergence: the problem eq. (5.1) is solved exactly after at most d iter-
ations,

(ii) instance optimality: for all H ≽ 0, there is no first-order method satisfying xt+1 ∈
x0 + span{∇f(x0), . . . ,∇f(xt)} that results in a smaller ∥xt − x⋆∥,

(iii) it inherits optimal worst-case convergence rates on quadratic functions.
Of course, a few of those points needs to be nuanced in practice due to finite precision
arithmetic. The equivalence between eq. (5.3) and eq. (5.4) is formally stated in the
following theorem.

Theorem 5.1. Let (xt)t∈N be the sequence defined by the recursion eq. (5.3), namely such
that for any t, xt+1 is the Euclidean projection of x⋆ onto the affine subspace x0+span{∇f(x0),∇f(x1), . . . ,∇f(xt)}.
Then (xt)t∈N is the sequence generated by Algorithm 2.

Algorithm 2: Adaptive Heavy-ball algorithm

1 Input T and f : x 7→ f(x) ≜ 1
2⟨x− x⋆, H(x− x⋆)⟩ + f⋆

2 Initialize x0 ∈ Rd, m0 = 0
3 for t = 0 · · ·T − 1 do
4 ht = 2(f(xt)−f⋆)

∥∇f(xt)∥2

5 xt+1 = xt − (1 +mt) × ht∇f(xt) +mt(xt − xt−1)
6 mt+1 = −(f(xt+1)−f⋆)⟨∇f(xt+1),∇f(xt)⟩

(f(xt)−f⋆)∥∇f(xt+1)∥2+(f(xt+1)−f⋆)⟨∇f(xt+1),∇f(xt)⟩ ;

7 end
Result: xT

Figure 5.1: Comparison in semi-log scale over 50 iterations of different first-order methods
applied on a 25-dimensional quadratic objective with condition number 10. GD with
constant step-size, GD with Polyak step-size and GD with variant of Polyak step-size
refer to the GD method tuned respectively with the step-size γ = 2/(L+ µ), γt = (f(xt) −
f⋆)/∥∇f(xt)∥2 and γt = 2(f(xt) − f⋆)/∥∇f(xt)∥2. HB with constant tuning is the HB
method tuned with constant parameters γt = (2/(

√
L+√

µ))2 and mt = ((
√
L−√

µ)(
√
L+

√
µ))2 while HB with Polyak step-size based tuning refers to Algorithm 2.

Theorem 5.1 turns out to be a particular case of a more general result stating that the
iterates of any conjugate gradient-type method described with a polynomial Q as

xt+1 = argminx {⟨x− x⋆, Q(H)(x− x⋆)⟩ s.t. x ∈ x0 + span{∇f(x0), . . . ,∇f(xt)}} ,
(Q-minimization)
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are equivalently written in terms of an adaptive Heavy-ball iteration. In particular, eq. (5.3)
corresponds to eq. (Q-minimization) with Q(x) = 1. Similarly, classical conjugate gradi-
ent method corresponds to eq. (Q-minimization) with Q(x) = x (this fact is quite famous,
see, e.g., [87]). We were surprised not to find this general result written as is in the lit-
erature, and we therefore provide it in the main paper. The key point of this work is that
the equivalent Heavy-ball reformulation of eq. (5.3) can be written in terms of f⋆, thereby
obtaining a momentum-based Polyak step-size.

Proof and main theorem. [W1] contains the proof of the main result from which
Theorem 5.1 is a corollary, and complementary experiments.

5.2 Super-Acceleration with Cyclical Step-size and clustered
eigenvalues

Summary. In [C9], we develop a convergence-rate analysis of momentum with cyclical
step-sizes. We show that under some assumption on the spectral gap of Hessians in
machine learning, cyclical step-sizes are provably faster than constant step-sizes. More
precisely, we develop a convergence rate analysis for quadratic objectives that provides
optimal parameters and shows that cyclical learning rates can improve upon traditional
lower complexity bounds. We further propose a systematic approach to design optimal
first order methods for quadratic minimization with a given spectral structure. Finally,
we provide a local convergence rate analysis beyond quadratic minimization for the
proposed methods and illustrate our findings through benchmarks on least squares and
logistic regression problems.

In this section, I will only describe the framework and the result for cycles of 2 steps.

Introduction. One of the most iconic methods in first order optimization is gradient
descent with momentum, also known as the heavy ball method [97]. This method enjoys
widespread popularity both in its original formulation and in a stochastic variant that
replaces the gradient by a stochastic estimate, a method that is behind many of the recent
breakthroughs in deep learning [117].

A variant of the stochastic heavy ball where the step-sizes are chosen in cyclical order
has recently come to the forefront of machine learning research, showing state-of-the
art results on different deep learning benchmarks [76, 110]. Inspired by this empirical
success, we aim to study the convergence of the heavy ball algorithm where step-sizes
h0, h1, . . . are not fixed or decreasing but instead chosen in cyclical order, as in Algorithm
3.

The heavy ball method with constant step-sizes enjoys a mature theory, where it is
known for example to achieve optimal black-box worst-case complexity of quadratic con-
vex optimization [84]. In stark contrast, little is known about the the convergence of the
above variant with cyclical step-sizes. Our main motivating question is

Do cyclical step-sizes improve convergence of heavy ball?
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Algorithm 3: Cyclical heavy ball HBK(h0, . . . , hK−1;m)
1 Input: Initialization x0, momentum m ∈ (0, 1), step-sizes {h0, . . . , hK−1}
2 x1 = x0 − h0

1 + m
∇f(x0)

3 for t = 1, 2, . . . do
4

xt+1 = xt − hmod(t,K)∇f(xt) +m(xt − xt−1)
5 end

Our main contribution provides a positive answer to this question and, more impor-
tantly, quantifies the speedup under different assumptions. In particular, we show that
for quadratic problems, whenever Hessian’s spectrum belongs to two or more disjoint
intervals, the heavy ball method with cyclical step-sizes achieves a faster worst-case con-
vergence rate. Recent works have shown that this assumption on the spectrum is quite
natural and occurs in many machine learning problems, including deep neural networks
[103, 90, 37, 91]. The concurrent work of Oymak [88] analyzes gradient descent (without
momentum) under a similar assumption.

Contributions: In [C9],
• We provide a tight convergence rate analysis of the cyclical heavy ball method (see

Theorem 5.2 and corollary 5.3 for two step-sizes, and Theorem 4.8 in [C9] for the
general case). This analysis highlights a regime under which this method achieves a
faster worst-case rate than the accelerated rate of heavy ball, a phenomenon we refer
to as super-acceleration. We also extend the (local) convergence rate analysis results
to non-quadratic objectives.

• As a byproduct of the convergence-rate analysis, we obtain an explicit expression for
the optimal parameters in in the case of cycles of length two (Algorithm 4) and an
implicit expression in terms of a system of K equations in the general case.

• Numerical benchmarks illustrate the improved convergence of the cyclical approach
on 4 problems involving quadratic and logistic losses on both synthetic and a hand-
written digits recognition dataset.

Notation and Problem Setting As throughout the chapter, we consider the problem of
minimizing a quadratic function:

min
x∈Rd

f(x) , with f ∈ CΛ, (OPT)

where CΛ is the class of quadratic functions with Hessian matrix H and whose Hessian
spectrum Sp(H) is localized in Λ ⊆ [µ,L] ⊆ R>0:

CΛ ≜
{
f(x) = (x− x∗)⊤H

2 (x− x∗) + f∗, Sp(H) ⊆ Λ
}

The condition Λ ⊆ [µ,L] implies all quadratic functions under consideration are L-
smooth and µ-strongly convex. For this function class, we define κ, the (inverse) condition
number, and ρ, the ratio between the center of Λ and its radius, as

κ ≜ µ

L
, ρ ≜ L+ µ

L− µ
=
(1 + κ

1 − κ

)
. (5.7)
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Figure 5.3: Asymptotic rate of cyclical (K = 2) heavy ball in terms of its step-sizes h0, h1
across 3 different values of the relative gap R. In the left plot, the relative gap is zero, and
so the step-sizes with smallest rate coincide (h0 = h1). For non-zero values of R (center
and right), the optimal method instead alternates between two different step-sizes. In all
plots the momentum parameter m is set according to Algorithm 4.

Finally, for a method solving (OPT) that generates a sequence of iterates {xt}, we
define its worst-case rate rt and its asymptotic rate factor τ as

rt ≜ sup
x0∈Rd, f∈CΛ

∥xt − x∗∥
∥x0 − x∗∥

, 1 − τ ≜ lim sup
t→∞

t
√
rt . (5.8)

5.2.1 Super-acceleration with Cyclical Step-sizes

Figure 5.2: Hessian eigenvalue his-
togram for a quadratic objective on
MNIST. The outlier eigenvalue at L2
generates a non-zero relative gap R =
0.77. In this case, the 2-cycle heavy
ball method has a faster asymptotic
rate than the single-cycle one (see Sec-
tion 7).

In this section we develop one of our main contri-
butions, a convergence rate analysis of the cycli-
cal heavy ball method with cycles of length 2.
This analysis crucially depends on the location of
the Hessian’s eigenvalues; we assume that these
are contained in a set Λ that is the union of 2
intervals of the same size

Λ = [µ1, L1] ∪ [µ2, L2] , L1 − µ1 = L2 − µ2 .

(5.9)
By symmetry, this set is alternatively described by

µ ≜ µ1, L ≜ L2 and R ≜ µ2 − L1
L2 − µ1

,

(5.10)
where R is the relative length of the gap µ2 − L1
with respect to the diameter L2 − µ1 (see Figure 5.2). This parametrization is convenient
since the relative gap plays a crucial role in our convergence analysis. Our results allow
R = 0, therefore recovering the classical setting of Hessian eigenvalues contained in an
interval.

Through a correspondence between optimization methods and polynomials, we can
derive a worst-case analysis for the cyclical heavy ball method. The outcome of this analy-
sis is in the following theorem, that provides the asymptotic convergence rate of Algorithm
3 for cycles of length two.
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Theorem 5.2 (Rate factor of HB2(h0, h1;m)). Let f ∈ CΛ and consider the cyclical heavy
ball method with step-sizes h0, h1 and momentum parameter m. The asymptotic rate factor
of Algorithm 3 with cycles of length two is

1 − τ =


√
m if σ∗ ⩽ 1,

√
m
(
σ∗ +

√
σ2

∗ − 1
) 1

2 if σ∗ ∈
(
1, 1+m2

2m

)
,

⩾ 1 (no convergence) if σ∗ ⩾ 1+m2

2m ,

with σ∗ = max
λ∈
{
µ1,L1,µ2,L2,(1+m) h0+h1

2h0h1

}
∩Λ

|σ2(λ)|

and σ2(λ) = 2
(

1 + m − λh0

2
√

m

)(
1 + m − λh1

2
√

m

)
− 1 .

Optimal algorithm. The previous theorem gives the convergence rate for all triplets
(h0, h1,m). This allows us for instance to map out the associated convergence rate for
every pair of step-sizes. As we illustrate in Figure 5.3, as we increase the relative gap (R),
the optimal step-sizes become further apart.

Another application of the previous theorem is to find the parameters that minimize
the asymptotic convergence rate. The resulting momentum (m) and step-size parameters
(h0, h1) are remarkably simple, and given by the expressions

m =
(√

ρ2 −R2 −
√
ρ2 − 1√

1 −R2

)2

(5.11)

h0 = 1 +m

L1
h1 = 1 +m

µ2
. (5.12)

Being one of our main contributions, this algorithm is also described in pseudocode in
Algorithm 4. By construction, this method has an asymptotically optimal convergence rate
which we detail in the next Corollary:

Algorithm 4: Cyclical (K = 2) heavy ball with optimal parameters

1 Input: Initial iterate x0, µ1 < L1 ⩽ µ2 < L2 (where L1 − µ1 = L2 − µ2)
2 Set: ρ = L2+µ1

L2−µ1
, R = µ2−L1

L2−µ1
,

3 m =
(√

ρ2−R2−
√
ρ2−1√

1−R2

)2

4 x1 = x0 − 1
L1

∇f(x0)
5 for t = 1, 2, . . . do
6

ht = 1+m
L1

(if t is even), ht = 1+m
µ2

(if t is odd)

xt+1 = xt − ht∇f(xt) +m(xt − xt−1)
7 end

Corollary 5.3. The non-asymptotic and asymptotic worst-case rates rAlg. 2
t and 1 − τAlg. 2 of

Algorithm 4 over CΛ for even iteration number t are

rAlg. 2
t =

(√
ρ2−R2−

√
ρ2−1√

1−R2

)t(
1 + t

√
ρ2−1
ρ2−R2

)
,

1 − τAlg. 2 =
√

ρ2 − R2 −
√

ρ2 − 1
√

1 − R2
.
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Note that this result also holds if we swap the 2 step-sizes in Algorithm 4.

Eigengap and accelerated cyclical step-sizes. While Corollary 5.3 focuses on the opti-
mal tuning of Algorithm 4, we also provide a general convergence analysis for non-optimal
parameters [C9, Theorem D1]. In the case of existence of an eigengap, a range of cyclical
step-sizes leads to an accelerated rate of convergence (compared to the optimal constant
step-size strategy) and therefore, an inexact parameters search can lead to such an accel-
eration.

Comparison with Polyak Heavy Ball. In the absence of eigenvalue gap (R = 0 and
Λ = [µ,L]), Algorithm 4 reduces to Polyak heavy ball (PHB) [97]. Since the asymptotic
rate of Algorithm 4 is monotonically decreasing in R, the convergence rate of the cyclical
variant is always better than PHB. Furthermore, in the ill-conditioned regime (small κ),
the comparison is particularly simple: the optimal 2-cycle algorithm has a

√
1 −R2 relative

improvement over PHB, as provided by the next proposition. A more thorough comparison
for different support sets Λ is discussed in Table 5.1.

Proposition 5.4. Let R ∈ [0, 1). The rate factors of respectively Algorithm 4 and PHB verify

1 − τAlg. 2 =
κ→0

1 − 2
√
κ√

1−R2 + o(
√
κ) , (5.13)

1 − τPHB =
κ→0

1 − 2
√
κ+ o(

√
κ) .

Relative gap R Set Λ Rate factor τ Speedup τ/τPHB

R ∈ [0, 1) [µ, µ+ 1−R
2 (L− µ)] ∪ [L− 1−R

2 (L− µ), L] 2
√
κ√

1−R2 (1 −R2)− 1
2

R = 1 −
√
κ/2 [µ, µ+

√
µL
4 ] ∪ [L−

√
µL
4 , L] 2 4

√
κ κ− 1

4

R = 1 − 2γκ [µ, (1 + γ)µ] ∪ [L− γµ, L] indep. of κ O(κ− 1
2 )

Table 5.1: Case study of the convergence of Algorithm 4 as a function of R, in the regime
κ → 0. The first line corresponds to the regime where R is independent of κ, and we
observe a constant gain w.r.t. PHB. The second line considers a setting in whichR depends
on

√
κ, that is, the two intervals in Λ are relatively small. The asymptotic rate reads

(1 − 2 4
√
κ)t, improving over the (1 − 2

√
κ)t rate of Polyak Heavy ball, unimprovable when

R = 0. Finally, in the third line, R depends on κ, the two intervals in Λ are so small that
the convergence becomes O(1), i.e., is independent of κ.

Extensions: in the referenced paper, we present a generic framework that allows de-
signing optimal momentum and step-size cycles for given sets Λ and cycle length K,
relying on the equioscillation property of polynomials. We provide convergence rate in
the generalized case.
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Figure 5.4: Hessian Eigenvalue histogram (top row) and Benchmarks (bottom row). The top
row shows the Hessian eigenvalue histogram at optimum for the 4 considered problems,
together with the interval boundaries µ1 < L1 < µ2 < L2 for the two-interval split of the
eigenvalue support described in Section 5.2.1. In all cases, there’s a non-zero gap radius
R. This is shown in the bottom row, where we compare the suboptimality in terms of
gradient norm as a function of the number of iterations. As predicted by the theory, the
non-zero gap radius translates into a faster convergence of the cyclical approach, com-
pared to PHB in all cases. The improvement is observed on both quadratic and logistic
regression problems, even through the theory for the latter is limited to local convergence.

5.2.2 Experiments

We conclude by present an empirical comparison of the cyclical heavy ball method for
different length cycles across 4 different settings. We consider two different problems,
quadratic and logistic regression, each applied on two datasets, the MNIST handwritten
digits [67] and a synthetic dataset. The results of these experiments, together with a
histogram of the Hessian’s eigenvalues are presented in Figure 5.4 (see caption for a dis-
cussion).

Dataset description. The MNIST dataset consists of a data matrix A with 60000 im-
ages of handwritten digits each one with 28 × 28 = 784 pixels. The synthetic dataset is
generated according to a spiked covariance model [56], which has been shown to be an
accurate model of covariance matrices arising for instance in spectral clustering [15] and
deep networks [93, 47]. In this model, the data matrix A = XZ is generated from a m×n

random Gaussian matrix X and an m × m deterministic matrix Z. In our case, we take
n = 1000,m = 1200 and Z is the identity where the first three entries are multiplied by
100 (this will lead to three outlier eigenvalues). We also generate an n-dimensional target
vector b as b = Ax or b = sign(Ax) for the quadratic and logistic problem respectively.

Objective function For each dataset, we consider a quadratic and a logistic regression
problem, leading to 4 different problems. All problems are of the form minx∈Rp

1
n

∑n
i=1 ℓ(A⊤

i x, bi)+
λ∥x∥2, where ℓ is a quadratic or logistic loss, A is the data matrix and b are the target val-
ues. We set the regularization parameter to λ = 10−3∥A∥2. For logistic regression, since
guarantees only hold at a neighborhood of the solution (even for the 1-cycle algorithm),
we initialize the first iterate as the result of 100 iteration of gradient descent. In the case
of logistic regression, the Hessian eigenvalues are computed at the optimum.



Conclusion This work is motivated by two recent observations from the optimization
practice of machine learning. First, cyclical step-sizes have been shown to enjoy excellent
empirical convergence [76, 110]. Second, spectral gaps are pervasive in the Hessian spec-
trum of deep learning models [103, 90, 37, 91]. Based on the simpler context of quadratic
convex minimization, we develop a convergence-rate analysis and optimal parameters for
the heavy ball method with cyclical step-sizes. This analysis highlights the regimes under
which cyclical step-sizes have faster rates than classical accelerated methods. Finally, we
illustrate these findings through numerical benchmarks.
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