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CNRS, PSL Research University
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Abstract: We consider the minimization of an objective function
given access to unbiased estimates of its gradient through stochastic
gradient descent (SGD) with constant step-size. While the detailed
analysis was only performed for quadratic functions, we provide an
explicit asymptotic expansion of the moments of the averaged SGD
iterates that outlines the dependence on initial conditions, the effect
of noise and the step-size, as well as the lack of convergence in the
general (non-quadratic) case. For this analysis, we bring tools from
Markov chain theory into the analysis of stochastic gradient. We then
show that Richardson-Romberg extrapolation may be used to get
closer to the global optimum and we show empirical improvements of
the new extrapolation scheme.

1. Introduction. We consider the minimization of an objective func-
tion given access to unbiased estimates of the function gradients. This key
methodological problem has raised interest in different communities: in
large-scale machine learning [6, 39, 40], optimization [30, 33], and stochastic
approximation [20, 35, 38]. The most widely used algorithms are stochastic
gradient descent (SGD), a.k.a. Robbins-Monro algorithm [37], and some of
its modifications based on averaging of the iterates [35, 36, 41].

While the choice of the step-size may be done robustly in the deterministic
case (see e.g. [5]), this remains a traditional theoretical and practical issue
in the stochastic case. Indeed, early work suggested to use step-size decaying
with the number k of iterations as O(1/k) [37], but it appeared to be non-
robust to ill-conditioning and slower decays such as O(1/

√
k) together with

averaging lead to both good practical and theoretical performance [2].
We consider in this paper constant step-size SGD, which is often used in

practice. Although the algorithm is not converging in general to the global
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optimum of the objective function, constant step-sizes come with benefits: (a)
there is a single parameter value to set as opposed to the several choices of
parameters to deal with decaying step-sizes, e.g. as 1/(�k +4)◦; the initial
conditions are forgotten exponentially fast for well-conditioned (e.g. strongly
convex) problems [28, 29], and the performance, although not optimal, is
sufficient in practice (in a machine learning set-up, being only 0.1% away
from the optimal prediction often does not matter).

The main goals of this paper are (a) to gain a complete understanding of
the properties of constant-step-size SGD in the strongly convex case, and
(b) to propose provable improvements to get closer to the optimum when
precision matters or in high-dimensional settings. We consider the iterates
of the SGD recursion on Rd defined starting from θ0 ∈ Rd, for k ≥ 0, and a
step-size γ > 0 by

(1) θ
(γ)
k+1 = θ

(γ)
k − γ

[
f ′(θ(γ)

k ) + εk+1(θ
(γ)
k )
]
,

where f is the objective function to minimize (in machine learning the gen-

eralization performance), εk+1(θ
(γ)
k ) the zero-mean statistically independent

noise (in machine learning, obtained from a single observation). Follow-

ing [3], we leverage the property that the sequence of iterates (θ
(γ)
k )k≥0 is an

homogeneous Markov chain.
This interpretation allows us to capture the general behavior of the algo-

rithm. In the strongly convex case, this Markov chain converges exponentially
fast to a unique stationary distribution πγ (see Proposition 2) highlighting
the facts that (a) initial conditions of the algorithms are forgotten quickly
and (b) the algorithm does not converge to a point but oscillates around
the mean of πγ . See an illustration in Figure 1 (left). It is known that the
oscillations of the non-averaged iterates have an average magnitude of γ1/2

[34].

Consider the process (θ̄
(γ)
k )k≥0 given for all k ≥ 0 by

(2) θ̄
(γ)
k =

1

k + 1

k∑
j=0

θ
(γ)
j .

Then under appropriate conditions on the Markov chain (θ
(γ)
k )k≥0, a central

limit theorem on (θ̄
(γ)
k )k≥0 holds which implies that θ̄

(γ)
k converges at rate

O(1/
√
k) to

(3) θ̄γ =

∫
Rd
ϑ dπγ(ϑ) .
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The deviation between θ̄
(γ)
k and the global optimum θ∗ is thus composed of

a stochastic part θ̄
(γ)
k − θ̄γ and a deterministic part θ̄γ − θ∗.

For quadratic functions, it turns out that the deterministic part vanishes [3],
that is, θ̄γ = θ∗ and thus averaged SGD with a constant step-size does
converge. However, it is not true for general objective functions where we
can only show that θ̄γ − θ∗ = O(γ), and this deviation is the reason why
constant step-size SGD is not convergent.

The first main contribution of the paper is to provide an explicit asymptotic
expansion in the step-size γ of θ̄γ − θ∗. Second, a quantitative version of a

central limit theorem is established which gives a bound on E[‖θ̄γ − θ̄(γ)
k ‖2]

that highlights all dependencies on initial conditions and noise variance,
as achieved for least-squares by [10], with an explicit decomposition into
“bias” and “variance” terms: the bias term characterizes how fast initial
conditions are forgotten and is proportional to N(θ0 − θ∗), for a suitable
norm N : Rd → R+; while the variance term characterizes the effect of the
noise in the gradient, independently of the starting point, and increases with
the covariance of the noise.

Moreover, akin to weak error results for ergodic diffusions, we achieve
a non-asymptotic weak error expansion in the step-size between πγ and
the Dirac measure on Rd concentrated at θ∗. Namely, we prove that for all
functions g : Rd → R, regular enough,

∫
Rd g(θ)dπγ(θ) = g(θ∗) + γCg1 + rgγ ,

rgγ ∈ Rd, ‖rgγ‖ ≤ Cg2γ
2, for some Cg1 , C

g
2 ≥ 0 independent of γ. Given this

expansion, we can now use a very simple trick from numerical analysis,
namely Richardson-Romberg extrapolation [42]: if we run two SGD recur-

sions (θ
(γ)
k )k≥0 and (θ

(2γ)
k )k≥0 with the two different step-sizes γ and 2γ, then

the average processes (θ̄
(γ)
k )k≥0 and (θ̄

(2γ)
k )k≥0 will converge to θ̄γ and θ̄2γ

respectively. Since θ̄γ = θ∗ + γ∆Id
1 + rId

γ and θ̄2γ = θ∗ + 2γ∆Id
1 + rId

2γ , for

rId
γ , r

Id
2γ ∈ Rd, max(

∥∥2rId
γ

∥∥ , ∥∥rId
2γ

∥∥) ≤ 2Cγ2, for C ≥ 0 and ∆ ∈ Rd indepen-

dent of γ, the combined iterates 2θ̄
(γ)
k − θ̄

(2γ)
k will converge to θ∗ + 2rId

γ − rId
2γ

which is closer to θ∗ by a factor γ. See illustration in Figure 1(right).
In summary, we make the following contributions:

• We provide in Section 2 an asymptotic expansion in γ of θ̄γ − θ∗ and
an explicit version of a central limit theorem is given which bounds

E[‖θ̄γ − θ̄(γ)
k ‖2]. These two results outlines the dependence on initial

conditions, the effect of noise and the step-size.
• We show in Section 2 that Richardson-Romberg extrapolation may be

used to get closer to the global optimum.
• We bring and adapt in Section 3 tools from analysis of discretization

of diffusion processes into the one of SGD and create new ones. We
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θ̄γ

θ0

θk,γ

θ̄k,γ

θ∗

θk,γ − θ̄γ = Op(γ
1/2)

θ̄k,γ − θ̄γ = Op(k
−1/2)

θ∗ − θ̄γ = O(γ)

θ∗

θ̄γ

θ̄2γ

2θ̄γ − θ̄2γ

θ∗+γ∆

θ∗+2γ∆

Figure 1: (Left) Convergence of iterates θ
(γ)
k and averaged iterates θ̄

(γ)
k to the

mean θ̄γ under the stationary distribution πγ . (Right) Richardson-Romberg
extrapolation, the disks are of radius O(γ2).

believe that this analogy and the associated ideas are interesting in
their own right.
• We show in Section 4 empirical improvements of the extrapolation

schemes.

Notations. We first introduce several notations. We consider the finite
dimensional euclidean space Rd embedded with its canonical inner product
〈·, ·〉. Denote by {e1, . . . , ed} the canonical basis of Rd. Let E and F be two
real vector spaces, denote by E ⊗ F the tensor product of E and F . For
all x ∈ E and y ∈ F denote by x ⊗ y ∈ E ⊗ F the tensor product of x
and y. Denote by E⊗k the kth tensor power of E and x⊗k ∈ E⊗k the kth

tensor power of x. We let L((Rd)⊗k,R`) stand for the set of linear maps
from (Rn)⊗k to R` and for L ∈ L((Rd)⊗k,R`), we denote by ‖L‖ the operator
norm of L.

Let n ∈ N∗, denote by Cn(Rd,Rm) the set of n times continuously differ-
entiable functions from Rd to Rm. Let F ∈ Cn(Rd,Rm), denote by F (n) or
DnF , the nth differential of f . Let f ∈ Cn(Rd,R). For any x ∈ Rd, f (n)(x) is
a tensor of order n. For example, for all x ∈ Rd, f (3)(x) is a third order tensor.
In addition, for any x ∈ Rd and any matrix, M ∈ Rd×d, we define f (3)(x)M
as the vector in Rd given by: for any l ∈ {1, . . . , d}, the lth coordinate is

given by (f (3)(x)M)l =
∑d

i,j=1Mi,j
∂3f

∂xi∂xj∂xl
(x). By abuse of notations, for

f ∈ C1(Rd), we identify f ′ with the gradient of f and if f ∈ C2(Rd), we
identify f ′′ with the Hessian matrix of f . A function f : Rd → Rq is said
to be locally Lipschitz if there exists α ≥ 0 such that for all x, y ∈ Rd,
‖f(x)− f(y)‖ ≤ (1 + ‖x‖α + ‖y‖α) ‖x− y‖. For ease of notations and de-
pending on the context, we consider M ∈ Rd×d either as a matrix or a second
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order tensor. More generally, any M ∈ L((Rd)⊗k,R) will be also consider as
an element of L((Rd)⊗(k−1),Rd) by the canonical bijection. Besides, For any
matrices M,N ∈ Rd×d, M ⊗N is defined as the endomorphism of Rd×d such
that M ⊗N : P 7→MPN . For any matrix M ∈ Rd×d, tr(M) is the trace of
M , i.e. the sum of diagonal elements of the matrix M .

For a, b ∈ R, denote by a ∨ b and a ∧ b the maximum and the minimum
of a and b respectively. Denote by b·c and d·e the floor and ceiling function
respectively.

Denote by B(Rd) the Borel σ-field of Rd. For all x ∈ Rd, δx stands for the
Dirac measure at x.

2. Main results. In this section, we describe the assumptions underly-
ing our analysis, describe our main results and their implications.

2.1. Setting. Let f : Rd → R be an objective function, satisfying the
following assumptions:

A1. The function f is strongly convex with convexity constant µ > 0,
i.e. for all θ1, θ2 ∈ Rd and t ∈ [0, 1],

f(tθ1 + (1− t)θ2) ≤ tf(θ1) + (1− t)f(θ2)− (µ/2)t(1− t) ‖θ1 − θ2‖2 .

A2. The function f is five times continuously differentiable with second to
fifth uniformly bounded derivatives: for all k ∈ {2, . . . , 5}, supθ∈Rd

∥∥f (k)(θ)
∥∥ <

+∞. Especially f is L-smooth with L ≥ 0: for all θ1, θ2 ∈ Rd∥∥f ′(θ1)− f ′(θ2)
∥∥ ≤ L ‖θ1 − θ2‖ .

If there exists a positive definite matrix Σ ∈ Rd×d, such that the function
f is the quadratic function θ 7→ ‖Σ1/2(θ−θ∗)‖2/2, then Assumptions A1, A2
are satisfied.

In the definition of SGD given by (1), (εk)k≥1 is a sequence of random
functions from Rd to Rd satisfying the following properties.

A3. There exists a filtration (Fk)k≥0 (i.e. for all k ∈ N, Fk ⊂ Fk+1) on
some probability space (Ω,F ,P) such that for any k ∈ N and θ ∈ Rd, εk+1(θ)
is a Fk+1-measurable random variable and E [εk+1(θ)|Fk] = 0. In addition,
(εk)k∈N∗ are independent and identically distributed (i.i.d.) random fields.
Moreover, we assume that θ0 is F0-measurable.

A3 expresses that we have access to an i.i.d. sequence (f ′k)k∈N∗ of unbiased
estimator of f ′, i.e. for all k ∈ N and θ ∈ Rd,

(4) f ′k+1(θ) = f ′(θ) + εk+1(θ) .
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Note that we do not assume random vectors (εk+1(θ
(γ)
k ))k∈N to be i.i.d.,

a stronger assumption generally referred to as the semi-stochastic setting.
Moreover, as θ0 is F0-measurable, for any k ∈ N, θk is Fk-measurable.

We also consider the following conditions on the noise, for p ≥ 2:

A4 (p). For any k ∈ N∗, f ′k is almost surely L-co-coercive (with the same
constant as in A2): that is, for any η, θ ∈ Rd, L 〈f ′k(θ)− f ′k(η), θ − η〉 ≥
‖f ′k(θ)− f ′k(η)‖2. Moreover, there exists τp ≥ 0, such that for any k ∈ N∗,
E1/p[‖εk(θ∗)‖p] ≤ τp.

Almost sure L-co-coercivity [46] is for example satisfied if for any k ∈
N∗, there exist a random function fk such that f ′k = (fk)

′ and which is
a.s. convex and L-smooth. Weaker assumptions on the noise are discussed
in Section 7.1. Finally we emphasize that under A3 then to verify that A4(p)
holds, p ≥ 2, it suffices to show that f ′1 is almost surely L-co-coercive and
E1/p[‖ε1(θ∗)‖p] ≤ τp. Under A3-A4(2), consider the function C : Rd → Rd×d
defined for all θ ∈ Rd by

(5) C(θ) = E
[
ε1(θ)⊗2

]
.

A5. The function C is three time continuously differentiable and there
exist Mε, kε ≥ 0 such that for all θ ∈ Rd,

max
i∈{1,2,3}

∥∥∥C(i)(θ)
∥∥∥ ≤Mε

{
1 + ‖θ − θ∗‖kε

}
.

In other words, we assume that the covariance matrix θ 7→ C(θ) is a
regular enough function, which is satisfied in natural settings.

Example 1 (Learning from i.i.d. observations). Our main motivation
comes from machine learning; consider two sets X ,Y and a convex loss
function L : X × Y × Rd → R. The objective function is the generalization
error fL(θ) = EX,Y [L(X,Y, θ)], where (X,Y ) are some random variables.
Given i.i.d. observations (Xk, Yk)k∈N∗ with the same distribution as (X,Y ),
for any k ∈ N∗, we define fk(·) = L(Xk, Yk, ·) the loss with respect to
observation k. SGD then corresponds to following gradient of the loss on a
single independent observation (Xk, Yk) at each step; Assumption A3 is then
satisfied with Fk = σ((Xj , Yj)j∈{1,...,k}).

Two classical situations are worth mentioning. On the first hand, in least-
squares regression, X = Rd, Y = R, and the loss function is L(X,Y, θ) =
(〈X, θ〉−Y )2. Then fΣ is the quadratic function θ 7→ ‖Σ1/2(θ− θ∗)‖2/2, with
Σ = E[XX>], which satisfies Assumption A2. For any θ ∈ Rd,

(6) εk(θ) = XkX
>
k θ −XkYk
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Then, for any p ≥ 2, Assumption A4(p) and A5 is satisfied as soon as
observations are a.s. bounded, while A1 is satisfied if the second moment
matrix is invertible or additional regularization is added. In this setting, εk
can be decomposed as εk = %k + ξk where %k is the multiplicative part, ξk the
additive part, given for θ ∈ Rd by %k(θ) = (XkX

>
k − Σ)(θ − θ∗) and

(7) ξk = (X>k θ
∗ − Yk)Xk .

For all k ≥ 1, ξk does not depend on θ. This two parts in the noise will
appear in Corollary 6. Finally assume that there exists r ≥ 0 such that

(8) E[‖Xk‖2XkX
>
k ] 4 r2Σ ,

then A4(4) is satisfied. This assumption is satisfied, e.g., for a.s. bounded
data, or for data with bounded kurtosis, see [12] for details.

On the other hand, in logistic regression, where L(X,Y, θ) = log(1 +
exp(−Y 〈X, θ〉)). Assumptions A4 or A2 are similarly satisfied, while A1
needs an additional restriction to a compact set.

2.2. Related work.

Constant step-size SGD. Several attempts have been made to improve con-
vergence of SGD. [3] proposed an online Newton algorithm which converges in
practice to the optimal point with constant step-size but has no convergence
guarantees. The quadratic case was studied by [3], for the (uniform) aver-
age iterate: the variance term is upper bounded by σ2d/n and the squared
bias term by ‖θ∗‖2/(γn). This last term was improved to ‖Σ−1/2θ∗‖2/(γn)2

by [10, 13], showing that asymptotically, the bias term is negligible, see
also [21]. Analysis has been extended to “tail averaging” [18], to improve
the dependence on the initial conditions. Note that this procedure can be
seen as a Richardson-Romberg trick with respect to k. Other strategies were
suggested to improve the speed at which initial conditions were forgotten,
for example using acceleration when the noise is additive [12, 19]. A criterion
to check when SGD with constant step size is close to its limit distribution
was recently proposed in [7].

Link between discretization of ergodic diffusions and SGD. In the context
of discretization of ergodic diffusions, weak error estimates between the
stationary distribution of the discretization and the invariant distribution of
the associated diffusion have been first shown by [43] and [26] in the case of
the Euler-Maruyama scheme. Then, [43] suggested the use of Richardson-
Romberg interpolation to improve the accuracy of estimates of integrals
with respect to the invariant distribution of the diffusion. Extension of these
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results have been obtained for other types of discretization by [1] and [8].
We show in Section 3.3 that a weak error expansion in the step-size γ also
holds for SGD between πγ and δθ∗ . Interestingly as to the Euler-Maruyama
discretization, SGD has a weak error of order γ. In addition, [14] proposed
and analyzed the use of Richardson-Romberg extrapolation applied to the
stochastic gradient Langevin dynamics (SGLD) algorithm. This method
introduced by [45] combines SGD and the Euler-Maruyama discretization
of the Langevin diffusion associated to a target probability measure [15, 9].
Note that this method is however completely different from SGD, in part
because Gaussian noise of order γ1/2 (instead of γ) is injected in SGD which
changes the overall dynamics.

Finally, it is worth mentioning [24, 25] which are interested in showing
that the invariant measure of constant step-size SGD for an appropriate
choice of the step-size γ, can be used as a proxy to approximate the target
distribution π with density with respect to the Lebesgue measure e−f . Note
that the perspective and purpose of this paper is completely different since
we are interested in optimizing the function f and not in sampling from π.

2.3. Summary and discussion of main results. Under the stated assump-

tions, for all γ ∈ (0, 2/L) and θ0 ∈ Rd, the Markov chain (θ
(γ)
k )k≥0 converges

in a certain sense specified below to a probability measure on (Rd,B(Rd)), πγ
satisfying

∫
Rd ‖ϑ‖

2 πγ(dϑ) < +∞, see Proposition 2 in Section 3. In the next
section, by two different methods (Theorem 4 and Theorem 7), we show that
under suitable conditions on f and the noise (εk)k≥1, there exists ∆ ∈ Rd
such that for all γ ≥ 0, small enough

θ̄γ =

∫
Rd
ϑπγ(dϑ) = θ∗ + γ∆ + r(1)

γ ,

where r
(1)
γ ∈ Rd, ‖r(1)

γ ‖ ≤ Cγ2 for some constant C ≥ 0 independent of γ.
Using Proposition 2, we get that for all k ≥ 1,

(9) E[θ̄
(γ)
k − θ∗] =

A(θ0, γ)

k
+ γ∆ + r(2)

γ ,

where r
(2)
γ ∈ Rd, ‖r(2)

γ ‖ ≤ C(γ2+e−kµγ) for some constant C ≥ 0 independent
of γ.

This expansion in the step-size γ shows that a Richardson-Romberg
extrapolation can be used to have better estimates of θ∗. Consider the

average iterates (θ̄
(k)
2γ )k≥0 and (θ̄

(γ)
k )k≥0 associated with SGD with step size

2γ and γ respectively. Then (9) shows that (2θ̄
(γ)
k − θ̄

(2γ)
k )k≥0 satisfies

E[2θ̄
(γ)
k − θ̄

(2γ)
k − θ∗] =

2A(θ0, γ)−A(θ0, 2γ)

k
+ 2r(2)

γ − r(2)
2γ ,
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and therefore is closer to the optimum θ∗. This very simple trick improves
the convergence by a factor of γ (at the expense of a slight increase of the

variance). In practice, while the un-averaged gradient iterate θ
(γ)
k saturates

rapidly, θ̄
(γ)
k may already perform well enough to avoid saturation on real

data-sets [3]. The Richardson-Romberg extrapolated iterate 2θ̄
(γ)
k − θ̄

(2γ)
k very

rarely reaches saturation in practice. This appears in synthetic experiments
presented in Section 4. Moreover, this procedure only requires to compute
two parallel SGD recursions, either with the same inputs, or with different
ones, and is naturally parallelizable.

In Section 3.2, we give a quantitative version of a central limit theorem for

(θ̄
(γ)
k )k≥0, for a fixed γ > 0 and k going to +∞ : under appropriate conditions,

there exist constants B1(γ) and B2(γ) such that

(10) E
[∥∥∥θ̄(γ)

k − θ̄γ
∥∥∥2
]

= B1(γ)/k +B2(γ)/k2 .

Combining (9) and (10) characterizes the bias/variance trade-off of SGD
used to estimate θ∗.

3. Detailed analysis. In this Section, we describe in detail our ap-
proach. A first step is to describe the existence of a unique stationary

distribution πγ for the Markov chain (θ
(γ)
k )k≥0 and the convergence of this

Markov chain to πγ in the Wasserstein distance of order 2.

Limit distribution. We cast in this section SGD in the Markov chain frame-
work and introduce basic notion related to this theory, see [27] for an in-
troduction to this topic. Consider the Markov kernel Rγ on (Rd,B(Rd))
associated with SGD iterates (θ

(γ)
k )k∈N, i.e. for all k ∈ N and A ∈ B(Rd),

almost surely Rγ(θk,A) = P(θk+1 ∈ A|θk), for all θ0 ∈ Rd and A ∈ B(Rd),
θ 7→ Rγ(θ,A) is Borel measurable and Rγ(θ0, ·) is a probability measure on
(Rd,B(Rd)). For all k ∈ N∗, we define the Markov kernel Rkγ recursively by

R1
γ = Rγ and for k ≥ 1, for all θ0 ∈ Rd and A ∈ B(Rd)

Rk+1
γ (θ0,A) =

∫
Rd
Rkγ(θ0,dθ)Rγ(θ,A) .

For any probability measure λ on (Rd,B(Rd)), we define the probability
measure λRγ for all A ∈ B(Rd) by

λRkγ(A) =

∫
Rd
λ(dθ)Rkγ(θ,A) .
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10 A. DIEULEVEUT, A. DURMUS, F. BACH

By definition, for all probability measure λ on B(Rd) and k ∈ N∗, λRkγ is

the distribution of θ
(γ)
k started from θ0 drawn from λ. For any function

φ : Rd → R+ and k ∈ N∗, define the measurable function Rkγφ : Rd → R for

all θ0 ∈ Rd,
Rkγφ(θ0) =

∫
Rd
φ(θ)Rkγ(θ0, dθ) .

For any measure λ on (Rd,B(Rd)) and any measurable function h : Rd → R,
λ(h) denotes

∫
Rd h(θ)dλ(θ) when it exists. Note that with such notations, for

any k ∈ N∗, probability measure λ on B(Rd), measurable function h : Rd →
R+, we have λ(Rkγh) = (λRkγ)(h). A probability measure πγ on (Rd,B(Rd))
is said to be a invariant probability measure for Rγ , γ > 0, if πγRγ = Rγ . A

Markov chain (θ
(γ)
k )k∈N satisfying the SGD recursion (1) for γ > 0 will be

said at stationarity if it admits a invariant measure πγ and θ
(γ)
k is distributed

according to πγ . Note that in this case for all k ∈ N, the distribution of θ
(γ)
k

is πγ .

To show that (θ
(γ)
k )k≥0 admits a unique stationary distribution πγ and

quantify the convergence of (ν0R
k
γ)k≥0 to πγ , we use the Wasserstein distance.

A probability measure λ on (Rd,B(Rd)) is said to have a finite second moment
if
∫
Rd ‖ϑ‖

2 λ(dϑ) < +∞. The set of probability measure on (Rd,B(Rd))
having a finite second moment is denoted by P2(Rd). For all probability
measures ν and λ in P2(Rd), define the Wasserstein distance of order 2
between λ and ν by

W2(λ, ν) = inf
ξ∈Π(λ,ν)

(∫
‖x− y‖2ξ(dx, dy)

)1/2
,

where Π(µ, ν) is the set of probability measure ξ on B(Rd × Rd) satisfying
for all A ∈ B(Rd), ξ(A× Rd) = ν(A), ξ(Rd × A) = λ(A).

Proposition 2. Assume A1-A2-A3-A4(2). For any step-size γ ∈
(0, 2/L), the Markov chain (θ

(γ)
k )k≥0, defined by the recursion (1), admits a

unique stationary distribution πγ ∈ P2(Rd). In addition

(a) for all θ ∈ Rd, k ∈ N∗:

W 2
2 (Rkγ(θ, ·), πγ) ≤ (1− 2µγ(1− γL/2))k

∫
Rd
‖θ − ϑ‖2 dπγ(ϑ) ;

(b) for any Lipshitz function φ : Rd → R, with Lipschitz constant Lφ, for
all θ ∈ Rd, k ∈ N∗:∣∣∣Rkγφ(θ)− πγ(φ)

∣∣∣ ≤ Lφ(1−2µγ(1−γL/2))k/2
(∫
‖θ − ϑ‖2dπγ(ϑ)

)1/2

.
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BRIDGING THE GAP BETWEEN SGD AND MARKOV CHAINS 11

Proof. Let γ ∈ (0, 2/L) and λ1, λ2 ∈ P2(Rd). By [44, Theorem 4.1],

there exists a couple of random variables θ
(1)
0 , θ

(2)
0 such that W 2

2 (λ1, λ2) =

E[‖θ(1)
0 − θ

(2)
0 ‖2] independent of (εk)k∈N∗ . Let (θ

(1)
k )k≥0,(θ

(2)
k )k≥0 be the SGD

iterates associated with the step-size γ, starting from θ
(1)
0 and θ

(2)
0 respectively

and sharing the same noise, i.e. for all k ≥ 0,

(11)

{
θ

(1)
k+1 = θ

(1)
k − γ

[
f ′(θ(1)

k ) + εk+1(θ
(1)
k )
]

θ
(2)
k+1 = θ

(2)
k − γ

[
f ′(θ(2)

k ) + εk+1(θ
(2)
k )
]
.

Note that using that θ
(1)
0 , θ

(2)
0 are independent of ε1, we have for i, j ∈ {1, 2}

using A3, that

(12) E[〈θ(i)
0 , ε(θ

(j)
0 )〉] = 0 .

Since for all k ≥ 0, the distribution of (θ
(1)
k , θ

(2)
k ) belongs to Π(λ1R

k
γ , λ2R

k
γ),

by definition of the Wasserstein distance we get

W 2
2 (λ1Rγ , λ2Rγ) ≤ E

[
‖θ(1)

1 − θ
(2)
1 ‖2

]
≤ E

[
‖θ(1)

0 − γf ′1(θ
(1)
0 )− (θ

(2)
0 − γf ′1(θ

(2)
0 )))‖2

]
i)

≤ E
[∥∥∥θ(1)

0 − θ
(2)
0

∥∥∥2
− 2γ

〈
f ′(θ(1)

0 )− f ′(θ(2)
0 ), θ

(1)
0 − θ

(2)
0

〉]
+ γ2E

[∥∥∥f ′1(θ
(1)
0 )− f ′1(θ

(2)
0 )
∥∥∥2
]

ii)

≤ E
[∥∥∥θ(1)

0 − θ
(2)
0

∥∥∥2
− 2γ(1− γL/2)

〈
f ′(θ(1)

0 )− f ′(θ(2)
0 ), θ

(1)
0 − θ

(2)
0

〉]
iii)

≤ (1− 2µγ(1− γL/2))E
[∥∥∥θ(1)

0 − θ
(2)
0

∥∥∥2
]
,

using (12) for i), A4(2) for ii), and finally A1 for iii).
Thus by a straightforward induction, we get, setting ρ = (1−2µγ(1−γL/2))

W 2
2 (λ1R

k
γ , λ2R

k
γ) ≤ E

[
‖θ(1)
k − θ

(2)
k ‖2

]
≤ ρE

[
‖θ(1)
k−1 − θ

(2)
k−1‖2

]
≤ ρkW 2

2 (λ1, λ2) ,(13)

Since by A2-A3-A4(2), λ1Rγ ∈ P2(Rd), taking λ2 = λ1Rγ in (13), for any

N ∈ N∗, we have
∑N

k=1W
2
2 (λ1R

k
γ , λ2R

k
γ) ≤ ∑N

k=1 ρ
kW 2

2 (λ1, λ1Rγ). There-

fore, we get
∑+∞

k=1W
2
2 (λ1R

k
γ , λ1R

k+1
γ ) < +∞. By [44, Theorem 6.16], the
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12 A. DIEULEVEUT, A. DURMUS, F. BACH

space P2(Rd) endowed with W2 is a Polish space. Then, (λ1R
k
γ)k≥0 is a

Cauchy sequence and converges to a limit πλ1γ ∈ P2(Rd):

(14) lim
k→+∞

W2(λ1R
k
γ , π

λ1
γ ) = 0 .

We show that the limit πλ1γ does not depend on λ1. Assume that there exists

πλ2γ such that limk→+∞W2(λ2R
k
γ , π

λ2
γ ) = 0. By the triangle inequality

W2(πλ1γ , π
λ2
γ ) ≤W2(πλ1γ , λ1R

k
γ) +W2(λ1R

k
γ , λ2R

k
γ) +W2(πλ2γ , λ2R

k
γ) .

Thus by (13) and (14), taking the limits as k → +∞, we get W2(πλ1γ , π
λ2
γ ) = 0

and πλ1γ = πλ2γ . The limit is thus the same for all initial distributions and is
denoted by πγ .

Moreover, πγ is invariant for Rγ . Indeed for all k ∈ N∗,

W2(πγRγ , πγ) ≤W2(πγRγ , πγR
k
γ) +W2(πγR

k
γ , πγ) .

Using (13) and (14), we get taking k → +∞, W2(πγRγ , πγ) = 0 and πγRγ =
πγ . The fact that πγ is the unique stationary distribution is straightforward
by contradiction and using (13).

Taking λ1 = δθ, λ2 = πγ , using the invariance of πγ and (13), we get (a).
Finally, if we take λ1 = δθ and λ2 = πγ , using πγRγ = πγ , (13), and the

Cauchy-Schwarz inequality, we have for any k ∈ N∗:∣∣∣Rkγφ(θ)− πγ(φ)
∣∣∣ =

∣∣∣E [φ(θ
(1)
k,γ)− φ(θ

(2)
k,γ))

]∣∣∣≤LφE1/2[
∥∥∥θ(1)

k,γ − θ
(2)
k,γ

∥∥∥2
]

≤Lφ(1− 2µγ(1− γL/2))k/2
(∫
‖θ − ϑ‖2dπγ(ϑ)

)1/2

,

which concludes the proof of (b).

A consequence of Proposition 2 is that the expectation of θ̄
(γ)
k defined by

(2) converges to
∫
Rd ϑdπγ(ϑ) as k goes to infinity at a rate of order O(k−1),

see Proposition 16 in Section 7.2.

3.1. Expansion of moments of πγ when γ is in a neighborhood of 0. In this
sub-section, we analyze the properties of the chain starting at θ0 distributed
according to πγ . As a result, we prove that the mean of the stationary
distribution θ̄γ =

∫
Rd ϑπγ (dϑ) is such that θ̄γ = θ∗ + γ∆ + O(γ2). Simple

developments of Equation (1) at the equilibrium, result in expansions of
the first two moments of the chain. It extends [34, 23] which showed that
(γ−1/2(πγ − δθ∗))γ>0 converges in distribution to a normal law as γ → 0.

imsart-aos ver. 2014/10/16 file: main_aos.tex date: March 26, 2018



BRIDGING THE GAP BETWEEN SGD AND MARKOV CHAINS 13

Quadratic case. When f is a quadratic function, i.e. f ′ is affine, we have
the following result.

Proposition 3. Assume f = fΣ, fΣ : θ 7→
∥∥Σ1/2(θ − θ∗)

∥∥2
/2, where Σ

is a positive definite matrix, and A2-A3-A4(4). Let γ ∈ (0, 2/L). Then, it
holds θ̄γ = θ∗, Σ⊗ I + I ⊗ Σ− γΣ⊗ Σ is invertible and∫

Rd
(θ − θ∗)⊗2πγ(dθ) = γ(Σ⊗ I + I ⊗ Σ− γΣ⊗ Σ)−1

[∫
Rd
C(θ)πγ(dθ)

]
,

where θ̄γ and C are given by (3) and (5) respectively, and πγ is the invariant
probability measure of Rγ given by Proposition 2.

The first part of the result, which highlights the crucial fact that for a
quadratic function, the mean under the limit distribution is the optimal

point, is easy to prove. Indeed, since πγ is invariant for (θ
(γ)
k )k≥0, if θ

(γ)
0

is distributed according to πγ , then θ
(γ)
1 is distributed according to πγ as

well. Thus as θ
(γ)
1 = θ

(γ)
0 − γf ′(θ(γ)

0 ) + γε1(θ
(γ)
0 ) taking expectations on both

sides, we get
∫
Rd f

′(ϑ)dπγ(ϑ) = 0. For a quadratic function, whose gradient
is linear:

∫
Rd f

′(ϑ)dπγ(ϑ) = f ′(θ̄γ) = 0 and thus θ̄γ = θ∗. This implies that
the averaged iterate converges to θ∗, see e.g. [3]. The proof for the second
expression is given in Section 7.3.

General case. While the quadratic case led to particularly simple expressions,
in general, we can only get a first order development of these expectations
as γ → 0. Note that it improved on [34], which shows a similar expansion
but an error of order of O(γ3/2).

Theorem 4. Assume A1-A2-A3-A4(12)-A5 and let γ ∈ (0, 2/L). Then
f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗) is invertible and

θ̄γ − θ∗ = γf ′′(θ∗)−1f ′′′(θ∗)AC(θ∗) +O(γ2)(15) ∫
Rd

(θ − θ∗)⊗2πγ(dθ) = γAC(θ∗) +O(γ2) ,(16)

where

(17) A =
(
f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗)

)−1
,

θ̄γ and C are given by (3) and (5) respectively, and πγ is the invariant
probability measure of Rγ given by Proposition 2.

Proof. The proof is postponed to Section 7.4.
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14 A. DIEULEVEUT, A. DURMUS, F. BACH

This shows that γ 7→ θ̄γ is a differentiable function at γ = 0. The “drift”
θ̄γ − θ∗ can be understood as an additional error occurring because the
function is non quadratic (f ′′′(θ∗) 6= 0) and the step-sizes are not decaying
to zero. The mean under the limit distribution is at distance γ from θ∗. In
comparison, the final iterate oscillates in a sphere of radius proportional to√
γ.

3.2. Expansion for a given γ > 0 when k tends to +∞. In this sub-

section, we analyze the convergence of θ̄
(γ)
k to θ̄γ , when k → ∞, and the

convergence of E[‖θ̄(γ)
k − θ̄γ‖2] to 0. Under suitable conditions [16], θ̄

(γ)
k

satisfies a central limit theorem: {
√
k(θ̄

(γ)
k − θ̄γ)}k∈N∗ converges in law to a

d-dimensional Gaussian distribution with zero-mean. However, this result is
purely asymptotic and we propose a new tighter development that describes
how the initial conditions are forgotten. We show that the convergence
behaves similarly to the convergence in the quadratic case, where the expected
squared distance decomposes as a sum of a bias term, that scales as k−2, and
a variance term, that scales as k−1, plus linearly decaying residual terms. We
also describe how the asymptotic bias and variance can be easily expressed
as moments of solutions associated to several Poisson equations.

For any Lipschitz function ϕ : Rd → Rq, by Lemma 8 in Section 7.2, the
function ψγ =

∑+∞
i=0 {Riγϕ − πγ(ϕ)} is well-defined, Lipschitz and satisfies

πγ(ψγ) = 0, (Id−Rγ)ψγ = ϕ. ψγ will be referred to as the Poisson solution
associated with ϕ. Consider the three following functions:

• ψγ the Poisson solution associated to ϕ : θ 7→ θ − θ∗,
• χ1

γ the Poisson solution associated to θ 7→ (ψγ(θ))⊗2,
• χ2

γ the Poisson solution associated to θ 7→ ((ψγ − ϕ)(θ))⊗2.

Theorem 5. Assume A1-A2-A3-A4(4) and let γ ∈ (0, 1/(2L)). Then
setting ρ = (1− γµ)1/2, for any starting point θ0 ∈ Rd, k ∈ N∗,

E
[
θ̄

(γ)
k − θ̄γ

]
= k−1(ψγ(θ0) +O(ρk)) ,

E
[(
θ̄

(γ)
k − θ̄γ

)⊗2
]

= k−1

∫
Rd

[
ψγ(θ)ψγ(θ)> − (ψγ − ϕ)(θ)(ψγ − ϕ)(θ)>

]
dπγ(θ)

+ k−2
[
ψγ(θ0)ψγ(θ0)> + χ1

γ(θ0)− χ2
γ(θ0)

]
+O(ρk) ,(18)

where θ̄
(γ)
k , θ̄γ are given by (2) and (3) respectively, and πγ is the invariant

probability measure of Rγ given by Proposition 2.

Equation (5) is a sum of two terms: (i) a variance term, that scales as 1/k,
and does not depend on the initial distribution (but only on the asymptotic
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BRIDGING THE GAP BETWEEN SGD AND MARKOV CHAINS 15

distribution πγ), and (ii) a bias term, which scales as 1/k2, and depends on
the initial point θ0 ∈ Rd.

Proof. In order to give the intuition of the proof and to underline how
the associated Poisson solutions are introduced, we here sketch the proof
of the first result. By definition of ϕ : θ 7→ θ − θ∗ and since ψγ satisfies
(Id−Rγ)ψγ = ϕ, we have

E
[
θ̄

(γ)
k+1

]
−θ∗ = (k+1)−1

k∑
i=0

(Riγϕ)(θ0) = πγ(ϕ)+(k+1)−1ψγ(θ0)+Rk+1
γ ψγ(θ0),

where we have used that

∞∑
i=0

Riγ(ϕ− πγ(ϕ))−Rk+1
γ

∞∑
i=0

Riγ(ϕ− πγ(ϕ)) = ψγ −Rk+1
γ ψγ .

Finally, we have that Rkγψγ(θ0) converges to 0 at linear speed, using Proposi-
tion 2 and πγ(ψγ) = 0.

The formal and complete proof of this result is postponed to Section 7.5.

This result gives an exact closed form for the asymptotic bias and variance,
for a fixed γ, as k → ∞. Unfortunately, in the general case, it is neither
possible to compute the Poisson solutions exactly, nor is it possible to prove
a first order development of the limits as γ → 0.

When fΣ is a quadratic function, it is possible, for any γ > 0, to compute
ψγ and χ1,2

γ explicitly; we get the following decomposition of the error, which
exactly recovers the result of [10].

Corollary 6. Assume that f is an objective function of a least-square
regression problem, i.e. with the notations of Example 1, f = fΣ, Σ =
E[XX>], εk are defined by (6), and step-size γ ≤ 1/r2, with r defined by
(8). Assume A1-A2-A3-A4(4). For any starting point θ0 ∈ Rd :

Eθ̄(γ)
k − θ∗=(1/(kγ))Σ−1(θ0 − θ∗) +O(ρk)

E
[(
θ̄

(γ)
k − θ∗

)⊗2
]
=(1/k)Σ−1

{∫
Rd
C(θ)dπγ(θ)

}
Σ−1

+ (1/(k2γ2))Σ−1Ω
[
ϕ(θ0)⊗2 − πγ(ϕ(θ)⊗2)

]
Σ−1 +O(ρk) .

With Ω = (Σ⊗ I + I ⊗ Σ− γΣ⊗ Σ)(Σ⊗ I + I ⊗ Σ− γT )−1, and

(19) T : Rd×d → Rd×d , A 7→ E
[
(X>AX)XX>

]
.
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16 A. DIEULEVEUT, A. DURMUS, F. BACH

Proof. The proof is postponed the supplementary paper [11], Section
S3.

The bound on the second order moment is composed of a variance term
k−1Σ−1πγ(C)Σ−1, and a bias term which decays as k−2. Interestingly, the
bias is 0 if we start under the limit distribution.

3.3. Continuous interpretation of SGD and weak error expansion. Under
the stated assumptions on f and (εk)k∈N∗ , we have analyzed the convergence
of the stochastic gradient recursion (1). We here describe how this recursion
can be seen as a noisy discretization of the following gradient flow equation,
for t ∈ R+:

(20) θ̇t = −f ′(θt) .

Note that since f ′(θ∗) = 0 by definition of θ∗ and A1, then θ∗ is an equilibrium
point of (20), i.e. θt = θ∗ for all t ≥ 0 if θ0 = θ∗. Under A2, (20) admits
a unique solution on R+ for any starting point θ ∈ Rd. Denote by (ϕt)t≥0

the flow of (20), defined for all θ ∈ Rd by (ϕt(θ))t≥0 as the solution of (20)
starting at θ.

Denote by (A, D(A)), the infinitesimal generator associated with the flow
(ϕt)t≥0 defined by

D(A) =

{
h : Rd → R : for all θ ∈ Rd, lim

t→0

h(ϕt(θ))− h(θ)

t
exists

}
Ah(θ) = lim

t→0

{h(ϕt(θ))− h(θ)}
t

for all h ∈ D(A) , θ ∈ Rd .(21)

Note that for any h ∈ C1(Rd), h ∈ D(A), Ah = −〈f ′, h′〉 .
Under A1 and A2, for any locally Lipschitz function g : Rd → R (extension

to a function g : Rd → Rq can easily be done considering all assumptions and
results coordinatewise), denote by hg the solution of the continuous Poisson
equation defined for all θ ∈ Rd by hg(θ) =

∫∞
0 (g(ϕs(θ))− g(θ∗)) ds. Note

that hg is well-defined by Lemma 21-b) in Section 8.1, since g is assumed to
be locally Lipschitz. By (21), we have for all g : Rd → R, locally Lipschitz,

(22) Ahg(θ) = g(θ∗)− g(θ) .

Under regularity assumptions on g (see Theorem 23), hg is continuously differ-
entiable and therefore satisfies

〈
f ′, h′g

〉
= g−g(θ∗). The idea is then to make a

Taylor expansion of hg(θ
(γ)
k+1) around θ

(γ)
k to express k−1

∑k
i=1 g(θ

(γ)
i )− g(θ∗)

as convergent terms involving the derivatives of hg. For g : Rd → R and
`, p ∈ N, ` ≥ 1 consider the following assumptions.
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A 6 (`, p). There exist ag, bg ∈ R+ such that g ∈ C`(Rd) and for all
θ ∈ Rd and i ∈ {1, · · · , `},

∥∥g(i)(θ)
∥∥ ≤ ag {‖θ − θ∗‖p + bg}.

Theorem 7. Let g : Rd → R satisfying A6(5, p) for p ∈ N. Assume
A1-A2-A3-A5. Furthermore, suppose that there exists q ∈ N and C ≥ 0
such that for all θ ∈ Rd,

E
[
‖ε1(θ)‖p+kε+3

]
≤ C(1 + ‖θ − θ∗‖q) ,

and A4(2p̃) holds for p̃ = p+ 3 + q ∨ kε. Then there exists a constant ς > 0
only depending on p̃ such that for all γ ∈ (0, 1/(ςL)), k ∈ N∗ and any starting
point θ0 ∈ Rd it holds that:

(23) E

[
k−1

k∑
i=1

{
g(θ

(γ)
i )− g(θ∗)

}]
= (1/(kγ))

{
hg(θ0)− E

[
hg(θ

(γ)
k+1)

]}
+(γ/2) tr

(
h′′g(θ

∗) C(θ∗)
)
− (γ/k)A1(θ0)− γ2A2(θ0, k) ,

where θ
(γ)
k is the Markov chain starting from θ0 and defined by the recursion

(1) and C is given by (5). In addition for some constant C ≥ 0 independent
of γ and k, we have

A1(θ0) ≤ C
{

1 + ‖θ0 − θ∗‖p̃
}
, A2(θ0, k) ≤ C

{
1 + ‖θ0 − θ∗‖p̃ /k

}
.

Proof. The proof is postponed to Section 8.

First in the case where f ′ is linear, choosing for g the identity function,
then hId =

∫ +∞
0 {ϕs − θ∗}ds = Σ−1, and we get that the first term in (23)

vanishes which is expected since in that case θ̄γ = θ∗. Second by Lemma 22-
b), we recover the first expansion of Theorem 4 for arbitrary objective
functions f . Finally note that for all q ∈ N, under appropriate conditions,
Theorem 7 implies that there exist constants C1, C2(θ0) ≥ 0 such that

E
[
k−1

∑k
i=1 ‖θ

(γ)
i − θ∗‖2q

]
= C1γ + C2(θ0)/k +O(γ2).

3.4. Discussion. Classical proofs of convergence rely on another decom-
position, originally proposed by [31] and used in recent papers analyzing the
averaged iterate [4] . We here sketch the arguments of these decompositions,
in order to highlight the main difference, namely the fact that the residual
term is not well controlled when γ goes to zero in the classical proof.
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18 A. DIEULEVEUT, A. DURMUS, F. BACH

Classical decomposition. The starting point of this decomposition is to

consider a Taylor expansion of f ′(θ(γ)
k+1) around θ∗. For any k ∈ N,

f ′(θ(γ)
k ) = f ′′(θ∗)(θ(γ)

k − θ∗) +O

(∥∥∥θ(γ)
k − θ∗

∥∥∥2
)
.

As a consequence, using the definition of the SGD recursion (1),

θ
(γ)
k+1 − θ

(γ)
k = −γf ′(θ(γ)

k )− γεk+1(θ
(γ)
k )

= −γf ′′(θ∗)(θ(γ)
k − θ∗)− γεk+1(θ

(γ)
k ) + γO

(∥∥∥θ(γ)
k − θ∗

∥∥∥2
)
.

Thus

f ′′(θ∗)(θ(γ)
k − θ∗) = γ−1(−θ(γ)

k+1 + θ
(γ)
k )− εk+1(θ

(γ)
k ) +O

(∥∥∥θ(γ)
k − θ∗

∥∥∥2
)
.

Averaging over the first k iterates yields:

(k + 1)
(
θ̄

(γ)
k − θ∗

)
= γ−1f ′′(θ∗)−1

(
θ

(γ)
0 − θ(γ)

k+1

)
−

k∑
i=0

f ′′(θ∗)−1εi+1

(
θ

(γ)
i

)
+

k∑
i=0

O

(∥∥∥θ(γ)
i − θ∗

∥∥∥2
)
.(24)

The term on the right-hand part of Equation (24) is composed of a bias
term (depending on the initial condition), a variance term, and a residual
term. This residual term differentiates the general setting from the quadratic
one (in which it does not appear, as the first order Taylor expansion of f ′ is
exact). This decomposition has been used in [4] to prove upper bound on
the error, but does not allow for a tight decomposition in powers of γ when

γ → 0. Indeed, the residual θ
(γ)
i − θ∗ simply does not go to 0 when γ → 0:

on the contrary, the chain becomes ill-conditioned when γ = 0.

New decomposition. Here, we use the fact that for a function g : Rd → Rq
regular enough, there exists hg : Rd → Rq satisfying, for any θ ∈ Rd:

h′g(θ)f
′(θ) = g(θ)− g(θ∗),
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where h′g(θ) ∈ Rq×d, and f ′(θ) ∈ Rd. The starting point is then a first order

Taylor development of hg(θ
(γ)
k+1) around θ

(γ)
k . For any k ∈ N∗, we have

hg(θ
(γ)
k+1) = hg(θ

(γ)
k ) + h′g(θ

(γ)
k )(θ

(γ)
k+1 − θ

(γ)
k ) +O

(∥∥∥θ(γ)
k+1 − θ

(γ)
k

∥∥∥2
)

= hg(θ
(γ)
k )− γh′g(θ(γ)

k )f ′(θ(γ)
k )− γh′g(θ(γ)

k )εk+1(θ
(γ)
k ) +O

(∥∥∥θ(γ)
k+1 − θ

(γ)
k

∥∥∥2
)

= hg(θ
(γ)
k )− γ(g(θ

(γ)
k )− g(θ∗))− γh′g(θ(γ)

k )εk+1(θ
(γ)
k ) +O

(∥∥∥θ(γ)
k+1 − θ

(γ)
k

∥∥∥2
)
.

Thus reorganizing terms,

g(θ
(γ)
k )− g(θ∗) = γ−1

{
hg(θ

(γ)
k )− hg(θ(γ)

k+1)
}

+ h′g(θ
(γ)
k )εk+1(θ

(γ)
k ) + γ−1O

(∥∥∥θ(γ)
k+1 − θ

(γ)
k

∥∥∥2
)
.

Finally, averaging over the first k iterations and taking g = Id give

(k + 1)
(
θ̄

(γ)
k − θ∗

)
=γ−1

(
hId(θ

(γ)
0 )− hId(θ

(γ)
k+1)

)
+

k∑
i=0

h′Id(θ
(γ)
i )εi+1

(
θ

(γ)
i

)
+ γ−1

k∑
i=0

O

(∥∥∥θ(γ)
i+1 − θ

(γ)
i

∥∥∥2
)
.(25)

This expansion is the root of the proof of Theorem 7, which formalizes the
expansion as powers of γ. The key difference between decomposition (24)
and (25) is that in the latter, when γ → 0, the expectation of the residual
term tends to 0 and can naturally be controlled.

4. Experiments. We performed experiments on simulated data, for
logistic regression, with n = 107 observations, for d = 12 and 4. Results are
presented in Figure 2. The data are a.s. bounded by R ≥ 0, therefore R2 = L.
We consider SGD with constant step-sizes 1/R2, 1/2R2 (and 1/4R2) with or
without averaging, with R2 = L. Without averaging, the chain saturates with

an error proportional to γ (since ‖θ(γ)
k − θ∗‖ = O(

√
γ) as k → +∞). Note

that the ratio between the convergence limits of the two sequences is roughly
2 in the un-averaged case, and 4 in the averaged case, which confirms the
predicted limits. We consider Richardson Romberg iterates, which saturate
at a much lower level, and performs much better than decaying step-sizes
(as 1/

√
n) on the first iterations, as it forgets the initial conditions faster.

imsart-aos ver. 2014/10/16 file: main_aos.tex date: March 26, 2018



20 A. DIEULEVEUT, A. DURMUS, F. BACH

Finally, we run the online-Newton [3], which performs very well but has no
convergence guarantee. On the Right plot, we also propose an estimator
that uses 3 different step-sizes to perform a higher order interpolation. More

precisely, for all k ∈ N∗, we compute θ̃3
k = 8

3 θ̄
(γ)
k − 2θ̄

(2γ)
k + 1

3 θ̄
(4γ)
k . With such

an estimator, the first 2 terms in the expansion, scaling as γ and γ2, should
vanish, which explains that it does not saturate.
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Figure 2: Synthetic data, logarithmic scales. Upper-left: logistic regression,
d = 12, with averaged SGD with step-size 1/R2, 1/2R2, decaying step-sizes
(γk = 1/(2R2

√
k)) (averaged (plain) and non-averaged (dashed)), Richardson

Romberg extrapolated iterates, and online Newton iterates. Upper-right:
same in lower dimension (d = 4). Bottom: same but with three different

step-sizes and an estimator built using the Richardson estimator θ̃3
k =

8
3 θ̄

(γ)
k − 2θ̄

(2γ)
k + 1

3 θ̄
(4γ)
k , with 3 different step-sizes 3γ, 2γ and γ = 1/4R2.

5. Conclusion. In this paper, we have used and developed Markov chain
tools to analyze the behavior of constant step-size SGD, with a complete
analysis of its convergence, outlining the effect of initial conditions, noise and
step-sizes. For machine learning problems, this allows us to extend known
results from least-squares to all loss functions. This analysis leads naturally
to using Romberg-Richardson extrapolation, that provably improves the
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convergence behavior of the averaged SGD iterates. Our work opens up
several avenues for future work: (a) show that Richardson-Romberg trick
can be applied to the decreasing step-sizes setting, (b) study the extension
of our results under self-concordance condition [2].
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7. Postponed proofs.

7.1. Discussion on assumptions on the noise. Assumption A4, made
in the text, can be weakened in order to apply to settings where input
observations are un-bounded (typically, Gaussian inputs would not satisfy
Assumption A4). Especially, in many cases, we only need Assumption A7
below. Let p ≥ 2.

A7 (p). (i) There exists τ̃p ≥ 0 such that {E1/p[‖ε1(θ∗)‖p]} ≤ τ̃p .
(ii) For all x, y ∈ Rd, there exists L ≥ 0 such that, for q = 2, . . . , p,

(26) E
[∥∥f ′1(x)− f ′1(y)

∥∥q]
≤ Lq−1 ‖x− y‖q−2 〈x− y, f ′(x)− f ′(y)

〉
,

where L is the same constant appearing in A2 and f ′1 is defined by (4).

On the other hand, we consider also the stronger assumption that the
noise is independent of θ (referred to as the “semi-stochastic” setting, see
[12]), or more generally that the noise has a uniformly bounded fourth order
moment.

A8. There exists τ ≥ 0 such that supθ∈Rd{E1/4[‖ε1(θ)‖4]} ≤ τ .

Assumption A7(p), p ≥ 2, is the weakest, as it is satisfied for random design
least mean squares and logistic regression with bounded fourth moment of
the inputs. Note that we do not assume that gradient or gradient estimates
are a.s. bounded, to avoid the need for a constraint on the space where
iterates live. It is straightforward to see that A7(p), p ≥ 2, implies A4(p)
with τp = τ̃p, and A8-A2 implies A4(4).

It is important to note that assuming A3 –especially that (εk)k∈N? are
i.i.d. random fields– does not imply A8. On the contrary, making the
semi stochastic assumption, i.e. that the noise functions (εk(θk−1))k∈N? are
i.i.d. vectors (e.g. satisfied if εk is constant as a function of θ), is a very
strong assumption, and implies A8.

7.2. Preliminary results. We preface the proofs of the main results by
some technical lemmas.

Lemma 8. Assume A1-A2-A3-A4(2). Let φ : Rd → R be a Lipschitz
function. For any step-size γ ∈ (0, 2/L), the function ψγ : Rd → R defined
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for all θ ∈ Rd by

(27) ψγ(θ) =
+∞∑
i=0

Riγφ(θ) ,

is well-defined, Lipschitz and satisfies (Id−Rγ)ψγ = φ, πγ(ψγ) = 0. In
addition, if ψ̃γ : Rd → R is an other Lipchitz function satisfying (Id−Rγ)ψ̃γ =
φ, πγ(ψ̃γ) = 0, then ψγ = ψ̃γ.

Proof. Let γ ∈ (0, 2/L). By Proposition 2-(b), for any Lipschitz con-
tinuous function φ, {θ 7→ ∑k

i=1(Riγφ(θ) − πγ(φ))}k≥0 converges absolutely

on all compact sets of Rd. Therefore ψγ given by (27) is well-defined. Let

(θ, ϑ) ∈ Rd × Rd. Consider now the two processes (θ
(1)
k )≥0,(θ

(2)
k )k≥0 defined

by (11) with λ1 = δθ and λ2 = δϑ. Then, for any k ∈ N∗, using (13):∣∣∣Rkγφ(θ)−Rkγφ(ϑ)
∣∣∣ ≤ LhE1/2

[∥∥∥θ(1)
k,γ − θ

(2)
k,γ

∥∥∥2
]

≤ Lh(1− 2µγ(1− γL/2))k/2‖θ − ϑ‖ .(28)

Therefore by definition (27), ψγ is Lipschitz continuous. Finally, it is straight-
forward to verify that ψγ satisfies the stated properties.

If ψ̃γ : Rd → R is an other Lipchitz function satisfying these properties,
we have for all θ ∈ Rd, (ψγ − ψ̃γ)(θ) = Rγ(ψγ − ψ̃γ)(θ). Therefore for all
k ∈ N∗, θ ∈ Rd, (ψγ − ψ̃γ)(θ) = Rkγ(ψγ − ψ̃γ)(θ). But by Proposition 2-(b),

limk→+∞Rkγ(ψγ − ψ̃γ)(θ) = πγ(ψγ − ψ̃γ) = 0, which concludes the proof.

Lemma 9. Assume A1-A2-A3-A4(2). Then we have for any γ ∈ (0, 2/L).∫
Rd
f ′(θ)πγ(dθ) = 0 .

Proof. Let (θ
(γ)
k )k∈N be a Markov chain satisfying (1), with θ

(γ)
0 dis-

tributed according to πγ . Then the proof follows from taking the expectation

in (1) for k = 0, using that the distribution of θ
(γ)
1 is πγ , E[ε1(θ)] = 0 for all

θ ∈ Rd and ε1 is independent of θ
(γ)
0 .

Lemma 10. Assume A1-A2-A3-A7(2). Then for any initial condition

θ
(γ)
0 ∈ Rd, we have for any γ > 0,

E
[∥∥∥θ(γ)

k+1 − θ∗
∥∥∥2
∣∣∣∣Fk ] ≤ (1− 2γµ(1− γL))

∥∥∥θ(γ)
k − θ∗

∥∥∥2
+ 2γ2τ̃2

2 ,
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where (θ
(γ)
k )k≥0 is given by (1). Moreover, if γ ∈ (0, 1/L), we have

(29)

∫
Rd
‖θ − θ∗‖2 πγ(dθ) ≤ γτ̃2

2 /(µ(1− γL)) .

Proof. Using A3-A1 and f ′(θ∗) = 0, we have

E
[∥∥∥θ(γ)

k+1 − θ∗
∥∥∥2
∣∣∣∣Fk ] ≤ ∥∥∥θ(γ)

k − θ∗
∥∥∥2

+ γ2E
[∥∥∥f ′k+1(θ

(γ)
k )
∥∥∥2
∣∣∣∣Fk ]

− 2γE
[〈
f ′k+1(θ

(γ)
k )− f ′k+1(θ∗), θ(γ)

k − θ∗
〉∣∣∣Fk ](30)

≤ (1− 2µγ)
∥∥∥θ(γ)

k − θ∗
∥∥∥2

+ γ2E
[∥∥∥f ′k+1(θ

(γ)
k )
∥∥∥2
∣∣∣∣Fk ] .(31)

In addition, under A3-A7(2) and using (4), we have:

E
[∥∥∥f ′k+1(θ

(γ)
k )
∥∥∥2
∣∣∣∣Fk ]

≤ 2

(
E
[∥∥∥f ′k+1(θ

(γ)
k )− f ′k+1(θ∗)

∥∥∥2
∣∣∣∣Fk ]+ E

[∥∥f ′k+1(θ∗)
∥∥2
∣∣∣Fk ])

≤ 2

(
E
[∥∥∥f ′k+1(θ

(γ)
k )− f ′k+1(θ∗)

∥∥∥2
∣∣∣∣Fk ]+ τ2

)
≤ 2

(
LE
[〈
f ′k+1(θ

(γ)
k )− f ′k+1(θ∗), θ(γ)

k − θ∗
〉∣∣∣Fk ]+ τ2

)
≤ 2

(
L
〈
f ′(θ(γ)

k )− f ′(θ∗), θ(γ)
k − θ∗

〉
+ τ2

)
.

Combining this result and (31) concludes the proof of the first inequality.

Regarding the second bound, let a fixed initial point θ
(γ)
0 ∈ Rd. By Jensen

inequality and the first result we get for any k ∈ N and M ≥ 0,

E
[∥∥∥θ(γ)

k+1 − θ∗
∥∥∥2
∧M

]
≤ (1− 2γµ(1− γL))k+1

∥∥∥θ(γ)
0 − θ∗

∥∥∥2

+ 2γ2τ̃2
2

k∑
i=0

(1− 2γµ(1− γL))i .

Since by Proposition 2-(b), limk→+∞ E[‖θ(γ)
k+1− θ∗‖2 ∧M ] =

∫
Rd{‖θ− θ∗‖2 ∧

M}πγ(dθ), we get for any M ≥ 0,∫
Rd
{‖θ − θ∗‖2 ∧M}πγ(dθ) ≤ γτ̃2

2 /(µ(1− γL)) .

Taking M → +∞ and applying the monotone convergence theorem concludes
the proof.
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Using Lemma 10, we can extend Lemma 8 to functions φ which are locally
Lipschitz.

Lemma 11. Assume A1-A2-A3-A4(4). Let φ : Rd → R be a function
satisfying there exists Lφ ≥ 0 such that for any x, y ∈ Rd,

(32) |φ(x)− φ(y)| ≤ Lφ ‖x− y‖ {1 + ‖x‖+ ‖y‖} .

For any step-size γ ∈ (0, 1/L), it holds:

(a) there exists C ≥ 0 such that for all θ ∈ Rd, k ∈ N∗:∣∣∣Rkγφ(θ)− πγ(φ)
∣∣∣ ≤ C(1− 2µγ(1− γL))k/2

{
1 + ‖θ − θ∗‖2

}
;

(b) the function ψγ : Rd → R defined for all θ ∈ Rd by (27) is well-defined
satisfies (Id−Rγ)ψγ = φ, πγ(ψγ) = 0 and there exists Lψ ≥ 0 such
that such that for any x, y ∈ Rd,

(33) |ψ(x)− ψ(y)| ≤ Lψ ‖x− y‖ {1 + ‖x‖+ ‖y‖} .

Proof. The proof is similar to the proof of Proposition 2 (b) and Lemma 8.
It is given in the supplementary paper [11].

It is worth pointing out that under Assumption A8 (the “semi-stochastic”
assumption), a slightly different result holds. The following result underlines
the difference between a stochastic noise and a semi-stochastic noise, espe-
cially the fact that the maximal step-size differs depending on this assumption
made.

Lemma 12. Assume A1-A2-A3-A8. Then for any initial condition θ
(γ)
0 ∈

Rd, we have for any γ ∈ (0, 2/(m+ L)],

E
[∥∥∥θ(γ)

k+1 − θ∗
∥∥∥2
∣∣∣∣Fk ] ≤ (1− 2γµL/(µ+ L))

∥∥∥θ(γ)
k − θ∗

∥∥∥2
+ γ2τ2 ,

where (θ
(γ)
k )k≥0 is given by (1).

Proof. First, note that since f satisfies A1 and A2, by [32, Chapter 2,
(2.1.24)], for all x, y ∈ Rd,

(34)
〈
f ′(x)− f ′(y), x− y

〉
≥ Lµ

L+ µ
‖x− y‖2 +

1

L+ µ
‖f ′(x)− f ′(y)‖2 .
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Besides, under A8, we have:

E
[∥∥∥f ′k+1(θ

(γ)
k )
∥∥∥2
|Fk
]

=
∥∥∥f ′(θ(γ)

k )
∥∥∥2

+ E
[∥∥∥f ′k+1(θ

(γ)
k )− f ′(θ(γ)

k )
∥∥∥2
]

≤
∥∥∥f ′(θ(γ)

k )
∥∥∥2

+ τ2 .

So that finally, using (30), A3, (34), A2 and rearranging terms we get

E
[∥∥∥θ(γ)

k+1 − θ∗
∥∥∥2
∣∣∣∣Fk ] ≤ (1− 2γµL/(µ+ L))

∥∥∥θ(γ)
k − θ∗

∥∥∥2
+ γ2τ2

− 2
γ

L+ µ

∥∥∥f ′(θ(γ)
k )
∥∥∥2

+ γ2
∥∥∥f ′(θ(γ)

k )
∥∥∥2
.

Using that γ ≤ 2/(m+ L) concludes the proof.

We give uniform bound on the moments of the chain (θ
(γ)
k )k≥0 for γ > 0.

For p ≥ 1, recall that under A4(2p), the noise at optimal point has a moment
of order 2p and we denote

(35) τ2p = E1/2p
[
‖ε1(θ∗)‖2p

]
.

We give a bound on the p-order moment of the chain, under the assumption
that the noise has a moment of order 2p.

For moment of order larger than 2, we have the following result.

Lemma 13. Assume A1-A2-A3-A4(2p), for p ≥ 1. There exist numeri-
cal constants Cp, Dp ≥ 2 that only depend on p, such that, if γ ∈ (0, 1/(LCp)),
for all k ∈ N∗ and θ0 ∈ Rd

E1/p

[∥∥∥θ(γ)
k − θ∗

∥∥∥2p
]
≤ (1−2γµ(1−CpγL/2))kE1/p

[
‖θ0 − θ∗‖2p

]
+
Dpγτ

2
2p

µ
,

where (θ
(γ)
k )k∈N is defined by (1) with initial condition θ

(γ)
0 = θ0. Moreover,

the following bound holds

(36)

∫
Rd
‖θ − θ∗‖2p πγ(dθ) ≤

(
Dpγτ

2
2p/µ

)p
.

Remark 14. • Notably, Lemma 13 implies that
∫
Rd ‖θ − θ∗‖

4 πγ(dθ) =

O(γ2), and thus
∫
Rd ‖θ − θ∗‖

3 πγ(dθ) = O(γ3/2). We also note that
∫
Rd ‖θ−

θ∗‖2πγ(dθ) = O(γ), also implies by Jensen’s inequality that ‖θ̄γ − θ∗‖2 =
O(γ).
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• Note that there is no contradiction between (36) and Theorem 7, as for
any p ≥ 2, one has for g(θ) = ‖θ − θ∗‖2 and hg the solution to the Poisson
equation, that h′′g(θ

∗) = 0, so that the first term in the development (of
order γ) is indeed 0.

Proof. Let γ ∈ (0, (1/2L)). Set for any k ∈ N∗, δk = ‖θ(γ)
k − θ∗‖. The

proof is by induction on p ∈ N∗. For conciseness, in the rest of the proof, we

skip the explicit dependence in γ in θ
(γ)
i : we only denote it θi. For p = 2, the

result holds by Lemma 10. Assume that the result holds for p− 1, p ∈ N∗,
p ≥ 2. By definition, we have

δ2p
k+1 =

(
δ2
k − 2γ〈f ′k+1(θk), θk − θ∗〉+ γ2‖f ′k+1(θk)‖2

)p
=

∑
i,j,l∈{0,...,p}3
i+j+l=p

p!

i!j!l!
δ2i
k (2γ)j〈f ′k+1(θk), θk − θ∗〉j γ2l‖f ′k+1(θk)‖2l .(37)

We upper bounds each term for i, j, l ∈ {0, . . . , p}, as follows:

1. For i = p, j = l = 0, we have δ2p
k .

2. For i = p−1, j = 1, l = 0, we have p2γ〈f ′k+1(θk), θk−θ∗〉δ2(p−1)
k , for which

it holds by A3

(38) E
[
p2γ〈f ′k+1(θk), θk − θ∗〉δ2(p−1)

k

∣∣∣Fk ] = p2γ〈f ′(θk), θk − θ∗〉δ2(p−1)
k .

3. Else, either l ≥ 1 or j ≥ 2, thus 2l + j ≥ 2. We first upper bound, by the
Cauchy–Schwarz inequality:

(39) E[〈f ′k+1(θk), θk − θ∗〉j |Fk] ≤ δjk
∥∥f ′k+1(θk)

∥∥j .
Second, we have

E[‖f ′k+1(θk)‖2l+j |Fk] ≤ 22l+j−1

(
E[‖f ′k+1(θk)− f ′k+1(θ∗)‖2l+j |Fk]

+ E[‖f ′k+1(θ∗)‖2l+j |Fk]
)

≤ 22l+j−1

(
E[‖f ′k+1(θk)− f ′k+1(θ∗)‖2l+j |Fk] + τ2l+j

2p

)
,(40)

using for any x, y ∈ R, (x+y)2l+j ≤ 22l+j−1(x2l+j+y2l+j), A4(2p), 2l+j ≤ 2p
and Hölder inequality. In addition, using A4(2p), we get

E[‖f ′k+1(θk)− f ′k+1(θ∗)‖2l+j |Fk] ≤ L2l+j−2δ2l+j−2
k E[‖f ′k+1(θk)− f ′k+1(θ∗)‖2|Fk]

≤ L2l+j−1δ2l+j−2
k 〈f ′(θk)− f ′(θ∗), θk − θ∗〉 .
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Combining this result, (39) and (40) implies using i+ j + l ≤ p,

E[δ2i
k (2γ)j〈f ′k+1(θk), θk − θ∗〉j γ2l‖f ′k+1(θk)‖2l|Fk]

≤ δ2i+j
k 22j+2l−1γ2l+j

(
E[‖f ′k+1(θk)− f ′k+1(θ∗)‖2l+j |Fk] + τ2l+j

2p

)
≤ γ2l+j22l+2j−1δ2i+2j+2l−2

k L2l+j−1〈f ′(θk)− f ′(θ∗), θk − θ∗〉
+ γ2l+j22l+2j−1δ2i+j

k τ2l+j
2p .(41)

Define then

Cp = max

2, (1/p)
∑

i,j,l∈{0,...,p}3
i+j+l=p
j+2l≥2

p!

i!j!l!
22l+2j−1

 .

Note that using j + 2l ≥ 2, for γ such that γL < 1/Cp, it holds

(42)
1

p

∑
i,j,l∈{0,...,p}3
i+j+l=p
j+2l≥2

p!

i!j!l!
(γL)2l+j−122l+2j−1 ≤ γLCp < 1 .

Therefore, we have combining this inequality, (38)-(41) in (37),

E[δ2p
k+1|Fk] ≤ δ

2p
k − 2γp(1− γLCp/2)δ

2(p−1)
k 〈f ′(θk)− f ′(θ∗), θk − θ∗〉

+
∑

i,j,l∈{0,...,p}3
i+j+l=p
j+2l≥2

p!

i!j!l!
γ2l+j22l+2j−1δ2i+j

k τ2l+j
2p .

Using A1, for j ∈ {0, . . . , p}, (γτ2pδk)
j ≤ 2(γτ2p)

2j + 2(δk)
2j , we get

E[δ2p
k+1] ≤ (1− 2γµp(1− γLCp/2))E[δ2p

k ]

+
∑

i,j,l∈{0,...,p}3
i+j+l=p
j+2l≥2

p!

i!j!l!
4l+j(γ2τ2

2p)
l+jE[δ2i

k ] +
p!

i!j!l!
4l+j(γ2τ2

2p)
lE[δ2i+2j

k ] .

Finally, denoting ck = E1/p[δ2p
k ], using that by Hölder inequality E[δ2i

k ] ≤ cik,
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for all i ∈ {0, . . . , p}, we have:

cpk+1 ≤ (1− 2γµp(1− γLCp/2))cpk +
∑

i,j,l∈{0,...,p}3
i+j+l=p
j+2l≥2

p!

i!j!l!
4l+j(γ2τ2

2p)
l+jcik

+
∑

i,j,l∈{0,...,p}3
i+j+l=p
j+2l≥2

p!

i!j!l!
4l+j(γ2τ2

2p)
lci+jk .(43)

Define

Dp = max
u∈{0,...,p}


2p−u

(
p

u

)−1


∑

i,j,l∈{0,...,p}3
i+j+l=p
j+2l≥2
l+j=u

p!

i!j!l!
4l+j +

∑
i,j,l∈{0,...,p}3
i+j+l=p
j+2l≥2
l=u

p!

i!j!l!
4l+j




Note that using (42), Cp ≥ 2 and µ ≤ L, (1 − 2γµ(1 − γLCp/2)) ≥ (1 −
γLCp(1 − γLCp/2)) ≥ 1/2. Using this inequality and 1 − pt ≤ (1 − t)p for
t ≥ 0 we get by (43) setting ρ = (1− 2γµ(1− γLCp/2)),

(
ρck +Dpγ

2τp
)p

=

p∑
u=0

(
p

u

)
(ρck)

p−u(Dpγ
2τp)

u

≥ (1− 2γµp(1− γLCp/2))cpk +

p∑
u=0

2u−pcp−uk

(
p

u

)
(ρck)

p−u(Dpγ
2τp)

u ≥ cpk+1 .

A straightforward induction implies the first statement.The proof of (36) is
similar to the one of (29) and is omitted.

Lemma 15. Let g : Rd → R satisfying A6(1, p) for p ∈ N. Then for all
θ1, θ2 ∈ Rd,

|g(θ1)− g(θ2)| ≤ ag ‖θ1 − θ2‖ {bg + ‖θ1 − θ∗‖p + ‖θ2 − θ∗‖p} .

Proof. Let θ1, θ2 ∈ Rd. By the mean value theorem, there exists s ∈ [0, 1]
such that if ηs = sθ1 + (1− s)θ2 then

|g(θ1)− g(θ2)| = Dg(ηs) {θ1 − θ2} .
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The proof is then concluded using A6(`, p) and

‖ηs − θ∗‖ ≤ max (‖θ1 − θ∗‖ , ‖θ2 − θ∗‖) .

Proposition 16. Let g : Rd → R satisfying A6(1, p) for p ∈ N. Assume
A1-A2-A3-A4(2p). Let Cp ≥ 2 be given by Lemma 13 and only depending
on p. For all γ ∈ (0, 1/(LCp)), for all initial point θ0 ∈ Rd, there exists Cg
independent of θ0 such that for all k ≥ 1:∣∣∣∣∣E

[
k−1

k∑
i=1

{
g(θ

(γ)
i )
}]
−
∫
Rd
g(θ)πγ(dθ)

∣∣∣∣∣ ≤ Cg(1 + ‖θ0 − θ∗‖p)/k .

Proof. The proof is postponed to the supplementary document [11].

7.3. Proof of Proposition 3.

Proof of Proposition 3. By Lemma 9, we have
∫
Rd f

′(θ)πγ(dθ) = 0.
Since f ′ is linear, we get f ′(θ̄γ) = 0, which implies by A1 that θ̄γ = θ∗.

Let γ ∈ (0, 2/L) and (θ
(γ)
k )k∈N given by (1) with θ

(γ)
0 distributed according

to πγ independent of (εk)k∈N∗ . Note that if f = fΣ, (1) implies for k = 1:

(θ
(γ)
1 − θ∗)⊗2 =

(
(Id−γΣ)

(
θ

(γ)
0 − θ∗

)
+ γε1(θ

(γ)
0 )
)⊗2

Taking the expectation, using A3, θ
(γ)
0 is independent of ε1 and πγRγ = πγ ,

we get∫
Rd

(θ − θ∗)⊗2πγ(dθ) = (Id−γΣ)

[∫
Rd

(θ − θ∗)⊗2πγ(dθ)

]
(Id−γΣ)

+ γ2

∫
Rd
C(θ)πγ(dθ) .

(44) (Σ⊗Id + Id⊗Σ−γΣ⊗Σ)

[∫
Rd

(θ − θ∗)⊗2πγ(dθ)

]
= γ

∫
Rd
C(θ)πγ(dθ) .

It remains to show that (Σ⊗ Id + Id⊗Σ− γΣ⊗ Σ) is invertible. To show
this result, we just claim that it is a symmetric definite positive operator.
Indeed, since γ < 2L−1, Id−(γ/2)Σ is symmetric positive definite and is
diagonalizable with the same orthogonal vectors (fi)i∈{0,...,d} as Σ. If we
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denote by (λi)i∈{0,...,d}, then we get that (Σ ⊗ Id + Id⊗Σ − γΣ ⊗ Σ) =
Σ⊗ (Id−γ/2Σ) + (Id−γ/2Σ)⊗ Σ is also diagonalizable in the orthogonal
basis of Rd ⊗Rd, (fi ⊗ fj)i,j∈{0,...,d} and (λi(1− γλj) + λj(1− γλi))i,j∈{0,...,d}
are its eigenvalues.

Note that in the case of the regression setting described in Example 1, we
can specify Proposition 3 as follows.

Proposition 17. Assume that f is an objective function of a least-
square regression problem, i.e. with the notations of Example 1, f = fΣ,
Σ = E[XX>] and εk are defined by (6). Assume A1-A2-A3-A4(4) and let
r defined by (8). We have for all γ ∈

(
0, 1/r2

)
,

(Σ⊗ Id + Id⊗Σ− γT)

[∫
Rd

(θ − θ∗)⊗2πγ(dθ)

]
= γE[ξ⊗2

1 ] ,

where T and ξ1 are defined by (19) and (7) respectively.

Proof. The proof follows the same line as the proof of Proposition 3 and
is omitted.

7.4. Proof of Theorem 4. We preface the proof by a couple of preliminaries
lemmas.

Lemma 18. Assume A1-A2-A3-A4(6 ∨ 2kε)-A5 and let γ ∈ (0, 2/L).
Then

(45) θ̄γ − θ∗ = γf ′′(θ∗)−1f ′′′(θ∗)A
[∫

Rd
{C(θ)}πγ(dθ)

]
+O(γ3/2) ,

where A is defined by (17), θ̄γ and C are given by (3) and (5) respectively.

Proof. Let γ ∈ (0, 2/L) and (θ
(γ)
k )k∈N given by (1) with θ

(γ)
0 distributed

according to πγ independent of (εk)k∈N∗ . For conciseness, in the rest of the

proof, we skip the explicit dependence in γ in θ
(γ)
i : we only denote it θi.

First by a third Taylor expansion with integral remainder of f ′ around θ∗,
we have that for all x ∈ Rd,

(46) f ′(θ) = f ′′(θ∗)(θ − θ∗) + (1/2)f ′′′(θ∗)(θ − θ∗)⊗2 +R1(θ) ,

where R1 : Rd → Rd satisfies

(47) sup
θ∈Rd
{‖R1(θ)‖ / ‖θ − θ∗‖3} < +∞ .
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It follows from Lemma 9, taking the integral with respect to πγ ,

0 =

∫
Rd

{
f ′′(θ∗)(θ − θ∗) + (1/2)f ′′′(θ∗)(θ − θ∗)⊗2 +R1(θ)

}
πγ(dθ) .

Using (47), Lemma 13 and Hölder inequality, we get

(48) f ′′(θ∗)(θ̄γ − θ∗) + (1/2)f ′′′(θ∗)
[∫

Rd
(θ − θ∗)⊗2πγ(dθ)

]
= O(γ3/2) .

Moreover, we have by a second order Taylor expansion with integral remainder
of f ′ around θ∗,

θ1 − θ∗ = θ0 − θ∗ − γ
[
f ′′(θ∗)(θ0 − θ∗) + ε1(θ0) +R2(θ0)

]
,

where R2 : Rd → Rd satisfies

(49) sup
θ∈Rd
{‖R2(θ)‖ / ‖θ − θ∗‖2} < +∞ .

Taking the second order moment of this equation, and using A3, θ0 is
independent of ε1, (49), Lemma 13 and Hölder inequality, we get∫

Rd
(θ−θ∗)⊗2πγ(dθ) = (Id−γf ′′(θ∗))

[∫
Rd

(θ − θ∗)⊗2πγ(dθ)

]
(Id−γf ′′(θ∗))

+ γ2

∫
Rd
C(θ)πγ(dθ) +O(γ5/2).

This leads to:∫
Rd

(θ − θ∗)⊗2πγ(dθ) = γA

[∫
Rd
C(θ)πγ(dθ)

]
+O(γ3/2) .

Combining this result and (48), we have that (45) holds if the operator
(f ′′(θ∗) ⊗ Id + Id⊗f ′′(θ∗) − γf ′′(θ∗) ⊗ f ′′(θ∗)) is invertible. To show this
result, we just claim that it is a symmetric definite positive operator. Indeed,
since γ < 2L−1, by A1, Id−(γ/2)f ′′(θ∗) is symmetric positive definite and
is diagonalizable with the same orthogonal vectors (fi)i∈{0,...,d} as f ′′(θ∗).
If we denote by (λi)i∈{0,...,d}, then we get that (f ′′(θ∗)⊗ Id + Id⊗f ′′(θ∗)−
γf ′′(θ∗)⊗ f ′′(θ∗)) = f ′′(θ∗)⊗ (Id−γ/2f ′′(θ∗)) + (Id−γ/2f ′′(θ∗))⊗ f ′′(θ∗) is
also diagonalizable in the orthogonal basis of Rd ⊗Rd, (fi ⊗ fj)i,j∈{0,...,d} and
(λi(1− γλj) + λj(1− γλi))i,j∈{0,...,d} are its eigenvalues.
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Lemma 19. Assume A1-A2-A3-A4(2(kε + 1))-A5. It holds as γ → 0,∫
Rd
C(θ)πγ(dθ) = C(θ∗) +O(γ) ,∫

Rd
C(θ)⊗ {θ − θ∗}πγ(dθ) = C(θ∗){θ̄γ − θ∗}+O(γ)

where C is given by (5).

Proof. By a second order Taylor expansion around θ∗ of C and using
A5, we get for all x ∈ Rd that

C(x)− C(θ∗) = C′(θ∗) {x− θ∗}+R1(x) ,

where R1 : Rd → Rd satisfies supx∈Rd ‖R1(x)‖ /(‖x− θ∗‖2 +‖x+ θ∗‖kε+2) <
+∞. Taking the integral with respect to πγ and using Lemma 18-Lemma 13
concludes the proof.

Proof of Theorem 4. Let γ ∈ (0, 2/L) and (θ
(γ)
k )k∈N given by (1) with

θ
(γ)
0 distributed according to πγ independent of (εk)k∈N∗ . For conciseness, in

the rest of the proof, we skip the explicit dependence in γ in θ
(γ)
i : we only

denote it θi.
The proof consists in showing that the residual term in (45) of Lemma 18

is of order O(γ2) and not only O(γ3/2). Note that we have already prove
that θ̄γ − θ∗ = O(γ). To find the next term in the development, we develop
further each of the terms. By a fourth order Taylor expansion with integral
remainder of f ′ around θ∗, and using A2, we have

θ1 − θ∗ =θ0 − θ∗ − γ
[
f ′′(θ∗)(θ0 − θ∗) + (1/2)f (3)(θ∗)(θ0 − θ∗)⊗2

+ (1/6)f (4)(θ∗)(θ0 − θ∗)⊗3 + ε1(θ0) +R3(θ)
]
,(50)

where R3 : Rd → Rd satisfies supx∈Rd ‖R3(x)‖ / ‖x− θ∗‖4 < +∞. Therefore
taking the expectation and using A3-Lemma 13 we get

(51) f ′′(θ∗)(θ̄γ − θ∗) = −(1/2)f (3)(θ∗)
∫
Rd

(θ − θ∗)⊗2πγ(dθ)

− (1/6)f (4)(θ∗)
∫
Rd

(θ − θ∗)⊗3πγ(dθ) +O(γ2) .

Since f ′′(θ∗) is invertible by A1, To get the next term in the development,
we show that

(a)
∫
Rd(θ − θ∗)⊗3πγ(dθ) = �γ2 + o(γ2).
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(b)
∫
Rd(θ − θ∗)⊗2πγ(dθ) = �γ +4γ2 + o(γ2), for � given in (16), proving

(16).

(a) Denote for i = 0, 1, ηi = θi − θ∗. By (46)-(47), Lemma 13 and A3-
A4(12), we get

E[η⊗3
1 ] = E

[{
(Id−γf ′′(θ∗))η0 − γε1(θ0)− γf ′′′(θ∗)η⊗2

0 +R1(θ0)
}⊗3

]
= E

[
{(Id−γf ′′(θ∗))η0}⊗3 + γ2{ε1(θ0)}⊗2 ⊗ {(Id−γf ′′(θ∗))η0}

+ γ{(Id−γf ′′(θ∗))η0}⊗2 ⊗ {f ′′′(θ∗)η⊗2
0 }

+γ{f ′′′(θ∗)η⊗2
0 } ⊗ {(Id−γf ′′(θ∗))η0}⊗2

]
+O(γ3)

= E
[
{(Id−γf ′′(θ∗))η0}⊗3 + γ2{ε1(θ0)}⊗2 ⊗ {(Id−γf ′′(θ∗))η0}

]
+O(γ3)

= E
[
{η0}⊗3

]
+ E

[
γB{η0}⊗3 + γ2{ε1(θ0)}⊗2 ⊗ {(Id−γf ′′(θ∗))η0}

]
+O(γ3) ,

where B ∈ L(Rd3 ,Rd3) is defined by

B = f ′′(θ∗)⊗ Id⊗ Id + Id⊗f ′′(θ∗)⊗ Id + Id⊗ Id⊗f ′′(θ∗) .

Using A1 and the same reasoning as to show that A in (17), is well defined,
we get that B is invertible. Then since η0 and η1 has the same distribution
πγ , we get∫

Rd
(θ − θ∗)⊗3πγ(dθ)

= γB−1

[∫
Rd
{C(θ)} ⊗ {(Id−γf ′′(θ∗))(θ − θ∗)}πγ(dθ)

]
+O(γ2) .

By Lemma 19, we get∫
Rd

(θ−θ∗)⊗3πγ(dθ) = γB−1
[
{C(θ∗)} ⊗ {(Id−γf ′′(θ∗))(θ̄γ − θ∗)}

]
+O(γ2) .

Combining this result and (45) implies (a).
(b) First, we have using (50), A3 and Lemma 13 that:

E[(θ1 − θ∗)⊗2] = E
[
(θ0 − θ∗)⊗2 − γ(Id⊗f ′′(θ∗) + f ′′(θ∗)⊗ Id)(θ − θ∗)⊗2

+ (γ/2)(θ0 − θ∗)⊗ {f (3)(θ∗)(θ0 − θ∗)⊗2}
+(γ/2){f (3)(θ∗)(θ0 − θ∗)⊗2} ⊗ (θ0 − θ∗) + γ2ε1(θ0)⊗2(θ0)

]
+O(γ3) .
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Since θ0 and θ1 follow the same distribution πγ , it follows that
(52)

γ(Id⊗f ′′(θ∗) + f ′′(θ∗)⊗ Id)

[∫
Rd

(θ − θ∗)⊗2πγ(dθ)

]
= O(γ3) +

∫
Rd

[
(γ/2)(θ − θ∗)⊗ {f (3)(θ∗)(θ − θ∗)⊗2}

+ (γ/2){f (3)(θ∗)(θ − θ∗)⊗2} ⊗ (θ − θ∗) +γ2ε1(θ0)⊗2(θ0)
]
πγ(dθ) .

Then by linearity of f ′′′(θ∗) and using (a) we get (b).
Finally the proof of (15) follows from combining the results of (a)-(b) in

(51).

7.5. Proof of Theorem 5.

Theorem 20. Let ϕ : Rd → Rq be a Lipschitz function Assume A1-A2-
A3-A4(4) and let γ ∈ (0, 1/(2L)). Then setting ρ = (1 − 2µγ(1 − γL))1/2,
for any starting point θ0 ∈ Rd, k ∈ N∗

E

[
k−1

k−1∑
i=0

ϕ(θ
(γ)
i )

]
= πγ(ϕ) + k−1(ψγ(θ0)) +O(ρk) ,

and if πγ(ϕ) = 0,

E

{k−1
k−1∑
i=0

ϕ(θ
(γ)
i )

}⊗2
 =

1

k

∫
Rd

[
ψγ(θ)⊗2 − (ψγ − ϕ)(θ)⊗2

]
dπγ(θ)

+
1

k2

[
χ1
γ(θ0)− χ2

γ(θ0)
]

+O(ρk) ,

where ψγ, χ1
γ and χ2

γ are solutions of the Poisson equation (27) associated

with ϕ, ψγψ
>
γ , (Rγψγ)(Rγψ

>
γ ) respectively.

Proof. In the following proof, we skip the dependence on γ for θ
(γ)
k ,

simply denoted θk. We prove the result for a general starting distribution
and conclude using ν0 = δθ0 , as we assume that we start from a deterministic
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point. We denote Φk := k−1
∑k−1

i=0 ϕ(θi).

E[Φk] = k−1
k−1∑
i=0

E [ϕ(θi)] = k−1
k−1∑
i=0

(ν0R
i
γ)(ϕ)

= πγ(ϕ) + k−1
k−1∑
i=0

ν0(Riγ(ϕ− πγ(ϕ)))

= πγ(ϕ) + k−1ν0(ψγ)− ν0(Rkγ(ψγ))

= πγ(ϕ) + k−1ν0(ψγ) +O(ρk) ,

with ρ := (1 − 2µγ(1 − γL))1/2, and using the fact that ν0(Rkγ(ψγ)) =

ν0(Rkγ(ψγ − π(ψγ))) = O(ρk). Indeed, using Lemma 8, ψγ exists and is

Lipshitz, and using Proposition 2, Item (b), we have that ν0(Rkγ(ψγ)) = O(ρk).
We now consider:

E[ΦkΦ
>
k ] =

1

k2

k−1∑
i,j=0

Eϕ(θi)ϕ(θj)
>

=
1

k2

k−1∑
i=0

(
Eϕ(θi)ϕ(θi)

> +

k−1∑
j=i+1

[
Eϕ(θi)ϕ(θj)

> + Eϕ(θj)ϕ(θi)
>])

=− 1

k2

k−1∑
i=0

ν0(Riγ(ϕϕ>))

+
1

k2

k−1∑
i=0

( k−1∑
j=i

[
Eϕ(θi)ϕ(θj)

> + Eϕ(θj)ϕ(θi)
>])

1©
= − 1

k
πγ(ϕϕ>)− 1

k2
ν0

( ∞∑
i=0

Riγ

(
(ϕϕ>)− πγ(ϕϕ>

))
+O(ρk)

+
1

k2

k−1∑
i=0

k−1∑
j=i

[
Eϕ(θi)(R

j−i
γ ϕ(θi))

> + E(Rj−iγ ϕ(θi))ϕ(θi)
>]

=− 1

k
πγ(ϕϕ>)− 1

k2
ν0

(
χ3
γ

)
+O(ρk)

+
1

k2

k−1∑
i=0

( k−1−i∑
j=0

[
Eϕ(θi)(R

j
γϕ(θi))

> + E(Rjγϕ(θi))ϕ(θi)
>]) .

With χ3
γ the solution to the Poisson equation associated with ϕϕ>, that

exists according to Lemma 11. We have used, for 1©, that, first, for i ≤ j,
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E[ϕ(θi)ϕ(θj)
>] = E[E[ϕ(θi)ϕ(θj)

>|Fi]] = E[ϕ(θi)(R
j−i
γ ϕ(θi))

>], and then
using Lemma 11, that ν0(Rkγ(χ3

γ)) = O(ρk). Thus:

E[ΦkΦ
>
k ] =− 1

k
πγ(ϕϕ>)− 1

k2
ν0

(
χ3
γ

)
+O(ρk)

+
1

k2

k−1∑
i=0

ν0

(
Riγ

[
ϕψγ − ϕ(Rk−iγ ψγ)>

]
+ symmetric term

)
.

Using that 1
k2
∑k−1

i=0 ν0

(
Riγ
[
ϕ(Rk−iγ ψγ)>

])
= O(ρk), we get:

E[ΦkΦ
>
k ] = −1

k
πγ(ϕϕ>)− 1

k2
ν0

(
χ3
γ

)
+

1

k
πγ

(
ϕψ>γ

)
+

1

k2
ν0(χ4

γ)

+ symmetric terms +O(ρk) .

With χ4 the solution to the Poisson equation associated with ϕψ>γ , and using
same reasoning as before to upper bound residual terms. For the first order
terms, which scale as k−1, we have:

E[ΦkΦ
>
k ] =

1

k
πγ

(
−ϕϕ> + ϕψ>γ + ψγϕ

>
)

+O(k−2)

=
1

k
πγ

(
−ϕϕ> + ϕψ>γ + ψγϕ

>
)

+O(k−2)

=
1

k
πγ

(
−(ϕ− ψγ)(ϕ− ψγ)> + ψγψ

>
γ

)
+O(k−2)

=
1

k
πγ

(
−(Rγψγ)(Rγψγ)> + ψγψ

>
γ

)
+O(k−2) ,

using the fact that for the solution to the Poisson equation: ψγ −Rγψγ = ϕ,
i.e. ψγ − ϕ = Rγψγ . This can also be written:

E[ΦkΦ
>
k ] =

1

k

∫
Rd

[
ψγ(θ)⊗2 − (ψγ − ϕ)(θ)⊗2

]
dπγ(θ) +O(k−2) .(53)

For the following order O(k−2), we have, using the linearity of Rγ and
the fact that: −ϕϕ> + ψγϕ

> + ϕψ>γ = −(ϕ − ψγ)(ϕ − ψγ)> + ψγψ
>
γ , thus

ν0(−χ3
γ + χ4

γ + (χ4
γ)>) = ν0(χ1

γ − χ2
γ):

E[ΦkΦ
>
k ]− term

k
=

1

k2

(
ν0(−χ3

γ) + ν0(χ4
γ) + ν0(χ4

γ)>
)

+O(ρk)

=
1

k2
ν0(χ1

γ − χ2
γ) +O(ρk) .(54)

Combining Equations (53) and (54), and using ν0 = δθ0 (thus for any function
g : Rd → R, ν0(g) = g(θ0)), this is the result of Theorem 20, which results in
Theorem 5 when using ϕ : θ 7→ θ − θ∗.
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7.5.1. Proof of Corollary 6. Corollary 6 is proved in the supplementary
paper [11], Section S3.

8. Proof of Theorem 7. Before giving the proof of Theorem 7, we
need several results regarding Poisson solutions associated with the gradient
flow ODE (21).

8.1. Regularity of the gradient flow and estimates on Poisson solution.
Let ` ∈ N∗ and consider the following assumption.

A 9 (`). f ∈ C`(Rd) and there exists M ≥ 0 such that for all i ∈
{2, . . . , `}, supθ∈Rd

∥∥f (i)(θ)
∥∥ ≤ L̄.

Lemma 21. Assume A1 and A9(`+ 1) for ` ∈ N∗.

a) For all t ≥ 0, ϕt ∈ C`(Rd,Rd), where (ϕt)t∈R+ is the differential flow

associated with (20). In addition for all θ ∈ R, t 7→ ϕ
(`)
t (θ) satisfies the

following ordinary differential equation,

dϕ
(`)
s (θ)

ds

∣∣∣
s=t

= D`
{
f ′ ◦ ϕt

}
(θ) , for all t ≥ 0 ,

with ϕ
′
0 = Id and ϕ

(`)
0 = 0 for ` ≥ 2.

b) For all t ≥ 0 and θ ∈ Rd, ‖ϕt(θ)− θ∗‖2 ≤ e−2µt ‖θ − θ∗‖2 .
c) If ` ≥ 2, for all t ≥ 0,

ϕ′t(θ
∗) = e−f

′′(θ∗)t .

d) If ` ≥ 3, for all t ≥ 0 and i, j, l ∈ {1, . . . , d},〈
ϕt
′′(θ∗) {fi ⊗ fj} , fl

〉
=

{
e−λlt−e−(λi+λj)t

λl−λi−λj f (3)(θ∗) {fi ⊗ fj ⊗ fl} if λl 6= λi + λj

−te−λltf (3)(θ∗) {fi ⊗ fj ⊗ fl} otherwise ,

where {f1, . . . , fd} and {λ1, . . . , λd} are the eigenvectors and the eigen-
values of f ′′(θ∗) respectively satisfying for all i ∈ {1, . . . , d}, f ′′(θ∗)fi =
λifi.

Proof. a) This is a fundamental result on the regularity of flows of
autonomous differential equations, see e.g. [17, Theorem 4.1 Chapter V]

b) Let θ ∈ Rd. Differentiate ‖ϕt(θ)‖2 with respect to t and using A1, that
f is at least continuously differentiable and Grönwall’s inequality concludes
the proof.
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c) By a) and since θ∗ is an equilibrium point, for all x ∈ Rd, ξxt (θ∗) =
ϕ′t(θ

∗) {x} satisfies the following ordinary differential equation

(55) ξ̇xs (θ∗) = −f ′′(ϕs(θ∗))ξxs (θ∗)ds = −f ′′(θ∗)ξxs (θ∗)ds .

with ξx0 (θ∗) = x. The proof then follows from uniqueness of the solution of
(55).

d) By a), for all x1, x2 ∈ Rd, ξx1,x2t (θ∗) = ϕt
′′(θ∗) {x1 ⊗ x2} satisfies the

ordinary stochastic differential equation:

dξx1,x2s

ds
(θ∗) = −f (3)(ϕs(θ

∗))
{
ϕs
′(θ∗)x1 ⊗ ϕs′(θ∗)x2 ⊗ ei

}
− f ′′(ϕs(θ∗)) {ξx1,x2s ⊗ ei} .

By c) and since θ∗ is an equilibrium point we get that ξx1,x2t (θ∗) satisfies

dξx1,x2s

ds
(θ∗) = −f (3)(θ∗)

{
e−f

′′(θ∗)tx1 ⊗ e−f
′′(θ∗)tx2 ⊗ ei

}
−f ′′(θ∗) {ξx1,x2s ⊗ ei} .

Therefore we get for all i, j, l ∈ {1, . . . , d},

d
〈
ξ
fi,fj
s , fl

〉
ds

= −f (3)(θ∗)
{

e−λitfi ⊗ e−λjtfj ⊗ fl

}
− λl

〈
ξ
fi,fj
s , fl

〉
.

This ordinary differential equation can be solved analytically which finishes
the proof.

Under A1 and A9(`), for any function g : Rd → Rq, locally Lipschitz,
denote by hg the solution of the continuous Poisson equation defined for all
θ ∈ Rd by

(56) hg(θ) =

∫ ∞
0

(g(ϕs(θ))− g(θ∗))dt .

Note that hg is well-defined by Lemma 21-b) and since g is assumed to be
locally-Lipschitz. In addition by (21), hg satisfies

(57) Ahg(θ) = g(θ)− g(θ∗) .

Define hId : Rd → Rd for all x ∈ Rd by

(58) hId(θ) =

∫ ∞
0
{ϕs(θ)− θ∗} dt .

Note that hId is also well-defined by Lemma 21-b).

imsart-aos ver. 2014/10/16 file: main_aos.tex date: March 26, 2018



40 A. DIEULEVEUT, A. DURMUS, F. BACH

Lemma 22. Let g : Rd → R satisfying A6(`, p) for `, p ∈ N, ` ≥ 1.
Assume A1 and A9(`+ 1).

a) Then for all θ ∈ Rd,

|hg| (θ) ≤ ag
{

(bg/µ) ‖θ − θ∗‖+ (pµ)−1 ‖θ − θ∗‖p
}
.

b) If ` ≥ 2, then ∇hId(θ∗) = (f ′′(θ∗))−1. If ` ≥ 3, then for all i, j ∈
{1, . . . , d},

∂2hId

∂θi∂θj
(θ∗) =

d∑
l=1

[
−f (3)(θ∗)

{[(
f ′′(θ∗)⊗ Id + Id⊗f ′′(θ∗)

)−1 {ei ⊗ ej}
]
⊗ ei

}
× (f ′′(θ∗))−1el

]
.

Proof. a) For all θ ∈ Rd, we have using Lemma 15 and (56)

|hg(θ)| ≤ ag
∫ +∞

0
‖ϕs(θ)− θ∗‖ {bg + ‖ϕs(θ)− θ∗‖p} ds .

The proof then follows from Lemma 21-b).
b) The proof is a direct consequence of Lemma 21-c)-d) and (56).

Theorem 23. Let g : Rd → R satisfying A6(`, p) for `, p ∈ N, ` ≥ 2.
Assume A1-A9(`+ 1).

a) For all i ∈ {1, . . . , `}, there exists Ci ≥ 0 such that for all θ ∈ Rd and
t ≥ 0, ∥∥∥ϕ(i)

t (θ)
∥∥∥ ≤ Cie−µt .

b) Furthermore, hg ∈ C`(Rd) and for all i ∈ {0, . . . , `}, there exists Ci ≥ 0
such that for all θ ∈ Rd,∥∥∥h(i)

g (θ)
∥∥∥ ≤ Ci {1 + ‖θ − θ∗‖p} .

Proof. a) The proof is by induction on `. By Lemma 21-a), for all
x ∈ Rd, and θ ∈ Rd, ξxt (θ) = Dϕt(θ) {x} satisfies

(59)
dξxs (θ)

ds

∣∣∣
s=t

= −f ′′(ϕt(θ))ξxt (θ) .

with ξx0 (θ) = x. Now differentiating s→ ‖ξxs (θ)‖2, using A1 and Grönwall’s
inequality, we get ‖ξxs (θ)‖2 ≤ e−2mt ‖x‖2 which implies the result for ` = 2.
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Let now ` > 2. Using again Lemma 21-a), Faà di Bruno’s formula [22,
Theorem 1] and since (20) can be written on the form

dϕs(θ)

ds

∣∣∣
s=t

= −
d∑
j=1

f ′(ϕt(θ)) {ej} ej ,

for all i ∈ {2, . . . , `}, θ ∈ Rd and x1, · · · , xi ∈ Rd, the function ξx1,··· ,xit (θ) =

ϕ
(i)
t (θ) {x1 ⊗ · · · ⊗ xi} satisfies the ordinary differential equation:

(60)
dξx1,··· ,xis (θ)

ds

∣∣∣
s=t

= −
d∑
j=1

∑
Ω∈P({1,...,i})

f (|Ω|+1)(ϕt(θ))

ej ⊗
i⊗
l=1

⊗
j1,··· ,jl∈Ω

ξ
xj1 ,··· ,xjl
t (θ)

 ej ,

where P({1, . . . , i}) is the set of partitions of {1, . . . , i}, which does not
contain the empty set and |Ω| is the cardinal of Ω ∈ P({1, . . . , i+ 1}). We
now show by induction on i that for all i ∈ {1, . . . , `}, there exists a universal
constant Ci such that for all t ≥ 0 and θ ∈ Rd,

(61) sup
x∈Rd

∥∥∥ϕ(i)
t (θ)

∥∥∥ ≤ Cie−µt .
For i = 1, the result follows from the case ` = 1. Assume that the result is
true for {1, . . . , i} for i ∈ {1, . . . , ` − 1}. We show the result for i + 1. By
(60), we have for all θ ∈ Rd and x1, · · · , xi ∈ Rd,

d
∥∥ξx1,··· ,xi+1
s (θ)

∥∥2

ds

∣∣∣
s=t

= −
∑

Ω∈P({1,...,i+1})
f (|Ω|+1)(ϕt(θ))

ξx1,··· ,xi+1

t (θ)⊗
i+1⊗
l=1

⊗
j1,...,jl∈Ω

ξ
xj1 ,··· ,xjl
t (θ)

 .

Isolating the term corresponding to Ω = {{1, . . . , i+ 1}} in the sum above
and using Young’s inequality, A1, Grönwall’s inequality and the induction
hypothesis, we get that there exists a universal constant Ci+1 such that for
all t ≥ 0 and x ∈ Rd (61) holds for i+ 1.

b) The proof is a consequence of a), (56), A6(`, p) and Lebesgue’s domi-
nated convergence theorem.
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8.2. Proof of Theorem 7. We preface the proof of the Theorem by two
fundamental first estimates.

Theorem 24. Let g : Rd → R satisfying A6(3, p) for p ∈ N. Assume
A1-A2-A3-A5. Furthermore, suppose that there exists q ∈ N and C ≥ 0
such that for all θ ∈ Rd,

E
[
‖ε1(θ)‖p+3

]
≤ C(1 + ‖θ − θ∗‖q) ,

and A4(2p̃) holds for p̃ = p+ 3 + q ∨ kε. Let Cp̃ be the numerical constant
given by Lemma 13 associated with p̃.

(a) For all γ ∈ (0, 1/(LCp̃)), k ∈ N∗, and starting point θ0 ∈ Rd,

E

[
k−1

k∑
i=1

{
g(θ

(γ)
i )− g(θ∗)

}]
=
hg(θ0)− E

[
hg(θ

(γ)
k+1)

]
kγ

+(γ/2)

∫
Rd
h′′g(θ̃)E

[{
ε1(θ̃)

}⊗2
]

dπγ(θ̃)− (γ/k)Ã1(θ0, k)− γ2Ã2(θ0, k) ,

where θ
(γ)
k is the Markov chain starting from θ0, defined by the recursion

(1), and

sup
i∈N∗

Ã1(θ0, i) ≤ C
{

1 + ‖θ0 − θ∗‖p̃
}
,(62)

Ã2(θ0, k) ≤ C
{

1 + ‖θ0 − θ∗‖p̃ /k
}
,(63)

for some constant C ≥ 0 independent of γ and k.
(b) For all γ ∈ (0, 1/(LCp̃)),∣∣∣∣∫

Rd
g(θ̃)πγ(dθ̃)− g(θ∗) + (γ/2)

∫
Rd
h′′g(θ̃)E

[{
ε(θ̃)

}⊗2
]

dπγ(θ̃)

∣∣∣∣ ≤ Cγ2 .

Proof. (a) Let k ∈ N∗, γ > 0 and θ ∈ Rd. Consider the sequence

(θ
(γ)
k )k≥0 defined by the stochastic gradient recursion (1) and starting at θ.

Theorem 23-b) shows that hg ∈ C3(Rd). Therefore using (1) and the Taylor
expansion formula, we have for all i ∈ {1, . . . , k}

hg(θ
(γ)
i+1) = hg(θ

(γ)
i ) + γhg

′(θ(γ)
i )

{
−f ′(θ(γ)

i ) + εi+1(θ
(γ)
i )
}

+ (γ2/2)h′′g(θ
(γ)
i )

{
−f ′(θ(γ)

i ) + εi+1(θ
(γ)
i )
}⊗2

+ (γ3/(3!))h(3)
g (θ

(γ)
i + s

(γ)
i ∆θ

(γ)
i+1)

{
−f ′(θ(γ)

i ) + εi+1(θ
(γ)
i )
}⊗3

,
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where s
(γ)
i ∈ [0, 1] and ∆θ

(γ)
i+1 = θ

(γ)
i+1 − θ

(γ)
i . Therefore by (57), we get

k−1
k∑
i=1

{
g(θ

(γ)
i )− g(θ∗)

}
=
hg(θ)− hg(θ(γ)

k+1)

kγ
+ k−1

k∑
i=1

hg
′(θ(γ)

i−1)εi+1(θ
(γ)
i )

+(γ/(2k))

k∑
i=1

h′′g(θ
(γ)
i )

{
−f ′(θ(γ)

i ) + εi+1(θ
(γ)
i )
}⊗2

+(γ2/(3!k))

k∑
i=1

h(3)
g (θ

(γ)
i + s

(γ)
i ∆θ

(γ)
i+1)

{
−f ′(θ(γ)

i ) + εi+1(θ
(γ)
i )
}⊗3

.

Taking the expectation and using A3, we have

E

[
k−1

k∑
i=1

{
g(θ

(γ)
i )− g(θ∗)

}]
=

E
[
hg(θ)− hg(θ(γ)

k+1)
]

kγ

+(γ/2)

∫
Rd
h′′g(θ̃)E

[{
ε1(θ̃)

}⊗2
]

dπγ(θ̃)− (γ/(2k))B̃1 + (γ2/(3!k))B̃2 ,

where

B̃1(θ0, k) = E

[
k∑
i=1

(
h′′g(θ

∗) {ε1(θ∗)}⊗2 − h′′g(θ(γ)
i )

{
−f ′(θ(γ)

i ) + εi+1(θ
(γ)
i )
}⊗2

)]

B̃2(θ0, k) = E

[
k∑
i=1

h(3)
g (θ

(γ)
i + s

(γ)
i ∆θ

(γ)
i+1)

{
−f ′(θ(γ)

i ) + εi+1(θ
(γ)
i )
}⊗3

]
.

Then it remains to show that (62) and (63) holds. By A2, Theorem 7-b) and
A5, there exists C ≥ 0 such that we have that for all θ ∈ Rd,∥∥H ′(θ)∥∥ ≤ C1(1 + ‖θ − θ∗‖kε+p+2) ,

where H : θ 7→ h′′g(θ)E[{−f ′(θ) + ε1(θ)}⊗2]. Therefore (62) follows from
A3, Lemma 15 and Proposition 16. Finally by Theorem 23-b) and Jensen
inequality, there exists C ≥ 0 such that for all i ∈ {1, . . . , k}, almost surely,

h(3)
g (θ

(γ)
i + s

(γ)
i ∆θ

(γ)
i+1)

{
−f ′(θ(γ)

i ) + εi+1(θ
(γ)
i )
}⊗3

≤ C
(

1 +
∥∥∥θ(γ)

i

∥∥∥p2 +
∥∥∥εi+1(θ

(γ)
i )
∥∥∥p2)(∥∥∥f ′(θ(γ)

i )
∥∥∥3

+
∥∥∥εi+1(θ

(γ)
i )
∥∥∥3
)
.

The proof of (63) then follows from A2, A3, (62) and Lemma 13.
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(b) This result is a direct consequence of Proposition 16 and (a).

Proof of Theorem 7. Under the stated assumptions, the functions
ψ : θ 7→ h′′g(θ)E[{ε(θ)}⊗2] and g satisfy the conditions of Theorem 24.
The proof then follows from combining Theorem 24-(b) applied to ψ and
Theorem 24 applied to g.
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