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Abstract

We consider the random-design least-squares regression problem within the
reproducing kernel Hilbert space (RKHS) framework. Given a stream of
independent and identically distributed input/output data, we aim to learn
a regression function within an RKHS H, even if the optimal predictor
(i.e., the conditional expectation) is not in H. In a stochastic approxima-
tion framework where the estimator is updated after each observation, we
show that the averaged unregularized least-mean-square algorithm (a form
of stochastic gradient descent), given a sufficient large step-size, attains op-
timal rates of convergence for a variety of regimes for the smoothnesses of
the optimal prediction function and the functions in H. Our results apply
as well in the usual finite-dimensional setting of parametric least-squares
regression, showing adaptivity of our estimator to the spectral decay of the
covariance matrix of the covariates.

1 Introduction
This abstract presents results described with more details in [1], which will soon appear in
the Annals of Statistics1 : we analyze non-parametric least-squares regression within the
RKHS framework. RKHS provide an interesting tool to analyze high dimensional problem.
Moreover it is also classical to use kernels spaces as an hypothesis space for non-parametric
regression, approximating the regression function by a sequence of functions in the kernel
space; or to use kernels to map non-vectorial data into a linear space, which allows to sepa-
rate of the representation problem (designing good kernels) and the algorithmic/theoretical
problems (given a kernel, how to design, run efficiently and analyse estimation algorithms).
We follow a stochastic approximation framework formulated directly in the RKHS, in which
each observation is used only once and overfitting is avoided by making only a single pass
through the data. Traditional online stochastic approximation algorithms, as introduced
by Robbins and Monro [2], lead to stochastic gradient descent methods with step-sizes
decreasing with the number of observations n, which are typically proportional to n−ζ , with
ζ between 1/2 and 1. Here, following [3] we show that using longer step-sizes with averaging
also brings to Hilbert space settings needed for non parametric regression.
We characterize the convergence rate of averaged least-mean-squares and show how the
proper set-up of the step-size leads to optimal convergence rates (as they were proved in [4]),
extending results from finite-dimensional [3] to infinite-dimensional settings. The problem
we solve here was stated as an open problem in [5, 6]. Moreover, our results apply as
well in the usual finite-dimensional setting of parametric least-squares regression, showing
adaptivity of our estimator to the spectral decay of the covariance matrix of the covariates.

2 Setting
Minimization problem. In this paper, we consider a general random design regression
problem, where observations (xi, yi) are independent and identically distributed (i.i.d.) ran-

1and has never been presented to any workshop or machine learning conference.
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dom variables in X × Y drawn from a probability measure ρ on X × Y. The set X is
assumed to be a compact set with a full support measure; and we consider for simplic-
ity Y = R. We measure the risk of a function g : X → R, by the mean square error,
that is, ε(g) := Eρ

[
(g(X)− Y )2]. We denote by ρX the marginal law on the space X .

We may use the notations EρX [f(·)] for
∫
X f(x)dρX(x). We denote by ‖ · ‖L2

ρX
the norm:

‖f‖2
L2
ρX

=
∫
X |f(x)|2dρX(x), over the space L2

ρX of squared integrable functions with re-
spect to ρX . The function g that minimizes ε(g) over L2

ρX is known to be the conditional
expectation, that is, gρ(X) = E[Y |X]. Note that we aim to minimize the prediction error
of a function f . An important property of the prediction error is that the excess risk may
be expressed as a squared distance to gρ : for any f ∈ L2

ρX , ε(f)− ε(gρ) = ‖f − gρ‖2
L2
ρX

.

Hypothesis space. In this paper we consider formulations where our estimates lie in a
reproducing kernel Hilbert space (RKHS) H associated with a continuous positive definite
kernel K : X × X → R (K is a mercer Kernel). An RKHS satisfies :

1) (H, 〈·, ·〉H) is a separable Hilbert space of functions: H ⊂ RX .
2) H contains all functions Kx : t 7→ K(x, t), for all x in X .
3) For any x ∈ X and f ∈ H, the reproducing property holds: f(x) = 〈f,Kx〉H.

The reproducing property allows to treat non-parametric estimation in the same algebraic
framework as parametric regression.
A key feature of our analysis is that we only considered ‖f − gρ‖2

L2
ρX

as a measure of
performance and do not consider convergences in stricter norms. This allows us to neither
assume that gρ is in H nor that H is dense in L2

ρX . We define gH = arg minf∈H ε(g), the
best function over the closure H of H.
Moment assumptions. We make the following simple assumption regarding finiteness of
moments: R2 := supx∈X K(x, x) and E[Y 2] are finite. Note that under these assumptions,
any function in H is in L2

ρX .
Covariance operator. We define the covariance operator Σ : H → H, for the space H
and probability distribution ρX , through ∀(f, g) ∈ H2, 〈f,Σg〉H = E [f(X)g(X)]. Using
the reproducing property, we have: Σ = E [KX ⊗KX ] , where for any elements g, h ∈ H,
we denote by g ⊗ h the operator from H to H defined as: g ⊗ h : f 7→ 〈f, h〉H g. The
spectral properties of such an operator have appeared to be a key point to characterize the
convergence rates of estimators [7, 8, 4].
In finite dimension, Σ is the usual (non-centered) covariance matrix. Moreover, it is possible
to extend such an operator as an endomorphism T from L2

ρX to L2
ρX , see [1] for details .

Such an extension can be proved to be a Hilbert Schmidt operator, which allows to define
the powers T r, for r > 0, which will be used to quantify the regularity of the function gH.
Regularity. We make the following assumptions :

A1. We assume tr(T 1
α ) < s2/α, with s ∈ R+, for some α > 1.

A2. gH ∈ T r
(
L2
ρX

)
with r > 0, and as a consequence ‖T−r(gH)‖L2

ρX
<∞.

The two parameters r and α intuitively parametrize the strengths of our assumptions.
1) First assumption implies that the spectrum of the covariance operator (in decreasing

order) decreases like O(i−α) : a bigger α makes the assumption stronger.
2) In the second assumption, for a fixed α, a bigger r makes the assumption stronger, that

is the function gH is actually smoother. Indeed, for any r < r′, T r
′(
L2
ρX

)
⊂ T r

(
L2
ρX

)
. Note

that for r = 1/2, T 1/2(L2
ρX

)
= H; moreover, for r > 1/2, our best approximation function

gH ∈ H is in fact in H, that is the optimization problem in the RKHS H is attained by a
function of finite norm.

3 Stochastic approximation in Hilbert spaces
Algorithm. We consider the simple stochastic gradient descent algorithm, making one
pass through the data, and averaging the result : we use the fact that for any independent
pair of observations (xn, yn), the stochastic gradient (yn − 〈g,Kxn〉H)Kxn is an unbiased
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estimate of ∇ε(g). Our algorithm minimizes directly generalization error, without extra
regularization (early stopping is used to avoid over-fitting):{

g0 = 0
∀n > 1 gn = gn−1 − γn

[
yn − 〈gn−1,Kxn〉H

]
Kxn = gn−1 − γn

[
yn − gn−1(xn)

]
Kxn .

output ḡn = 1
n+ 1

n∑
k=0

gk.

where γn is the step-size. The recursion is computed using representants, we only compute
the sequence of coefficients (ai)16i6n such that for any n > 1, gn =

∑n
i=1 aiKxi .

Running-time complexity. The running time complexity is O(i) for iteration i and thus
O(n2) after n steps. This is a serious limitation for practical applications. Some authors have
considered expanding gn on a subset of all (Kxi), to bring down the complexity [9, 10, 11].
Learning rate. The sequence of step-sizes (γi)16i6n may be :
1) either a subsequence of a universal sequence (γi)i∈N, we refer to this situation as the

“online setting” and our bounds then hold for any of the iterates;
2) or a sequence of the type γi = Γ(n) for i 6 n, which will be referred to as the “finite

horizon setting”: in this situation the number of samples is assumed to be known and fixed
and we chose a constant step-size which may depend on this number. Our bound then hold
only for the last iterate. Considering space limitation we will only give finite horizon bounds
here, but the extension hold up to minor differences, see [1].
Extra regularity assumptions. We have to add an assumption to control the noise co-
variance : we assume that there exists σ > 0 such that E [Ξ⊗ Ξ] 4 σ2T , where 4 denotes
the order between self-adjoint operators. This assumption is clearly satisfied in the well
specified homoscedastic case.

3.1 Main results (finite horizon)
Our main theorem, in terms of generality, is the following :
Theorem 1. Assume γi = γ = Γ(n), for 1 6 i 6 n. If γR2 6 1/4:

E‖ḡn − gH‖2
L2
ρX

6
4σ2

n

(
1 + tr(T 1

α )(γn) 1
α

)
+ 4
‖T−rgH‖2

L2
ρX

γ2rn2 min{r,1} .

We thus first get some guarantee on the consistency of our estimator, for any small enough
constant step-size:
Corollary 1. For any constant choice γn = γ0 <

1
2R2 , the prediction error of ḡn converges

to the one of gH, that is: E [ε (ḡn)− ε(gH)] n→∞−−−−→ 0.

Proof. this bound is derived from a new error decomposition to control the different
sources of error via algebraic calculations.
Bias/variance interpretation. The two main terms have a simple interpretation. The
first one is a variance term, which shows the effect of the noise σ2 on the error. It is bigger
when σ gets bigger, and moreover it also gets bigger when γ is growing (bigger steps mean
more variance). As for the second term, it is a bias term, which accounts for the distance of
the initial choice (the null function in general) to the objective function. As a consequence,
it is smaller when we make bigger steps.
Saturation. Dependence in n does not improve beyond r > 1 (while this assumption is
stronger than r = 1): this phenomenon in known as saturation [12]. Improvements with
r > 1 could be achieved by considering another type of averaging.

3.2 Statistical rate of prediction error in Hilbert spaces
We may now deduce the following corollary, with specific optimized values of γ:

Corollary 2 (Optimal constant γ). If α−1
2α < r and Γ(n) = γ0 n

−2αmin{r,1}−1+α
2αmin{r,1}+1 , γ0R

2 6 1/4,
we have:

E
(
‖ḡn − gH‖2

L2
ρX

)
6 A n−

2αmin{r,1}
2αmin{r,1}+1 .
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with A = 4
(

1 + tr(T 1
α )γ

1
α
0

)
σ2 + 4

γ2r
0
||T−rgH||2L2

ρX

.

A slightly different result holds for α−1
2α > r, see [1]. We can make the following observations:

Evolution with r and α. As it has been noticed above, a bigger α or r would be a
stronger assumption. It is thus natural to get a rate which improves with a bigger α or r:
the function (α, r) 7→ 2αr

2αr+1 is increasing in both parameters.

Figure 1

Optimal rates. In some situations, our stochastic ap-
proximation framework leads to “optimal” rates of predic-
tion from a statistical point of view. Indeed, in [4, Theorem
2] a corresponding minimax lower rate is given showing that
no estimator can get a better rate of convergence for all ob-
jective functions than n−

2αr
2αr+1 . Our algorithm thus enjoys

this optimal rate. In Figure 1, we plot in the plan of coordi-
nates α, δ (with δ = 2αr+1) our limit conditions concerning
our assumptions. The region between the two green lines is
the region for which the optimal rate of estimation is reached.

3.3 Adaptativity in Euclidean spaces
We can also derive the following corollary, which shows adaptativity in Euclidean spaces :
Corollary 3. Assume H is a d-dimensional Euclidean space:

E [ε (gn)− ε(gH)] 6 min
16α,−1

2 6q6 1
2

(
16σ

2 tr(T 1/α)(γn)1/α

n
+ 8 ||T

−qgH||2H
(nγ)2q+1

)
.

This results shows that SGD is adaptative to the regularity of the objective function and
to the decay of the spectrum of the covariance matrix : it bridges the gap between different
results from [3] and [13].
It shows for example that :

1) the variance term is always smaller than both d
n (α→∞) and γ tr(T ) (α = 1) ;

2) similarly the bias is smaller than both ‖θ‖
2
H

γn (q = 0) and ‖T
−1/2θ‖2

H
(γn)2 (q = 1/2).

This explains the robustness of SGD in high dimension, when d >> n, for example. It
means that when the problem is easier, the algorithm will perform better.

Relationship to previous works. Similar algorithms have been studied before [5, 6, 14,
15, 16, 17], under various forms. A detailed discussion is given in [1].

4 Conclusion
In this paper, we have provided an analysis of averaged unregularized stochastic gradient
methods for kernel-based least-squares regression. Our novel analysis allowed us to consider
larger step-sizes, which in turn lead to optimal estimation rates for many settings of eigen-
value decay of the covariance operators and smoothness of the optimal prediction function.
Moreover, it showed that this simple algorithm is indeed adaptative to the smoothness of
the objective function, and to the decay of the spectrum of the covariance matrix.
Our work can be extended in a number of interesting ways, mainly: (a) while we obtain op-
timal convergence rates for a particular regime of kernels/objective functions, using different
types of averaging (i.e., non uniform) may lead to optimal rates in other regimes. Also, (b)
the running-time complexity of our stochastic approximation procedures is still quadratic
in the number of samples n, which is unsatisfactory when n is large; by considering reduced
set-methods [9, 10, 11], we could improve that dependency. Finally, (c) in order to obtain
the optimal rates when the bias term dominates our generalization bounds, it would be
interesting to combine our spectral analysis with recent accelerated versions of stochastic
gradient descent which have been analyzed in the finite-dimensional setting [13].

4



References
[1] A. Dieuleveut and F. Bach. Non-parametric Stochastic Approximation with Large Step

sizes. ArXiv e-prints, August 2014.
[2] H. Robbins and S. Monro. A stochastic approxiation method. The Annals of

mathematical Statistics, 22(3):400–407, 1951.
[3] F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with

convergence rate O(1/n). Advances in Neural Information Processing Systems (NIPS),
2013.

[4] A. Caponnetto and E. De Vito. Optimal Rates for the Regularized Least-Squares
Algorithm. Foundations of Computational Mathematics, 7(3):331–368, 2007.

[5] L. Rosasco, A. Tacchetti, and S. Villa. Regularization by Early Stopping for Online
Learning Algorithms. ArXiv e-prints, 2014.

[6] Y. Ying and M. Pontil. Online gradient descent learning algorithms. Foundations of
Computational Mathematics, 5, 2008.

[7] S. Smale and F. Cucker. On the mathematical foundations of learning. Bulletin of the
American Mathematical Society, 39(1):1–49, 2001.

[8] S. Smale and D-X. Zhou. Learning theory estimates via integral operators and their
approximations. Constructive Approximation, 26(2):153–172, 2007.

[9] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-based perceptron
on a fixed budget. In Adv. NIPS, 2005.

[10] A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and
active learning. Journal of Machine Learning Research, 6:1579–1619, 2005.

[11] F. Bach. Sharp analysis of low-rank kernel matrix approximations. Proceedings of the
International Conference on Learning Theory (COLT), 2012.

[12] H. W. Engl, M. Hanke, and Neubauer A. Regularization of inverse problems. Klüwer
Academic Publishers, 1996.

[13] N. Flammarion and F. Bach. From averaging to acceleration, there is only a step-size.
In Proceedings of the International Conference on Learning Theory (COLT), 2015.

[14] J. Kivinen, Smola A.J., and R. C. Williamson. Online learning with kernels. IEEE
transactions on signal processing, 52(8):2165–2176, 2004.

[15] Y. Yao. A dynamic Theory of Learning. PhD thesis, University of California at Berkeley,
2006.

[16] P. Tarrès and Y. Yao. Online learning as stochastic approximation of regularization
paths. ArXiv e-prints 1103.5538, 2011.

[17] T. Zhang. Solving large scale linear prediction problems using stochastic gradient
descent algorithms. ICML 2014 Proceedings of the twenty-first international conference
on machine learning, 2004.

5


	Introduction
	Setting
	Stochastic approximation in Hilbert spaces
	Main results (finite horizon)
	Statistical rate of prediction error in Hilbert spaces
	Adaptativity in Euclidean spaces

	Conclusion

