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Preambule: This slide is empty 1

43

1Well, not completely.
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Contributions to WC analysis and alg. design for deterministic first-order optimization.
with B. Goujaud, A. Taylor,
and C. Moucer, F. Pedregosa, D. Scieur, J. Hendrickx, F. Glineur.

Stochastic Approximation...
with F. Bach, N. Flammarion, S. Pesme, K. K. Patel, A. Durmus, E. Moulines, G. Fort.

and towards distributed and federated settings
with C. Philippenko
and G. Fort, E. Moulines, G. Robin, M. Jaggi, E. Oyallon, L. Leconte, G. Pagès, V.
Plassier, M. Vono, M. Noble, A. Bellet.

Learning with Missing Data, Uncertainty quantification and applications
with M. Zaffran, A. Ayme, J. Josse, C. Boyer, E. Scornet, Y. Goude, O. Féron
and A. Sportisse.
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My mission: Design and Analysis of Optimization Algorithms
Continuous Optimization

min
w∈W⊂Rd

f(w).

Design: Build algorithms to minimize a function f
Assumption: f belongs to a class F .
Analysis: guarantee convergence and rates.

Analysis

Design

→ Applications: statistics, machine learning, control.

! Ubiquitously methods not fully understood.

Approach: Iterative algorithms → generate w0,w1, . . . ,wt from oracle information.

Deterministic Stochastic Multi-agent & Federated
f f(w) = Ez∼D[!(w, z)] f(w) = 1

N
∑N

i=1 Ez∼Di [!(w, z)]
Accessed information (oracle) First-order (FO): ∇f Stochastic FO Partial Stochastic FO

Worst-case analysis: ensure convergence uniformly over a class F .
Trust in a black-box
optimization method,

• Design algorithms based on the
worst-case guarantees (WCG).

•

Part 1:
Contributions to WC analysis and

alg. design for deterministic
first-order optimization.
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Designing an optimal algorithms for quadratic functions
Quadratic function fH, H ∈ S+

d :

fH(w)−fH(w∗) =
1
2 (w−w∗)

%H(w−w∗).

• Class of L-smooth and µ-strongly
convex quadratics:

Qµ,L = {fH, Sp(H) ⊂ [µ, L]} .

•

→ Parametric description of the class!

First-order methods: wT = wT−1 −
T−1∑
i=0

hT,i∇fH(wi) ⇔ Link with polynomials: wT − w! = PT(H)(w0 − w!).

Criterion ? Algorithm?
Optimal
method? sup

fH∈Qµ,L

‖wT − w∗||2

‖w0 − w∗||2
→ Polyak momentum1:
wt+1 = wt − γt︸︷︷︸

step

∇fH(wt) + βt︸︷︷︸
momentum

(wt − wt−1)

     
→ Limit parameters as t → ∞

β∗ =

(1 −
√
κ

1 +
√
κ

)2
, γ∗ =

2
µ+ L (1 + β∗).

Also optimal rate for HB (PM with constant β, γ) on Qµ,L!

WCG and design on Qµ,L:
♥ Success story of worst-case design
→ Optimal algorithm – Heavy Ball
→ Rate O((1 − 4√κ)T), κ := µ

L
? Extending such optimality results?

1Polyak, “Some methods of speeding up the convergence of iteration methods” 5 / 27




























































Improving upon Polyak Heavy Ball algorithm in Quadratic Optimization: three directions

Polyak Momentum and Heavy Ball algorithms:

wt+1 = wt − γt ∇fH(wt) + βt (wt − wt−1) (PM)
= wt − γ︸︷︷︸

step

∇fH(wt) + β︸︷︷︸
momentum

(wt − wt−1) (HB)

Optimal HB tuning on Qµ,L.

β∗ =

(1 −
√
κ

1 +
√
κ

)2
γ∗ =

2
µ+ L (1 + β∗).

1. Restricting the class Qµ,L 2. Extending the class of algorithms 3. Extending the class (beyond quadratics).
Class of functions: quadratic with a gap in eigenvalues:

Qµ1,L1,µ2,L2 = {fH, Sp(H) ⊂ [µ1, L1] ∪ [µ2, L2]} .

→ Faster convergence rates with K-cyclical step sizes

wt+1 = wt − γt mod K ∇fH(wt) + β (wt − wt−1) (K-Cy-HB)

Super acceleration with cyclical step sizes a

→ Result: Super acceleration (beyond 1 −
√
κ!) with (PM) and cyclic steps γ0, γ1, γ2, γ0, γ1, γ2, . . . .

→ If the gap is symmetric, 2 steps are enough.
♥ Example of class F over which a frequently-used strategy provably improves.

aGoujaud, Scieur, D, Taylor, and Pedregosa, “Super-acceleration with cyclical step-sizes”

HB vs Cy-HB on Mnist

→ Adaptive alg. with Polyak step-size and Polyak Momentum
Motivation Function dependent algorithm → Extends the class of algorithms.
Classical strategy: Polyak step size2: step ∝ (f(wt)− f!)/‖∇f(wt)‖2

New algorithm: (PM) with β0 " 0,    ∀t ≥ 1,

βt "
−(f(wt)− f!)〈∇f(wt),∇f(wt−1)〉

(f(wt−1)− f!)‖∇f(wt)‖2 + (f(wt)− f!)〈∇f(wt),∇f(wt−1)〉
, γt "

2(f(wt)− f!)
‖∇f(wt)‖2 (1 + βt) (PSPM)

Theorem 1 (PSPM3)
(PSPM) on Qµ,L is equivalent to a conjugate gradient:
wt+1 = argminw

{
‖w − w∗‖2 s.t. w ∈ w0 + Span{(∇f(wi))

t
i=1}

}

(PSPM) algorithm
→ Instance optimality
♥ Theoretically grounded design of PS+PM.

Example: Class of L-smooth and µ-strongly convex Fµ,L → Implicit description of the class!

L-smooth functions f,
f(w) ≤ f(w′) + 〈∇f(w′),w − w′〉+ L

2‖w − w′‖2

µ-strongly-convex functions f,
f(w) ≥ f(w′) + 〈∇f(w′),w − w′〉+ µ

2 ‖w − w′‖2

Challenges:
Problem: proofs rapidly become very complicated - need for a deeper understanding.
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3Goujaud, Taylor, and D, “Quadratic minimization: from conjugate gradient to an adaptive HB method with Polyak step-sizes”
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Understanding proofs on implicit function classes: Performance estimation problems
→ Performance Estimation problems: rethinking proofs of first-order optimization for implicit classes45.

What is a worst-case guarantee (WCG)?

Example ∀f ∈ Qµ,L for w1 = w0 − L−1∇f(w0) then ‖w1 − w!‖2 ≤ (1 − κ)‖w0 − w!‖2

Generically ∀f ∈ F for wT = A(w0, (∇f(wt))
T−1
t=1 ) then Perf(wT) ≤ τ Init(w0)

→ Functional class Algorithm Worst-case guarantee

Equivalently:

τ = max
f,w0,wT

Perf(wT)
Init(w0)

s.t. f ∈ F ,wT = A(w0, (∇f(wt))
T−1
t=1 )

→ Non-convex optimization problem
→ Infinite dimensional class of

functions.

1 Sampling → equivalent maximization on wi, gi ∈ Rd, fi ∈ R s.t.
there exists f ∈ F , s.t., ∇f(wi) = gi, f(wi) = fi, finite dimension

2 Interpolation conditions → the existence of f is characterized by
simple inequalities: e.g., ‖gi − gj‖2 ≤ L〈xi − xj, gi − gj〉.

3 SDP lifting: we can recover a convex problem!
Worst-case guarantees with Performance estimation
→ Finding a WCG rate can be cast a a convex problem
→ Long derivation → Automate the process → Pepit.
♥ Automatically obtain WCG numerically → design, proofchecking

♥♥ Dual → Proofs!
4Drori and Teboulle, “Performance of first-order methods for smooth convex minimization: a novel approach”.
5Taylor, Hendrickx, and Glineur, “Smooth strongly convex interpolation and exact worst-case performance of first-order methods”. 7 / 27




























































Computer assisted worst-case analysis : PEPit8, a performance estimation toolbox in Python
Goals:

Avoids SDP modeling steps,
Collaborative and easy-to-use methodology,
Easy to add new features,
Code is as close as possible to mathematical specifications.

# Related Matlab package: Pesto6

Setup:
Algorithm: most first-order updates
→ e.g. Gradient, Prox, Inexact-Gradient, Line Search, ...
Any class of functions
(s.t. interpolation constraints expressible linearly in F and G)
→ e.g. smooth, (strongly-)convex, quadratically upper bounded7.
Any performance metric
(expressible linearly in F and G.)
→ e.g. f(wT)− f∗, ‖wT − w∗‖2, ‖∇f(xT)‖2.

More than 75+ examples,

Complete doc, 50&
Github link

6Taylor, Hendrickx, and Glineur, “Performance estimation toolbox (PESTO): automated worst-case analysis of FO optimization methods”
7Goujaud, Taylor, and D, “Optimal first-order methods for convex functions with a quadratic upper bound”
8Goujaud, Moucer, Glineur, Hendrickx, Taylor, and D, “PEPit: computer-assisted worst-case analyses of FO optimization methods in

Python”.
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https://github.com/PerformanceEstimation/PEPit


Application - Building Counter-examples to first-order methods
A long standing question: does (HB)γ,β accelerate on Fµ,L?

What is known?
1 For the optimal tuning γ∗,β∗ on Qµ,L there exists a function over which (HB) cycles.9
2 There exist parameters γ,β for which (HB) converges uniformly on Fµ,L, but without acceleration.10

But no general answer... yet, one of the most widely used algorithm in practice!

Searching for cycles11

♥ Cycles can be observed after a finite number of iterations.
♥♥ Finding a cycle of length K can be cast as a PEP!

∣∣∣∣∣∣∣∣

minimize
d≥1,f∈F,w∈(Rd)N

‖w0 − wK‖2

subject to
{

w = A(f, (wt)t∈!0,$−1")
‖w1 − w0‖2 ≥ 1.

→ Existence of a cycle ⇒ no worst-case conv. guarantee
→ Application to various classes of algorithm! Figure: Cycles for HB

9Lessard, Recht, and Packard, “Analysis and design of optimization algorithms via integral quadratic constraints”.
10Ghadimi, Feyzmahdavian, and Johansson, “Global convergence of the heavy-ball method for convex optimization”.
11Goujaud, D, and Taylor, “Counter-examples in first-order optimization: a constructive approach”
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Does HB accelerate on Fµ,L?!

Figure: Cycles for HB

→ For almost any set of parameters, either we have a
Lyapunov function, or a cycle!

→ so far, computed numerically only...

Theorem 2 (GTD, this week)
For any set of parameters (β, γ) such that (HB)γ,β admits a worst-case convergence guarantee on Qµ,L:

1 Either there exists a function in Fµ,L and an initialization such that (HB)γ,β cycles.
2 Or the worst-case convergence rate on Qµ,L is at best Ω(1 − cκ)t.

HB does not accelerate on Fµ,L!12

12This may not be a big thing a for you, but was Baptiste’s life mission, and quickly became ours... 10 / 27




























































Wrapping-up – First-order optimization

Worst-case convergence analysis for first-order methods: strong guarantees and a design guide.

On quadratic functions:
Classically: HB and conjugate gradient
algorithms

→ New HB algorithms (adaptive or
cyclical)!

Beyond quadratics...
→ PEPit can make your life drastically easier.
→ Fantastic tool to analyze and design new algorithms.
→ HB does not accelerate!

What’s next:
♠ Leveraging Performance Estimation in more complex situations (stochastic, structure)

♠♠♠ Automatic formal proofs (beyond numerical).
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Federated Learning: a collaborative learning framework
Objective:

building better models in Machine Learning
by enabling multiple participants to participate in training process

Part 2: Insights on
communication constrained
Federated Learning with
statistical heterogeneity

Central server

Individual
Agents




































































































































communicel

Applications:
Medical data - multiple hospitals
Network of devices

Challenges
Heterogeneity and Adaptation
Privacy and trust
Communication, device availability,
(adversaries)

Analysis

Design

→ Mathematical framework and compressed based approaches
12 / 27




























































Federated Learning: mathematical framework and communication constraints

w∗ = argmin
w∈Rd





F(w) :=

1
N

N∑

i=1
Ez∼Di [!(z,w)]
︸ ︷︷ ︸

Fi(w)





.

F: global cost function
Fi: local loss
N: workers

d: dimension

w: model
Di: local data distribution

gi
k: stochastic oracle on ∇Fi

· · ·

F(w) := 1
N
∑N

i=1 Fi(w)

F1 F2 FN

D1 D2 DN

Cup Cdwn

3→ Optimization based on Stochastic Approximation

Compressed Distributed SGD:

wk = wk−1 − γ

(
1
N

N∑

i=1
C(gi

k(wk−1))

)

Fedavg (local iterations):

wk = wk−1 − γ

(
1
N

N∑

i=1

Tloc∑

t=1
gi

k,t(wi
k−1,t)

)

→ Communication cost N × 32d × k
→ Communicate with a fraction of workers
→ Communicate a fraction of the weights
→ Communicate low precision updates on weights
→ Perform multiple local iterations before communication

Motivation for Compression
Includes multiple natural solutions
Complementary to local iterations
$ quantized models (e.g. binary networks)
Focus on bi-directional compression

13 / 27




























































Compression operators - overview and desirable properties
1 Sparsification / projection based

p−sparsification →Keep each coordinate with probability p
C(x) = p−1((Bi)1≤i≤d)( x, (Bi)1≤i≤d ∼ B(p)⊗d

Partial participation → client sampling
C(x) = p−1(B0)x, B0 ∼ B(p)

2 Quantization on a codebook: Scalar Quantization13, Delaunay14

C(x) = ‖x‖sign(x)( ((Bi)1≤i≤d), (Bi)1≤i≤d ∼ ⊗d
i=1B

(
|xi|
‖x‖

)
.

}
Communicate a fraction of the weights

}
Communicate with a fraction of workers

}
Communicate low precision updates

Desirable properties → nothing like traditional SP and IT coding!
The compressed signal is stochastic → No need for low-error compression
Non-stationary unknown distribution → no distributional assumption.
Repeated communication: multiple iterations and multiple agents → unbiased (random) compression

Assumption U-RBV Compression operators C is U-RBV: There exists a constant ω ∈ R∗
+ s.t. for all ∆ in Rd :

E[C(∆)] = ∆ and E
[
‖C(∆)−∆‖2

]
≤ ω ‖∆‖2 .

13Alistarh, Grubic, Li, Tomioka, and Vojnovic, “QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding”
14Leconte, D, Oyallon, Moulines, and Pages, “DoStoVoQ: Doubly Stochastic Voronoi Vector Quantization SGD for Federated Learning”
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Roadmap

→ Mathematical framework and compressed based approaches %
1 Mitigating heterogeneity for compression based approaches
2 Feedback loops to reduce error
3 Beyond worst case assumption on compression operators
4 An unbiased Random Voronoi compressor.
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1. a. Tradeoffs between heterogeneity and communication constraints
1. Warm up example: distributed gradient descent with client subsampling:

wk = wk−1 − γ

(
1
N

N∑

i=1

Bi
p ∇fi(wk−1)

)
(Bi) ∼ B(p)⊗d

→ Particular case of compression
→ Heterogeneity: w∗ is not a stable point for GD on any Fi

2. General case: SGD with double compression: wk = wk−1 − γCdwn(
1
N
∑N

i=1 Cup(gi
k)).

Lemma 3 (Variance increase for bi-directionally compressed SGD15)
(H1) Compression operators Cdwn and Cup are U-RBV, constants ωup,ωdwn.
(H2) Gradient oracles gi

k are unbiased with variance σ2. E[‖gi
k −∇Fi(wk−1)‖2|wk−1] ≤ σ2.

(H3) Device heterogeneity. B2 = N−1∑N
i=1 ‖∇Fi(w∗)‖2

Then Cdwn

(
1
N
∑N

i=1 Cup(gi
k)
)

is an unbiased stochastic oracle of ∇F(wk−1), with variance bounded by :

(1 + ωdwn)(1 +
ωup

N )σ2 + ωdwn
ωup

N B2 + ωdwn‖∇F(wk−1)‖2

15Philippenko and D, “Artemis: tight convergence guarantees for bidirectional compression in Federated Learning”
15D, Durmus, and Bach, “Bridging the Gap between Constant Step Size Stochastic Gradient Descent and Markov Chains”
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1.b. Mitigating the variance increase with control variate
Objective: recover a convergence similar to the
homogeneous case (indep. of B2)
Solution: Compute (on the server and the worker
independently) a “memory” hi

k
16s.t. hi

k → ∇Fi(w∗).

{
wk = wk−1 − γCdwn

(
1
N
∑N

i=1 Cup(gi
k − hi

k) + hi
k

)

hi
k+1 = hi

k + αCup(gi
k − hi

k)
(1)

Theorem 4 (Convergence of (1)17)
Under regularity assumptions, and (H1-3) there exists γmax s.t. for γ ≤ γmax, for α ∈ {0, (ωup + 1)−1} and for
k ∈ N, the mean squared distance to w∗ decreases at a linear rate up to a constant of the order of Eα:

E
[
‖wk − w∗‖2

]
≤ (1 − γµ)k

(
δ2

0 + τ2
0
)
+

2γEα

µN ,

{
E0 = (ωdwn + 1)((ωup + 1)σ2

∗+ωup B2)
E(ωup+1)−1 = (ωdwn + 1) (2ωup + 1)σ2

∗

The constant τ0 depends on (ωup + 1)γ2∑N
i=1 ‖hi

0 − hi
∗‖2, and can be made independent of B2.

♥ Control variates for compression + heterogeneity.
♥ Recover the variance w.o. heterogeneity.
# Client-wise variance reduction scheme18

→ Other applications: Langevin19, EM20, MM.
→ Duality with local iterations (e.g., Scaffold)21,22

16Mishchenko, Gorbunov, Takáč, and Richtárik, “Distributed learning with compressed gradient differences”
17Philippenko and D, “Artemis: tight convergence guarantees for bidirectional compression in Federated Learning”
18Schmidt, Le Roux, and Bach, “Minimizing finite sums with the stochastic average gradient”
19Vono, Plassier, Durmus, D, and Moulines, “QLSD: Quantised Langevin stochastic dynamics for Bayesian federated learning”
20D, Fort, Moulines, and Robin, “Federated-EM with heterogeneity mitigation and variance reduction”
21Karimireddy, Kale, Mohri, Reddi, Stich, and Suresh, “SCAFFOLD: Stochastic Controlled Averaging for Federated Learning”
22Noble, Bellet, and D, “Differentially private federated learning on heterogeneous data” 17 / 27




























































2. Mitigating compression by feedback loops: “non-degraded” update

Feedback loops
When using compression, the worker/server observes both the signal and its compressed and transmitted version.
→This can be leveraged to improve convergence.23

In bi-directional compression frameworks,

1. Approach (1):
compress the aggregated update, update the model, broadcast it back.
The gradient is taken at the point wk held by the central server. wk = wk−1 −γCdwn

(
1
N

N∑

i=1
Cup (gi

k(wk−1))

)

2. MCM 24

preserve the model on the central server.
Gradient measured at ŵk:

ŵk is updated through a compressed update by Cdwn
E[ŵk|wk] = wk
The variance is controlled

wk = wk−1 − γ

(
1
N

N∑

i=1
Cup(gi

k(ŵk−1))

)

24Karimireddy, Rebjock, Stich, and Jaggi, “Error Feedback Fixes SignSGD and other Gradient Compression Schemes”
24Philippenko and D, “Preserved central model for faster bidirectional compression in distributed settings”
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2.b. Three sequence update and convergence for MCM

MCM. Design of ŵk: three-sequences update.
1 Main preserved model wk on the central server
2 Unbiased model estimator ŵk on workers
3 Support model for difference compression Hk
4 The difference Ωk+1 between the model and the support is

compressed and exchanged
5 The local model ŵk is reconstructed from this information






wk = wk−1 − γ
(

1
N
∑N

i=1 Cup(gi
k(ŵk−1))

)

Ωk+1 = wk+1 − Hk
ŵk+1 = Hk + Cdwn(Ωk+1)
Hk+1 = Hk + αdwnCdwn(Ωk+1).

(MCM)

→ The third sequence Hk is critical to control the variance of the local model ŵk+1 with unbiased compression.

Theorem 5 (Convergence of MCM, convex case)
Under H1-3, for K ∈ N, with a step-size γ =

√
δ2

0Nb
(1+ωup)σ2K , denoting w̄K = 1

K
∑K−1

i=0 wi, we have:

E [F(w̄K)− F∗] ≤ 2
√

δ2
0(1 + ωup)σ2

NbK︸ ︷︷ ︸
dominant term

+ O
(
ωupωdwn

K

)

︸ ︷︷ ︸
lower order term

.

independent of ωdwn

identical to Diana (uni-compression)
depends on ωdwn

asymptotically negligible
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2.c. MCM- summary and experiments

MCM: New algorithm for bi-directional compression with a preserved central model
♥ Link with randomized smoothing: unbiased local models.
♥ Reduces (nearly cancels) impact of downlink compression
→ Achieves the same asymptotic rate of convergence as unidirectional compression.
→ Extension to worker dependent model on the downlink compression

(a) X axis in # iterations (b) X axis in # bits

Figure: Quantum with b = 400, γ = 1/L (LSR).
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3.a. Beyond the worst-case assumption on compression28

Assumption U-RBV Compression operators C is U-RBV: There exists a constant ω ∈ R∗
+ s.t. for all ∆ in Rd :

E[C(∆)] = ∆ and E
[
‖C(∆)−∆‖2

]
≤ ω ‖∆‖2 .

1 Encompasses all examples cited before
2 Yet, this hides two differences.
1 Regularity:

Sparsification/projection based are often a.s. linear : W2(Cs(x),Cs(y))2 ≤ ω‖x − y‖2.
Quantization based are not W2(Cq(x),Cq(y))2 ≥ ‖x − y‖.

2 Higher-order moments. E.g., p−client-sampling and p−sparsification satisfy the same U-RVB assumption
Idea: consider the Least-Squares Regression framework with compression.

Tight asymptotic25 and non-asymptotic theory2627.
Typically for a smooth stochastic gradient-field.

25Polyak and Juditsky, “Acceleration of Stochastic Approximation by Averaging”.
26Bach and Moulines, “Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)”.
27D and Bach, “Nonparametric stochastic approximation with large step-sizes”.
28Philippenko and D, “Convergence rates compressed least-square regression: application to Federated Learning”.
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3.b. Beyond the worst-case assumption on compression29

Theorem 6 (For compressed LSR (single worker), Holder compression scheme, γ ∝ K−α)

E [F (w̄K−1)− F (w∗)] ≤
20
K

(
Tr
(
CH−1

)
+

∥∥∥H−1/2η0
∥∥∥

2

K(1−2α)
+

M1
√
A

µKα/2 +
M2A
µKα

︸ ︷︷ ︸
For Pr. Gadat

)

where C = E[C(ε)⊗2] → noised induced by the compression near convergence.

Depending on the compression scheme:
All or nothing: C = aH
Sparsification: C = a′H + b diag(H).
Random projection: C = a′′H + b′′ Tr(H) Idd

→ Classical LMS: noise covariance → H
→ Compression may induce isotropic noise → Id
→ Significantly impacts the limit distribution / rate (Tr(H−1))
→ Same variance but different behaviors!
♥ LSR to understand compression.

0 1 2 3 4 5 6 7

log10(k)

°5

°4

°3

°2

°1

0

lo
g 1

0
(F

(w
k
)
°

F
(w

§)
)

no compr.

1-quantiz.

sparsif.

sketching

rand-1

partial part.

no compr.

1-quantiz.

sparsif.

sketching

rand-1

partial part.

H diagonal ↑ or not ↓

0 1 2 3 4 5 6 7

log10(k)

°5

°4

°3

°2

°1

0

lo
g 1

0
(F

(w
k
)
°

F
(w

§)
)

no compr.

1-quantiz.

sparsif.

sketching

rand-1

partial part.

no compr.

1-quantiz.

sparsif.

sketching

rand-1

partial part.

29Philippenko and D, “Convergence rates compressed least-square regression: application to Federated Learning”. 22 / 27
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4. A new Unbiased Voronoi Vector Quantization: StoVoQ Algorithm
→ Voronoi Vector quantization The input x ∈ Rd is mapped to its nearest neighbor in a codebook DM = {ci}M

i=1.
→ Random codebook. A new codebook is sampled every time a quantization is performed.
→ Unitary invariant codewords The distribution of the codewords p is binvariant under the unitary group
→ Bias removal: (pre)-compute rp

M. and output 1
rp
M(‖x‖) VQ(x,Dp

M)

Theorem 7 (Quantization bias)

Assume that the codebook distribution is unitary invariant. Then, for all
M ∈ N, there exists a function rp

M : R+ 3→ R+ such that for all x ∈ Rd,

EDM∼p[VQ(x,DM)] = rp
M(‖x‖)x.

The expectation of the quantized vector is colinear to the vector x, i.e.,
is directionally unbiased.
The radial bias only depends on ‖x‖, M and the distribution p.

StovoQ30

♥ Chosen compression rate (M - vs 2d atoms for SQ)
♥ Many variants (spherical, rotated grid, Gaussian).

♥♥ Variance 7 twice smaller than classical SQ

→ randomness on the codebook, not the
decomposition.

&& Detailed analysis of the debiasing function rM

30Leconte, D, Oyallon, Moulines, and Pages, “DoStoVoQ: Doubly Stochastic Voronoi Vector Quantization SGD for Federated Learning”23 / 27




























































Wrapping-up – Federated learning and communications constraints
Four examples of algorithm designs or theoretical insights.
→ Mathematical framework and compressed based approaches
% Mitigating heterogeneity for compression based approaches
% Feedback loops to reduce error
% Beyond worst case assumption on compression operators
% An unbiased Random Voronoi compressor.

What’s next:
♣ Nearly all insights above can extend to any federated task obtained as a Stochastic Approximation: SGD,

EM, MM, TD-learning...a

♠ Feedback loops and Performance estimation problems.
♠♠ Stability of compressed SGD and generalization (non regular operators)
♠♠ Implicit regularization of compression Schemes (over-parametrized least-squares)
♠♠ Choosing the error distribution in compression to improve convergence (randomized smoothing)

♠♠♠ Compressed models, binary networks, etc.

aD, Fort, Moulines, and Hoi-To, “Stochastic Approximation Beyond Gradient for Signal Processing and Machine
Learning”.
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Learning with Missing Data, Uncertainty quantification and applications

Contributions to learning with prediction with missing data
1 Stochastic algorithms for prediction with missing-data31

2 Consistency for linear models and worst-case guarantees32.
3 Impact of imputation: implicit regularization of imputation in high dimension33

Contributions to uncertainty quantification with conformal prediction
1 For time series34

2 With missing data35

Link between with multi-task learning and prediction with missing data
Leverage the links between the tasks
Link between the classical assumptions (MCAR, MAR, MNAR) and relations between patterns.

31Sportisse, Boyer, D, and Josse, “Debiasing averaged stochastic gradient descent to handle missing values”.
32Ayme, Boyer, D, and Scornet, “Near-optimal rate of consistency for linear models with missing values”.
33Ayme, Boyer, D, and Scornet, “Naive imputation implicitly regularizes high-dimensional linear models”.
34Zaffran, Féron, Goude, Josse, and D, “Adaptive conformal predictions for time series”.
35Zaffran, D, Josse, and Romano, “Uncertainty quantification in presence of missing values”.
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Uncertainty quantification for prediction with missing data.

1 The pattern may be informative
2 In most situations, the prediction uncertainty increases with the number of un-observed data
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Conformalization recovers
marginal coverage

→ Conformalized quantile regression with missing data.36

36Zaffran, D, Josse, and Romano, “Uncertainty quantification in presence of missing values”.
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An ongoing challenge: Design and Analysis of Optimization Algorithms

Continuous Optimization

min
w∈W⊂Rd

f(w).

Design: Build algorithms to minimize a function f
Assumption: f belongs to a class F .
Analysis: guarantee convergence and rates.

Analysis

Design

→ Applications: statistics, machine learning, control.

Deterministic Stochastic Multi-agent & Federated

♥♠
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