Habilitation à diriger des recherches

Selected Results on First-order Optimization and Collaborative Learning

A walk in the past and a glimpse into the future.

Aymeric DIEULEVEUT Assistant Professor, École Polytechnique, Institut Polytechnique de Paris. Preambule: This slide is $empty^1$

¹Well, not completely.

Contributions to WC analysis and alg. design for deterministic first-order optimization. With **B. Goujaud,** A. Taylor, and C. Moucer, F. Pedregosa, D. Scieur, J. Hendrickx, F. Glineur.

Stochastic Approximation... with F. Bach, N. Flammarion, S. Pesme, K. K. Patel, A. Durmus, E. Moulines, G. Fort.

and towards distributed and federated settings with **C. Philippenko** and G. Fort, E. Moulines, G. Robin, M. Jaggi, E. Oyallon, L. Leconte, G. Pagès, V. Plassier, M. Vono, M. Noble, A. Bellet.

Learning with Missing Data, Uncertainty quantification and applications Part 3 with **M. Zaffran, A. Ayme,** J. Josse, C. Boyer, E. Scornet, Y. Goude, O. Féron and A. Sportisse.

My mission: Design and Analysis of Optimization Algorithms

Continuous Optimization

$$\min_{w\in\mathcal{W}\subset\mathbb{R}^d}f(w).$$

! Ubiquitously methods not fully understood.

- **Design:** Build algorithms to minimize a function $f \rightarrow Applications$: statistics, machine learning, control.
- Assumption: f belongs to a class \mathcal{F} .
- Analysis: guarantee convergence and rates.

Approach: Iterative algorithms \rightarrow generate w_0, w_1, \ldots, w_t from *oracle information*.

DeterministicStochasticMulti-agent & Federatedf $f(w) = \mathbb{E}_{z \sim \mathcal{D}}[\ell(w, z)]$ $f(w) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{z \sim \mathcal{D}_i}[\ell(w, z)]$ Accessed information (oracle)First-order (FO): ∇f Stochastic FOPartial Stochastic FO

Worst-case analysis: ensure convergence uniformly over a class \mathcal{F} .

• **Trust** in a black-box optimization method,

• **Design** algorithms based on the worst-case guarantees (WCG).

Part 1: Contributions to WC analysis and alg. design for deterministic first-order optimization.

Designing an optimal algorithms for quadratic functions

• Quadratic function
$$f_H$$
, $H \in S_d^+$:
• Class of *L*-smooth and μ -strongly convex quadratics:
 $f_H(w) - f_H(w_*) = \frac{1}{2}(w - w_*)^\top H(w - w_*).$
 $Q_{\mu,L} = \{f_H, \text{ Sp}(H) \subset [\mu, L]\}.$
 $\rightarrow Parametric description of the class!$
First-order methods: $w_T = w_{T-1} - \sum_{i=0}^{T-1} h_{T,i} \nabla f_H(w_i) \Leftrightarrow \text{Link with polynomials: } w_T - w_* = P_T(H)(w_0 - w_*).$
 $\boxed{\frac{\text{Criterion ?} \quad \text{Algorithm?}}{\text{Optimal}}}_{\text{method?} \quad \sup_{f_H \in Q_{\mu,L}} \frac{||w_T - w_*||^2}{||w_0 - w_*||^2}}{||w_0 - w_*||^2} \rightarrow \text{Polyak momentum}^1:$
 $w_{t+1} = w_t - \underbrace{\gamma_t}_{\text{step}} \nabla f_H(w_t) + \underbrace{\beta_t}_{\text{momentum}} (w_t - w_{t-1})}_{\text{momentum}}$

ightarrow Limit parameters as $t
ightarrow\infty$

$$eta^* = igg(rac{1-\sqrt{\kappa}}{1+\sqrt{\kappa}}igg)^2, \quad \gamma^* = rac{2}{\mu+L}(1+eta^*).$$

Also optimal rate for HB (PM with constant β, γ) on $Q_{\mu,L}$!

WCG and design on $Q_{\mu,L}$:

 \heartsuit Success story of worst-case design

→ Optimal algorithm – Heavy Ball

$$ightarrow \, \mathsf{Rate} \, \, \mathit{O}((1-4\sqrt{\kappa})^{\mathsf{T}}), \, \kappa := rac{\mu}{L}$$

? Extending such optimality results?

¹Polyak, "Some methods of speeding up the convergence of iteration methods"

Improving upon Polyak Heavy Ball algorithm in Quadratic Optimization: three directions

Polyak Momentum and Heavy Ball algorithms:

Optimal HB tuning on $\mathcal{Q}_{\mu,L}$.

$$w_{t+1} = w_t - \gamma_t \nabla f_H(w_t) + \beta_t (w_t - w_{t-1}) (PM)$$

= $w_t - \gamma \nabla f_H(w_t) + \beta (w_t - w_{t-1}) (HB)$
step momentum $\beta^* = \left(\frac{1 - \sqrt{\kappa}}{1 + \sqrt{\kappa}}\right)^2 \gamma^* = \frac{2}{\mu + L}(1 + \beta^*).$

- 1. Restricting the class $Q_{\mu,L}$ 2. Extending the class of algorithms
- Class of functions: quadratic with a gap in eigenvalues:

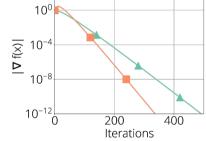
$$\mathcal{Q}_{\mu_1,L_1,\mu_2,L_2} = \{ f_H, \text{ Sp}(H) \subset [\mu_1,L_1] \cup [\mu_2,L_2] \}.$$

 \rightarrow Faster convergence rates with *K*-cyclical step sizes

$$w_{t+1} = w_t - \gamma_{t \mod K} \nabla f_{\mathcal{H}}(w_t) + eta \quad (w_t - w_{t-1}) \quad (\mathsf{K-Cy-HB})$$

Super acceleration with cyclical step sizes^a

- \rightarrow **Result:** Super acceleration (beyond $1 \sqrt{\kappa}!$) with (PM) and cyclic steps $\gamma_0, \gamma_1, \gamma_2, \gamma_0, \gamma_1, \gamma_2, \ldots$
- $\rightarrow\,$ If the gap is symmetric, 2 steps are enough.
- \heartsuit Example of class $\mathcal F$ over which a frequently-used strategy provably improves.



^aGoujaud, Scieur, **D**, Taylor, and Pedregosa, "Super-acceleration with cyclical step-sizes"

Improving upon Polyak Heavy Ball algorithm in Quadratic Optimization: three directions

Polyak Momentum and Heavy Ball algorithms:

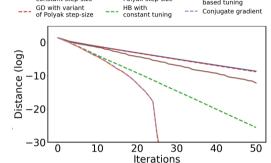
Optimal HB tuning on $Q_{\mu,L}$.

(PSPM) algorithm

1. Restricting the class $Q_{\mu,L}$ 2. Extending the class of algorithms

- \rightarrow Adaptive alg. with Polyak step-size and Polyak Momentum
 - **Motivation** Function dependent algorithm \rightarrow Extends the class of algorithms.
 - Classical strategy: Polyak step size²: step $\propto (f(w_t) f_\star) / \|\nabla f(w_t)\|^2$

• New algorithm: (PM) with
$$\beta_0 \triangleq 0$$
, $\forall t \ge 1$



$$\beta_t \triangleq \frac{-(f(w_t) - f_\star) \langle \nabla f(w_t), \nabla f(w_{t-1}) \rangle}{(f(w_{t-1}) - f_\star) \|\nabla f(w_t)\|^2 + (f(w_t) - f_\star) \langle \nabla f(w_t), \nabla f(w_{t-1}) \rangle}, \quad \gamma_t \triangleq \frac{2(f(w_t) - f_\star)}{\|\nabla f(w_t)\|^2} (1 + \beta_t)$$
(PSPM)

(PSPM) on $Q_{\mu,L}$ is equivalent to a conjugate gradient: $w_{t+1} = \operatorname{argmin}_{w} \left\{ \|w - w_{*}\|^{2} \text{ s.t. } w \in w_{0} + \operatorname{Span}\{(\nabla f(w_{i}))_{i=1}^{t}\} \right\} \xrightarrow{} \text{Instance optimality}$ $\nabla \text{ Theoretically grounded design of PS+PM.}$

 3 Goujaud, Taylor, and **D**, "Quadratic minimization: from conjugate gradient to an adaptive HB method with Polyak step-sizes"

Improving upon Polyak Heavy Ball algorithm in Quadratic Optimization: three directions

Polyak Momentum and Heavy Ball algorithms:

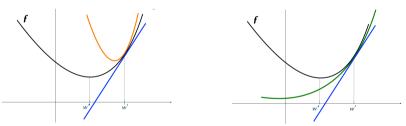
Optimal HB tuning on $\mathcal{Q}_{\mu,L}$.

$$w_{t+1} = w_t - \gamma_t \nabla f_H(w_t) + \beta_t (w_t - w_{t-1}) (PM)$$

= $w_t - \gamma \nabla f_H(w_t) + \beta (w_t - w_{t-1}) (HB)$
step momentum $\beta^* = \left(\frac{1 - \sqrt{\kappa}}{1 + \sqrt{\kappa}}\right)^2 \gamma^* = \frac{2}{\mu + L}(1 + \beta^*).$

1. Restricting the class $Q_{\mu,L}$ 2. Extending the class of algorithms 3. Extending the class (beyond quadratics). Example: Class of L-smooth and μ -strongly convex $\mathcal{F}_{\mu,L} \rightarrow Implicit$ description of the class!

- L-smooth functions f, $f(w) \le f(w') + \langle \nabla f(w'), w - w' \rangle + \frac{L}{2} ||w - w'||^2$
- μ -strongly-convex functions f, $f(w) \ge f(w') + \langle \nabla f(w'), w - w' \rangle + \frac{\mu}{2} ||w - w'||^2$



Challenges:

• Problem: **proofs** rapidly become very complicated - need for a deeper understanding.

Understanding proofs on implicit function classes: Performance estimation problems

 \rightarrow **Performance Estimation problems**: rethinking proofs of first-order optimization for implicit classes⁴⁵. What is a worst-case guarantee (WCG)?

Example	$orall f \in \mathcal{Q}_{\mu,L}$	for $w_1 = w_0 - L^{-1} \nabla f(w_0)$	then	$\ w_1 - w_\star\ ^2$	$\leq (1 - \kappa$	$x) \ w_0 - w_\star\ ^2$	
Generically	$\forall f \in \mathcal{F}$	for $w_{\mathcal{T}} = \mathcal{A}(w_0, (\nabla f(w_t))_{t=1}^{\mathcal{T}-1})$	then	$\operatorname{Perf}(w_{T})$	\leq $ au$	$Init(w_0)$	
\rightarrow	Functional class	Algorithm	Worst-case guarantee				
1 Sampling \rightarrow equivalent maximization on $w_i, g_i \in \mathbb{R}^d, f_i \in \mathbb{R}$ s.t.							

Equivalently:

 $\tau = \max_{f, w_0, w_T} \frac{\operatorname{Perf}(w_T)}{\operatorname{Init}(w_0)}$

s.t. $f \in \mathcal{F}, w_T = \mathcal{A}(w_0, (\nabla f(w_t))_{t=1}^{T-1})$

- \rightarrow Non-convex optimization problem
- \rightarrow Infinite dimensional class of functions.

Output Sampling \rightarrow equivalent maximization on $w_i, g_i \in \mathbb{R}^d$, $f_i \in \mathbb{R}$ s.t. there exists $f \in \mathcal{F}$, s.t., $\nabla f(w_i) = g_i$, $f(w_i) = f_i$, finite dimension

- ② Interpolation conditions → the existence of *f* is characterized by simple inequalities: e.g., $||g_i g_j||^2 \le L\langle x_i x_j, g_i g_j \rangle$.
- SDP lifting: we can recover a convex problem!

Worst-case guarantees with Performance estimation

- $\rightarrow\,$ Finding a WCG rate can be cast a a convex problem
- \rightarrow Long derivation \rightarrow Automate the process \rightarrow Pepit.
- ♥ Automatically obtain WCG numerically → design, proofchecking \heartsuit Dual → Proofs!

⁴Drori and Teboulle, "Performance of first-order methods for smooth convex minimization: a novel approach".

⁵Taylor, Hendrickx, and Glineur, "Smooth strongly convex interpolation and exact worst-case performance of first-order methods".

Computer assisted worst-case analysis : PEPit⁸, a performance estimation toolbox in Python

Goals:

- Avoids SDP modeling steps,
- Collaborative and easy-to-use methodology,
- Easy to add new features,
- Code is as close as possible to mathematical specifications.
- \leftrightarrow Related Matlab package: Pesto⁶

Setup:

- Algorithm: most first-order updates \rightarrow e.g. Gradient, Prox, Inexact-Gradient, Line Search, ...
- Any class of functions

(s.t. interpolation constraints expressible linearly in F and G) \rightarrow e.g. smooth, (strongly-)convex, quadratically upper bounded⁷.

- Any performance metric
 - (expressible linearly in *F* and *G*.) \rightarrow e.g. $f(w_T) - f_*$, $||w_T - w_*||^2$, $||\nabla f(x_T)||^2$.

More than $75 + ex$	•
Li Unconstained convex minimization Li Cardine descent Li Subgradient method Li Subgradient method under restricted secant inequality and error bound Li Cardinet descent under restricted secant inequality and error bound Li Cardinet descent under restricted secant inequality and error bound Li Cardinet descent under restricted secant inequality and error bound Li Cardinet descent under restricted secant inequality and error bound Li Cardinet descent under restricted secant inequality and error bound Li Cardinet descent under restricted secant restricted secant restricted secant restricted secant restricted secant restricted restristed restricted restriste	S. Monotone inclusions and variational inequalities S. 1. Provident point S. 2. Accelerated proximal point S. 2. Partially inexact Dougles Rachord spliting S. 2. Partially inexact Dougles Rachord point S. 2. Partially inexact Dougles Rachord point S. 2. Partially inexact Dougles Rachord point S. 3. Rachord pliting S. 3. Rachord spliting S. 3. Rachord pliting S. 3. Rac
Composite convex minimization 2.1. Proving rapiding rapiding 2.1. Accelerated proving loading 2.3. Regime proving loading 2.4. Accelerated proving loading 2.5. Dougling Rapidred rapiding contraction 2.6. Accelerated Dougling Rapidred righting 2.7. Frank World 2.8. Reprove rapiding 2.7. Frank World 2.8. Reprove rapiding 2.1. Three proving loading 2.1. Three provents righting 2.1. Three proving loading 2.1. Three provents righting 3.1. Accelerate Descent 3.2. Reprove proving loading 3.1. Condent Descent 3.2. No Lips 1 3.3. No Lips 1 3.3. No Lips 1 3.3. No Lips 1 4.3. Sockhastic gradient descent 4.4. Sockhastic gradient descent 4.5. Sockhastic descent 4.5. Sockhastic gradient descent 4.5. Sockhastic gradient descent 4.5. Reproduced condicated descent for smooch torney functions 4.6. Reproduced condicated descent for smooch torney functions	

- Complete doc, 50*
- Github link

⁶Taylor, Hendrickx, and Glineur, "Performance estimation toolbox (PESTO): automated worst-case analysis of FO optimization methods" ⁷Goujaud, Taylor, and **D**, "Optimal first-order methods for convex functions with a quadratic upper bound" ⁸Goujaud, Moucer, Glineur, Hendrickx, Taylor, and **D**, "PEPit: computer-assisted worst-case analyses of FO optimization methods in Python".

Application - Building Counter-examples to first-order methods

A long standing question: does (HB)_{γ,β} accelerate on $\mathcal{F}_{\mu,L}$?

What is known?

- For the optimal tuning γ^*, β^* on $\mathcal{Q}_{\mu,L}$ there exists a function over which (HB) cycles.⁹
- 2 There exist parameters γ , β for which (HB) converges uniformly on $\mathcal{F}_{\mu,L}$, but without acceleration.¹⁰ But no general answer... yet, one of the most widely used algorithm in practice!

Searching for cycles¹¹

 \heartsuit Cycles can be observed after a finite number of iterations. \heartsuit Finding a cycle of length *K* can be cast as a PEP!

$$\begin{array}{l} \underset{d \geq 1, f \in \mathcal{F}, w \in \left(\mathbb{R}^{d}\right)^{\mathbb{N}}}{\text{subject to}} & \left\| w_{0} - w_{\mathcal{K}} \right\|^{2} \\ \left\{ \begin{array}{l} w = \mathcal{A}(f, (w_{t})_{t \in \llbracket 0, \ell - 1 \rrbracket}) \\ \| w_{1} - w_{0} \|^{2} \geq 1. \end{array} \right. \end{array}$$

- $\rightarrow\,$ Existence of a cycle $\Rightarrow\,$ no worst-case conv. guarantee
- $\rightarrow\,$ Application to various classes of algorithm!

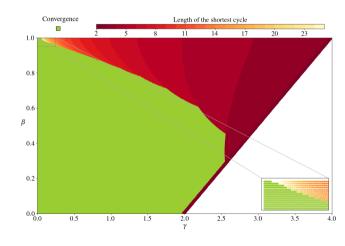


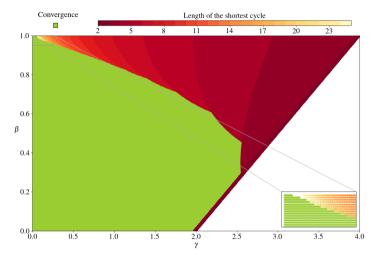
Figure: Cycles for HB

⁹Lessard, Recht, and Packard, "Analysis and design of optimization algorithms via integral quadratic constraints".

¹⁰Ghadimi, Feyzmahdavian, and Johansson, "Global convergence of the heavy-ball method for convex optimization".

¹¹Goujaud, **D**, and Taylor, "Counter-examples in first-order optimization: a constructive approach"

Does HB accelerate on $\mathcal{F}_{\mu,L}$?!



- → For *almost* any set of parameters, either we have a Lyapunov function, or a cycle!
- $\rightarrow\,$ so far, computed numerically only...

Figure: Cycles for HB

Theorem 2 (GTD, this week)

For any set of parameters (β, γ) such that $(HB)_{\gamma,\beta}$ admits a worst-case convergence guarantee on $Q_{\mu,L}$:

- Either there exists a function in $\mathcal{F}_{\mu,L}$ and an initialization such that $(HB)_{\gamma,\beta}$ cycles.
- **2** Or the worst-case convergence rate on $Q_{\mu,L}$ is at best $\Omega(1 c\kappa)^t$.

HB does not accelerate on $\mathcal{F}_{\mu,L}!^{12}$

¹²This may not be a big thing a for you, but was Baptiste's life mission, and quickly became ours...

Wrapping-up – First-order optimization

Worst-case convergence analysis for first-order methods: strong guarantees and a design guide.

- On quadratic functions:
 - Classically: HB and conjugate gradient algorithms
 - \rightarrow New HB algorithms (adaptive or cyclical)!

Beyond quadratics...

- $\rightarrow\,$ PEPit can make your life drastically easier.
- $\rightarrow\,$ Fantastic tool to analyze and design new algorithms.
- $\rightarrow\,$ HB does not accelerate!

What's next:

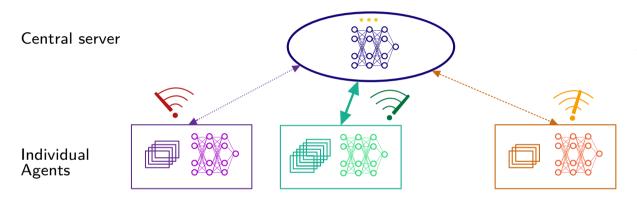
- ♠ Leveraging Performance Estimation in more complex situations (stochastic, structure)
- ♠♠♠ Automatic formal proofs (beyond numerical).

Federated Learning: a collaborative learning framework

Objective:

- building better models in Machine Learning
- by enabling multiple participants to participate in training process

Part 2: Insights on communication constrained Federated Learning with statistical heterogeneity



Applications:

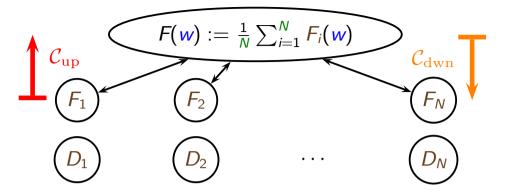
- Medical data multiple hospitals
- Network of devices

Challenges

- Heterogeneity and Adaptation
- Privacy and trust
- Communication, device availability, (adversaries)

 \rightarrow Mathematical framework and compressed based approaches

Federated Learning: mathematical framework and communication constraints



 \mapsto Optimization based on Stochastic Approximation

Compressed Distributed SGD:

$$w_{k} = w_{k-1} - \gamma \left(\frac{1}{N} \sum_{i=1}^{N} \mathcal{C}(g_{k}^{i}(w_{k-1})) \right)$$

- \rightarrow Communication cost $N \times 32d \times k$
- $\rightarrow\,$ Communicate with a fraction of workers
- $\rightarrow\,$ Communicate a fraction of the weights
- $\rightarrow\,$ Communicate low precision updates on weights
- \rightarrow Perform multiple local iterations before communication

$$w_* = \arg\min_{w \in \mathbb{R}^d} \left\{ F(w) := \frac{1}{N} \sum_{i=1}^N \underbrace{\mathbb{E}_{z \sim \mathcal{D}_i} \left[\ell(z, w) \right]}_{F_i(w)} \right\}$$

F: global cost function F_i: local loss N: workers d: dimension

w: model \mathcal{D}_i : local data distribution g_k^i : stochastic oracle on ∇F_i

Fedavg (local iterations):

$$w_{k} = w_{k-1} - \gamma \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T_{\text{loc}}} g_{k,t}^{j}(w_{k-1,t}^{j}) \right)$$

Motivation for Compression

- Includes multiple natural solutions
- Complementary to local iterations
- ~> quantized models (e.g. binary networks)
- Focus on bi-directional compression

<u> </u>				1.1. A 10 P.	
Compression	operators -	overview	and	desirable	properties
compression	operators		und	aconabie	properties

- Sparsification / projection based
 - p-sparsification \rightarrow Keep each coordinate with probability p

$$\mathcal{C}(x) = p^{-1}((B_i)_{1 \le i \le d}) \odot x, \qquad (B_i)_{1 \le i \le d} \sim \mathcal{B}(p)^{\otimes d}$$

• Partial participation \rightarrow client sampling

$$\mathcal{C}(x) = p^{-1}(B_0)x, \qquad B_0 \sim \mathcal{B}(p)$$

Quantization on a codebook: Scalar Quantization¹³, Delaunay¹⁴

$$\mathcal{C}(x) = \|x\| \mathrm{sign}(x) \odot ((B_i)_{1 \leq i \leq d}), \qquad (B_i)_{1 \leq i \leq d} \sim \otimes_{i=1}^d \mathcal{B}\left(\frac{|x_i|}{\|x\|}\right).$$

Communicate a fraction of the weights

Communicate with a fraction of workers

Communicate low precision updates

Desirable properties \rightarrow nothing like traditional SP and IT coding!

The compressed signal is stochastic \rightarrow No need forNon-stationary unknown distribution \rightarrow no distributRepeated communication: multiple iterations and multiple agents \rightarrow unbiased (r

- \rightarrow No need for *low-error* compression
 - no distributional assumption.
 - unbiased (random) compression

Assumption U-RBV Compression operators \mathcal{C} is U-RBV: There exists a constant $\omega \in \mathbb{R}^*_+$ s.t. for all Δ in \mathbb{R}^d :

$$\mathbb{E}[\mathcal{C}(\Delta)] = \Delta \quad ext{and} \quad \mathbb{E}\left[\left\| \mathcal{C}(\Delta) - \Delta \right\|^2
ight] \leq \omega \left\| \Delta \right\|^2 \,.$$

 ¹³Alistarh, Grubic, Li, Tomioka, and Vojnovic, "QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding"
 ¹⁴Leconte, **D**, Oyallon, Moulines, and Pages, "DoStoVoQ: Doubly Stochastic Voronoi Vector Quantization SGD for Federated Learning"

Roadmap

- $\rightarrow\,$ Mathematical framework and compressed based approaches $\checkmark\,$
- $1\,$ Mitigating heterogeneity for compression based approaches
- 2 Feedback loops to reduce error
- 3 Beyond worst case assumption on compression operators
- 4 An unbiased Random Voronoi compressor.

1. a. Tradeoffs between **heterogeneity** and **communication constraints**

1. Warm up example: distributed gradient descent with client subsampling: $\omega_{\star 2}$

$$w_{k} = w_{k-1} - \gamma \left(\frac{1}{N} \sum_{i=1}^{N} \frac{B_{i}}{p} \nabla f_{i}(w_{k-1}) \right) \quad (B_{i}) \sim \mathcal{B}(p)^{\otimes d}$$

- $\rightarrow\,$ Particular case of compression
- \rightarrow Heterogeneity: w_* is not a stable point for GD on any F_i
- **2. General case:** SGD with double compression: $w_k = w_{k-1} \gamma C_{dwn}(\frac{1}{N} \sum_{i=1}^{N} C_{up}(g_k^i)).$

Lemma 3 (Variance increase for bi-directionally compressed SGD¹⁵)

(H1) Compression operators C_{dwn} and C_{up} are U-RBV, constants $\omega_{up}, \omega_{dwn}$. (H2) Gradient oracles g_k^i are unbiased with variance σ^2 . $\mathbb{E}[\|g_k^j - \nabla F_i(w_{k-1})\|^2 |w_{k-1}] \le \sigma^2$. (H3) Device heterogeneity. $B^2 = N^{-1} \sum_{i=1}^N \|\nabla F_i(w_*)\|^2$

Then $C_{dwn}\left(\frac{1}{N}\sum_{i=1}^{N}C_{up}(g_{k}^{i})\right)$ is an unbiased stochastic oracle of $\nabla F(w_{k-1})$, with variance bounded by :

$$(1 + \omega_{\text{dwn}})(1 + \frac{\omega_{\text{up}}}{N})\sigma^{2} + \omega_{\text{dwn}}\frac{\omega_{\text{up}}}{N}B^{2} + \omega_{\text{dwn}}\|\nabla F(w_{k-1})\|^{2}$$

/F(w*)

 ¹⁵Philippenko and D, "Artemis: tight convergence guarantees for bidirectional compression in Federated Learning"
 ¹⁵D, Durmus, and Bach, "Bridging the Gap between Constant Step Size Stochastic Gradient Descent and Markov Chains"

1.b. Mitigating the variance increase with control variate

- **Objective:** recover a convergence similar to the homogeneous case (indep. of B^2)
- Solution: Compute (on the server and the worker independently) a "memory" $h_k^{i \ 16}$ s.t. $h_k^i \to \nabla F_i(w_*)$.

Theorem 4 (Convergence of $(1)^{17}$)

Under regularity assumptions, and (H1-3) there exists γ_{\max} s.t. for $\gamma \leq \gamma_{\max}$, for $\alpha \in \{0, (\omega_{up} + 1)^{-1}\}$ and for $k \in \mathbb{N}$, the mean squared distance to w_* decreases at a linear rate up to a constant of the order of E_{α} :

$$\mathbb{E}\left[\|w_{k} - w_{*}\|^{2}\right] \leq (1 - \gamma\mu)^{k} \left(\delta_{0}^{2} + \tau_{0}^{2}\right) + \frac{2\gamma E_{\alpha}}{\mu N}, \qquad \begin{cases} E_{0} = (\omega_{\mathrm{dwn}} + 1)((\omega_{\mathrm{up}} + 1)\sigma_{*}^{2} + \omega_{\mathrm{up}}B^{2}) \\ E_{(\omega_{\mathrm{up}} + 1)^{-1}} = (\omega_{\mathrm{dwn}} + 1)(2\omega_{\mathrm{up}} + 1)\sigma_{*}^{2} \end{cases}$$

 \heartsuit Control variates for compression + heterogeneity.

- \heartsuit Recover the variance w.o. heterogeneity.
- \leftrightarrow Client-wise variance reduction scheme¹⁸

- \rightarrow Other applications: Langevin¹⁹, EM²⁰, MM.
- \rightarrow Duality with local iterations (e.g., *Scaffold*)²¹,²²

¹⁶Mishchenko, Gorbunov, Takáč, and Richtárik, "Distributed learning with compressed gradient differences"
 ¹⁷Philippenko and D, "Artemis: tight convergence guarantees for bidirectional compression in Federated Learning"
 ¹⁸Schmidt, Le Roux, and Bach, "Minimizing finite sums with the stochastic average gradient"
 ¹⁹Vono, Plassier, Durmus, D, and Moulines, "QLSD: Quantised Langevin stochastic dynamics for Bayesian federated learning"
 ²⁰D, Fort, Moulines, and Robin, "Federated-EM with heterogeneity mitigation and variance reduction"
 ²¹Karimireddy, Kale, Mohri, Reddi, Stich, and Suresh, "SCAFFOLD: Stochastic Controlled Averaging for Federated Learning"
 ²²Noble, Bellet, and D, "Differentially private federated learning on heterogeneous data"

$$\begin{cases} w_k = w_{k-1} - \gamma \mathcal{C}_{dwn} \left(\frac{1}{N} \sum_{i=1}^N \mathcal{C}_{up} (g_k^i - h_k^i) + h_k^i \right) \\ h_{k+1}^i = h_k^i + \alpha \mathcal{C}_{up} (g_k^i - h_k^i) \end{cases}$$
(1)

2. Mitigating compression by feedback loops: "non-degraded" update

Feedback loops

When using compression, the worker/server observes **both** the signal and its compressed and transmitted version. \rightarrow This can be leveraged to improve convergence.²³

In bi-directional compression frameworks,

1. Approach (1):

- compress the aggregated update, update the model, broadcast it back.
- The gradient is taken at the point w_k held by the central server.
- **2.** MCM ²⁴
- preserve the model on the central server.
- Gradient measured at \hat{w}_k :
 - \hat{w}_k is updated through a compressed update by \mathcal{C}_{dwn}
 - $\mathbb{E}[\hat{w}_k|w_k] = w_k$
 - The variance is controlled

$$w_{k} = w_{k-1} - \gamma \mathcal{C}_{dwn} \left(\frac{1}{N} \sum_{i=1}^{N} \mathcal{C}_{up}(g_{k}^{i}(w_{k-1})) \right)$$

$$w_k = w_{k-1} - \gamma \left(\frac{1}{N} \sum_{i=1}^{N} \mathcal{C}_{up}(g_k^i(\hat{w}_{k-1})) \right)$$

 ²⁴Karimireddy, Rebjock, Stich, and Jaggi, "Error Feedback Fixes SignSGD and other Gradient Compression Schemes"
 ²⁴Philippenko and D, "Preserved central model for faster bidirectional compression in distributed settings"

2.b. Three sequence update and convergence for MCM

MCM. Design of \hat{w}_k : three-sequences update.

- Main preserved model w_k on the central server
- Unbiased model estimator \hat{w}_k on workers 2
- Support model for difference compression H_k
- $\begin{cases} w_{k} = w_{k-1} \gamma \left(\frac{1}{N} \sum_{i=1}^{N} \mathcal{C}_{up}(g_{k}^{j}(\hat{w}_{k-1})) \right) \\ \Omega_{k+1} = w_{k+1} H_{k} \\ \widehat{w}_{k+1} = H_{k} + \mathcal{C}_{dwn}(\Omega_{k+1}) \\ H_{k+1} = H_{k} + \alpha_{dwn} \mathcal{C}_{dwn}(\Omega_{k+1}). \end{cases}$ The *difference* Ω_{k+1} between the model and the support is compressed and exchanged
- The local model \hat{w}_k is reconstructed from this information 5
- \rightarrow The third sequence H_k is critical to control the variance of the local model \widehat{w}_{k+1} with unbiased compression.

Theorem 5 (Convergence of MCM, convex case)
Under H1-3, for
$$K \in \mathbb{N}$$
, with a step-size $\gamma = \sqrt{\frac{\delta_0^2 N b}{(1+\omega_{up})\sigma^2 K}}$, denoting $\bar{w}_K = \frac{1}{K} \sum_{i=0}^{K-1} w_i$, we have:

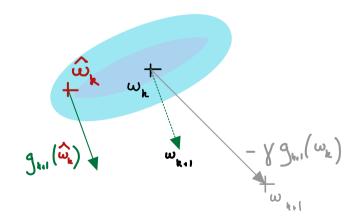
$$\mathbb{E} \left[F(\bar{w}_K) - F_* \right] \leq 2\sqrt{\frac{\delta_0^2(1+\omega_{up})\sigma^2}{NbK}} + \underbrace{O\left(\frac{\omega_{up}\omega_{dwn}}{K}\right)}_{lower order term} \cdot \frac{1}{k} \sum_{i=0}^{K-1} w_i$$
• independent of ω_{dwn}
• identical to Diana (uni-compression)

(MCM)

2.c. MCM- summary and experiments

MCM: New algorithm for bi-directional compression with a preserved central model

- \heartsuit Link with randomized smoothing: unbiased local models.
- ♡ Reduces (nearly cancels) impact of downlink compression
- \rightarrow Achieves the same asymptotic rate of convergence as unidirectional compression.
- $\rightarrow\,$ Extension to worker dependent model on the downlink compression



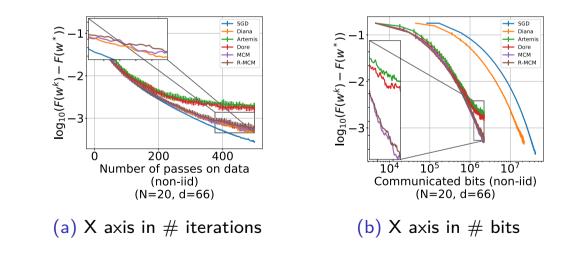


Figure: Quantum with b = 400, $\gamma = 1/L$ (LSR).

3.a. Beyond the worst-case assumption on compression²⁸

Assumption U-RBV Compression operators \mathcal{C} is U-RBV: There exists a constant $\omega \in \mathbb{R}^*_+$ s.t. for all Δ in \mathbb{R}^d :

$$\mathbb{E}[\mathcal{C}(\Delta)] = \Delta \quad ext{and} \quad \mathbb{E}\left[\left\| \mathcal{C}(\Delta) - \Delta
ight\|^2
ight] \leq \omega \left\| \Delta
ight\|^2 \;.$$

- Encompasses all examples cited before
- 2 Yet, this hides two differences.
- Regularity:
 - Sparsification/projection based are often a.s. linear : $W_2(C_s(x), C_s(y))^2 \le \omega ||x y||^2$.
 - Quantization based are not

Whigher-order moments. E.g., *p*-client-sampling and *p*-sparsification satisfy the same U-RVB assumption

 $\mathcal{W}_2(C_q(x), C_q(y))^2 \ge ||x - y||.$

Idea: consider the Least-Squares Regression framework with compression.

- Tight asymptotic²⁵ and non-asymptotic theory²⁶²⁷.
- Typically for a smooth stochastic gradient-field.

²⁵Polyak and Juditsky, "Acceleration of Stochastic Approximation by Averaging".

 $^{^{26}}$ Bach and Moulines, "Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)".

 $^{^{27}\}textbf{D}$ and Bach, "Nonparametric stochastic approximation with large step-sizes".

²⁸Philippenko and **D**, "Convergence rates compressed least-square regression: application to Federated Learning".

3.b. Beyond the worst-case assumption on compression²⁹

Theorem 6 (For compressed LSR (single worker), Holder compression scheme, $\gamma \propto K^{-lpha}$)

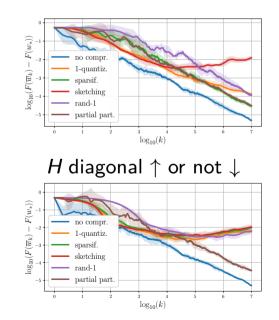
$$\mathbb{E}\left[F(\bar{w}_{K-1})-F(w_{*})\right] \leq \frac{20}{K} \left(\operatorname{Tr}\left(\mathfrak{C}H^{-1}\right) + \frac{\left\|H^{-1/2}\eta_{0}\right\|^{2}}{K^{(1-2\alpha)}} + \frac{\mathcal{M}_{1}\sqrt{\mathcal{A}}}{\mu K^{\alpha/2}} + \frac{\mathcal{M}_{2}\mathcal{A}}{\mu K^{\alpha}}\right)$$
For Pr. Gadat

where $\mathfrak{C} = \mathbb{E}[\mathcal{C}(\epsilon)^{\otimes 2}] \rightarrow$ noised induced by the compression near convergence.

Depending on the compression scheme:

All or nothing: $\mathfrak{C} = aH$ Sparsification: $\mathfrak{C} = a'H + b \operatorname{diag}(H)$.Random projection: $\mathfrak{C} = a''H + b'' \operatorname{Tr}(H) \operatorname{Id}_d$

- \rightarrow Classical LMS: noise covariance \rightarrow H
- ightarrow Compression may induce isotropic noise ightarrow Id
- \rightarrow Significantly impacts the limit distribution / rate (Tr(H^{-1}))
- \rightarrow Same variance but different behaviors!
- \heartsuit LSR to understand compression.



²⁹Philippenko and **D**, "Convergence rates compressed least-square regression: application to Federated Learning".

- 4. A new Unbiased Voronoi Vector Quantization: StoVoQ Algorithm
- → Voronoi Vector quantization The input $x \in \mathbb{R}^d$ is mapped to its nearest neighbor in a codebook $\mathcal{D}_M = \{c_i\}_{i=1}^M$. → Random codebook. A new codebook is sampled every time a quantization is performed.
- \rightarrow Unitary invariant codewords The distribution of the codewords *p* is binvariant under the unitary group

Theorem 7 (Quantization bias)

 \rightarrow Bias removal: (pre)-compute r^{p}_{M} and output $\frac{1}{r^{p}_{M}(||x||)} VQ(x, \mathcal{D}^{p}_{M})$

Assume that the codebook distribution is unitary invariant. Then, for all $M \in \mathbb{N}$, there exists a function $r_M^p : \mathbb{R}_+ \mapsto \mathbb{R}_+$ such that for all $x \in \mathbb{R}^d$,

 $\mathbb{E}_{\mathcal{D}_M \sim \rho}[\mathsf{VQ}(\mathsf{x}, \mathcal{D}_M)] = r^{\rho}_M(\|\mathsf{x}\|)\mathsf{x}.$

- The expectation of the quantized vector is colinear to the vector *x*, i.e., is directionally unbiased.
- The radial bias only depends on ||x||, M and the distribution p.

StovoQ³⁰

- \heartsuit Chosen compression rate (*M* vs 2^{*d*} atoms for SQ)
- ♡ Many variants (spherical, rotated grid, Gaussian).
- \heartsuit Variance \simeq twice smaller than classical SQ

- $\rightarrow\,$ randomness on the codebook, not the decomposition.
- ****** Detailed analysis of the debiasing function r_M

³⁰Leconte, **D**, Oyallon, Moulines, and Pages, "DoStoVoQ: Doubly Stochastic Voronoi Vector Quantization SGD for Federated Learning"_{3/27}

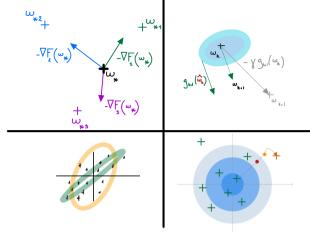
Wrapping-up – Federated learning and communications constraints

Four examples of algorithm designs or theoretical insights.

- $\rightarrow\,$ Mathematical framework and compressed based approaches
- \checkmark Mitigating heterogeneity for compression based approaches
- $\checkmark\,$ Feedback loops to reduce error
- $\checkmark\,$ Beyond worst case assumption on compression operators
- $\checkmark\,$ An unbiased Random Voronoi compressor.

What's next:

- Nearly all insights above can extend to any federated task obtained as a Stochastic Approximation: SGD, EM, MM, TD-learning...^a
- Feedback loops and Performance estimation problems.
- ♠♠ Stability of compressed SGD and generalization (non regular operators)
- ♠♠ Implicit regularization of compression Schemes (over-parametrized least-squares)
- ♠♠ Choosing the error distribution in compression to improve convergence (randomized smoothing)
- ♠♠♠ Compressed models, binary networks, etc.



^a**D**, Fort, Moulines, and Hoi-To, "Stochastic Approximation Beyond Gradient for Signal Processing and Machine Learning".

Learning with Missing Data, Uncertainty quantification and applications

Contributions to learning with prediction with missing data

- Stochastic algorithms for prediction with missing-data³¹
- **2** Consistency for linear models and worst-case guarantees³².
- Impact of imputation: implicit regularization of imputation in high dimension³³

Contributions to uncertainty quantification with conformal prediction

- For time series³⁴
- With missing data³⁵
- Link between with multi-task learning and prediction with missing data
- Leverage the links between the tasks
- Link between the classical assumptions (MCAR, MAR, MNAR) and relations between patterns.

 $^{^{31}}$ Sportisse, Boyer, **D**, and Josse, "Debiasing averaged stochastic gradient descent to handle missing values".

³²Ayme, Boyer, **D**, and Scornet, "Near-optimal rate of consistency for linear models with missing values".

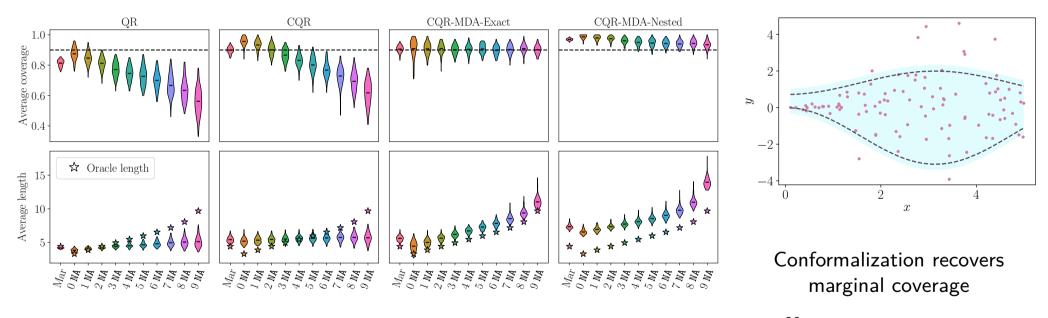
³³Ayme, Boyer, **D**, and Scornet, "Naive imputation implicitly regularizes high-dimensional linear models".

 $^{^{34}}$ Zaffran, Féron, Goude, Josse, and **D**, "Adaptive conformal predictions for time series".

³⁵Zaffran, **D**, Josse, and Romano, "Uncertainty quantification in presence of missing values".

Uncertainty quantification for prediction with missing data.

- The pattern may be informative
- 2 In most situations, the prediction uncertainty increases with the number of un-observed data



 \rightarrow Conformalized quantile regression with missing data. 36

³⁶Zaffran, **D**, Josse, and Romano, "Uncertainty quantification in presence of missing values".

An ongoing challenge: Design and Analysis of Optimization Algorithms

Continuous Optimization

 $\min_{w\in\mathcal{W}\subset\mathbb{R}^d}f(w).$

- **Design:** Build algorithms to minimize a function f
- Assumption: f belongs to a class \mathcal{F} .
- Analysis: guarantee convergence and rates.

→ Applications: statistics, machine learning, control.
 Deterministic Stochastic Multi-agent & Federated

