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Abstract

We consider the optimization of a quadratic objective function whose gradients1

are only accessible through a stochastic oracle. We present the first algorithm2

that achieves jointly the optimal prediction error rates for least-squares regression,3

both in terms of forgetting of initial conditions and in terms of dependence on the4

noise and dimension of the problem, and prove dimensionless and tighter rates for5

a regularized version of this algorithm.6

1 Introduction7

Many supervised machine learning problems are naturally cast as the minimization of a smooth func-8

tion defined on a Euclidean space. This includes least-squares regression, logistic regression (see,9

e.g., Hastie et al., 2009) or generalized linear models (McCullagh and Nelder, 1989). While small10

problems with few or low-dimensional input features may be solved precisely by many potential11

optimization algorithms (e.g., Newton method), large-scale problems with many high-dimensional12

features are typically solved with simple gradient-based iterative techniques whose per-iteration cost13

is small.14

In this paper, we consider a quadratic objective function f whose gradients are only accessible15

through a stochastic oracle that returns the gradient at any given point plus a zero-mean finite vari-16

ance random error. In this stochastic approximation framework (Robbins and Monro, 1951), it is17

known that two quantities dictate the behavior of various algorithms, namely the covariance ma-18

trix V of the noise in the gradients, and the deviation θ0 − θ∗ between the initial point of the19

algorithm θ0 and any of the global minimizer θ∗ of f . This leads to a “bias/variance” decomposi-20

tion (Bach and Moulines, 2013; Hsu et al., 2014) of the performance of most algorithms as the sum21

of two terms: (a) the bias term characterizes how fast initial conditions are forgotten and thus is22

increasing in a well-chosen norm of θ0 − θ∗; while (b) the variance term characterizes the effect of23

the noise in the gradients, independently of the starting point, and with a term that is increasing in24

the covariance of the noise.25

For quadratic functions with (a) a noise covariance matrix V which is proportional (with constant26

σ2) to the Hessian of f (a situation which corresponds to least-squares regression) and (b) an ini-27

tial point characterized by the norm ∥θ0 − θ∗∥2, the optimal bias and variance terms are known28

separately. On the one hand, the optimal bias term after n iterations is proportional to L∥θ0−θ∗∥2

n2 ,29

where L is the largest eigenvalue of the Hessian of f . This rate is achieved by accelerated gradient30

descent (Nesterov, 1983, 2004), and is known to be optimal if the number of iterations n is less than31

the dimension d of the underlying predictors, but the algorithm is not robust to random or determin-32

istic noise in the gradients (d’Aspremont, 2008; Schmidt et al., 2011; Devolder et al., 2014). On the33

other hand, the optimal variance term is proportional to σ2d
n (Tsybakov, 2003); it is known to be34

achieved by averaged gradient descent (Bach and Moulines, 2013), for which the bias term only35

achieves L∥θ0−θ∗∥2

n instead of L∥θ0−θ∗∥2

n2 .36
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Our first contribution in this paper is to analyze in Section 3 averaged accelerated gradient descent,37

showing that it attains optimal rates for both the variance and the bias terms. It shows that averaging38

is beneficial for accelerated techniques and provides a provable robustness to noise.39

While optimal when measuring performance in terms of the dimension d and the initial distance to40

optimum ∥θ0 − θ∗∥2, these rates are not adapted in many situations where either d is larger than the41

number of iterations n (i.e., the number of observations for regular stochastic gradient descent) or42

L∥θ0 − θ∗∥2 is much larger than n2. Our second contribution is to provide in Section 4 an analysis43

of a new algorithm (based on some additional regularization) that can adapt our bounds to finer44

assumptions on θ0 − θ∗ and the Hessian of the problem, leading in particular to dimension-free45

quantities that can thus be extended to the Hilbert space setting (in particular for non-parametric46

estimation).47

2 Least-Squares Regression48

Statistical Assumptions. We consider the following general setting: H is a d-dimensional Eu-49

clidean space with d ≥ 1, the observations (xn, yn) ∈ H × R, n ≥ 1, are independent and iden-50

tically distributed (i.i.d.), and such that E∥xn∥2 and Ey2n are finite. We consider the least-squares51

regression problem which is the minimization of the quadratic function f(θ) = 1
2E(⟨xn, θ⟩ − yn)

2.52

Covariance matrix: We denote by Σ = E(xn ⊗ xn) ∈ Rd×d the population covariance matrix,53

which is the Hessian of f at all points. Without loss of generality, we can assume Σ invertible.54

This implies that all eigenvalues of Σ are strictly positive (but they may be arbitrarily small). We55

assume there exists R > 0 such that E∥xn∥2xn ⊗ xn ≼ R2Σ where A ≼ B means that B − A56

is positive semi-definite. This assumption is satisfied, for example, for least-square regression with57

almost surely bounded data.58

Eigenvalue decay: Most convergence bounds depend on the dimension d of H. However it is pos-59

sible to derive dimension-free and often tighter convergence rates by considering bounds depending60

on the value trΣb for b ∈ [0, 1]. Given b, if we consider the eigenvalues of Σ ordered in decreasing61

order, which we denote by si, then trΣb =
∑

i s
b
i , and the eigenvalues decay For b going to 0 then62

trΣb tends to d and we are back in the classical low-dimensional case. When b = 1, we simply get63

trΣ = E∥xn∥2, which will correspond to the weakest assumption in our context.64

Optimal predictor: The regression function f(θ) = 1
2E(⟨xn, θ⟩ − yn)

2 always admits a global65

minimum θ∗ = Σ−1E(ynxn). When initializing algorithms at θ0 = 0 or regularizing by the squared66

norm, rates of convergence generally depend on ∥θ∗∥, a quantity which could be arbitrarily large.67

However there exists a systematic upper-bound ∥Σ 1
2 θ∗∥ ≤ 2

√
Ey2n. This leads naturally to the68

consideration of convergence bounds depending on ∥Σr/2θ∗∥ for r ≤ 1.69

Noise: We denote by εn = yn − ⟨θ∗, xn⟩ the residual for which we have E[εnxn] = 0. Although70

we do not have E[εn|xn] = 0 in general unless the model is well-specified, we assume the noise to71

be a structured process such that there exists σ > 0 with E[ε2nxn ⊗ xn] ≼ σ2Σ. This assumption is72

satisfied for example for data almost surely bounded or when the model is well-specified.73

Averaged Gradient Methods and Acceleration. We focus in this paper on stochastic gradient74

methods with acceleration for a quadratic function regularized by λ
2 ∥θ − θ0∥2. The regularization75

will be useful when deriving tighter convergence rates in Section 4, and it has the additional benefit76

of making the problem λ-strongly-convex.77

Accelerated stochastic gradient descent is defined by an iterative system with two parameters78

(θn, νn) starting from θ0 = ν0 ∈ H, and satisfying for n ≥ 1,79

θn = νn−1 − γf ′
n(νn−1)− γλ(νn−1 − θ0)

νn = θn + δ
(
θn − θn−1

)
, (1)

with γ, δ ∈ R2 and f ′
n(θn−1) an unbiased estimate on the gradient f(θ).80

The momentum coefficient δ ∈ R is chosen to accelerate the convergence rate (Nesterov, 1983;81

Beck and Teboulle, 2009) and has its roots in the heavy-ball algorithm from Polyak (1964). We82

especially concentrate here, following Polyak and Juditsky (1992), on the average of the sequence83

θ̄n = 1
n+1

∑n
i=0 θn,84
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Stochastic Oracles on the Gradient. Let (Fn)n≥0 be the increasing family of σ-fields that are85

generated by all variables (xi, yi) for i ≤ n. The oracle we consider is the sum of the true gradient86

f ′(θ) and an independent zero-mean noise that does not depend on θ1. Consequently it is of the87

form f ′
n(θ) = f ′(θ) − ξn where the noise process ξn is Fn-measurable with E[ξn|Fn−1] = 0 and88

E[∥ξn∥2] is finite. Furthermore we also assume that there exists τ ∈ R such that E[ξn ⊗ ξn] ≼ τ2Σ,89

that is, the noise has a particular structure adapted to least-squares regression.90

3 Accelerated Stochastic Averaged Gradient Descent91

We study the convergence of averaged accelerated stochastic gradient descent defined by Eq. (1) for92

λ = 0 and δ = 1. It can be rewritten for the quadratic function f as a second-order iterative system93

with constant coefficients: θn =
[
I − γΣ

]
(2θn−1 − θn−2) + γynxn.94

Theorem 1 For any constant step-size γ, such that γΣ ≼ I ,95

Ef(θ̄n)− f(θ∗) ≤ 36
∥θ0 − θ∗∥2

γ(n+ 1)2
+ 8

τ2d

n+ 1
. (2)

We can make the following observations:96

• The first bound 1
γn2 ∥θ0 − θ∗∥2 in Eq. (2) corresponds to the usual accelerated rate. It has97

been shown by Nesterov (2004) to be the optimal rate of convergence for optimizing a98

quadratic function with a first-order method that can access only to sequences of gradients99

when n ≤ d. We recover by averaging an algorithm dedicated to strongly-convex function100

the traditional convergence rate for non-strongly convex functions.101

• The second bound in Eq. (2) matches the optimal statistical performance τ2d
n over all102

estimators in H (Tsybakov, 2008) even without computational limits, in the sense that103

no estimator that uses the same information can improve upon this rate. Accordingly104

this algorithm achieves joint bias/variance optimality (when measured in terms of τ2 and105

∥θ0 − θ∗∥2).106

• We have the same rate of convergence for the bias when compared to the regular Nes-107

terov acceleration without averaging studied by Flammarion and Bach (2015), which cor-108

responds to choosing δn = 1− 2/n for all n. However if the problem is µ-strongly convex,109

this latter was shown to also converge at the linear rate O
(
(1− γµ)n

)
and thus is adaptive110

to hidden strong-convexity (since the algorithm does not need to know µ to run), thus ends111

up converging faster than the rate 1/n2. This is confirmed in our experiments in Section 5.112

• Overall, the bias term is improved whereas the variance term is not degraded and accelera-113

tion is thus robust to noise in the gradients. Thereby, while second-order iterative methods114

for optimizing quadratic functions in the singular case, such as conjugate gradient (Polyak,115

1987, Section 6.1) are notoriously highly sensitive to noise, we are able to propose a version116

which is robust to stochastic noise.117

4 Tighter Convergence Rates118

We have seen in Corollary 1 above that the averaged accelerated gradient algorithm matches the119

lower bounds τ2d/n and L
n2 ∥θ0 − θ∗∥2 for the prediction error. However the algorithm performs120

better in almost all cases except the worst-case scenarios corresponding to the lower bounds. For121

example the algorithm may still predict well when the dimension d is much bigger than n. Similarly122

the norm of the optimal predictor ∥θ∗∥2 may be huge and the prediction still good, as gradient123

algorithms happen to be adaptive to the difficulty of the problem: indeed, if the problem is simpler,124

the convergence rate of the gradient algorithm will be improved. In this section, we provide such a125

theoretical guarantee.126

We study the convergence of averaged accelerated stochastic gradient descent defined by Eq. (1) for127

λ = (γ(n+ 1)2)−1 and δ ∈
[
1− 2

n+2 , 1
]
. We have the following theorem:128

1this is different from the oracle usually considered in stochastic approximation (see Bach and Moulines
(2013); Dieuleveut and Bach (2015)).
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Theorem 2 For any constant step-size γ, such that γ(Σ + λI) ≼ I ,129

Ef(θ̄n)− f(θ∗) ≤ min
r∈[0,1], b∈[0,1]

[
74

∥Σr/2(θ0 − θ∗)∥2

γ1−r(n+ 1)2(1−r)
+ 8

τ2γb tr(Σb)

(n+ 1)1−2b

]
.

We can make the following observations:130

• The algorithm is independent of r and b, thus all the bounds for different values of (r, b)131

are valid. This is a strong property of the algorithm, which is indeed adaptative to the132

regularity and the effective dimension of the problem (once γ is chosen). In situations in133

which either d is larger than n or L∥θ0−θ∗∥2 is larger than n2, the algorithm can still enjoy134

good convergence properties, by adapting to the best values of b and r.135

• For b = 0 we recover the variance term of Corollary 1, but for b > 0 and fast decays of136

eigenvalues of Σ, the bound may be much smaller; note that we lose in the dependency in137

n, but typically, for large d, this can be advantageous.138

• With r, b well chosen, we recover the optimal rate for non-parametric regression139

(Caponnetto and De Vito, 2007).140

5 Experiments141

We illustrate now our theoretical results on synthetic examples. For d = 25 we consider normally142

distributed inputs xn with random covariance matrix Σ which has eigenvalues 1/i3, for i = 1, . . . , d,143

and random optimum θ∗ and starting point θ0 such that ∥θ0−θ∗∥ = 1. The outputs yn are generated144

from a linear function with homoscedastic noise with unit signal to noise-ratio (σ2 = 1), we take145

R2 = trΣ the average radius of the data and a step-size γ = 1/R2 and λ = 0. The additive noise146

oracle is used. We show results averaged over 10 replications.147

We compare the performance of averaged SGD (AvSGD), usual Nesterov acceleration for convex148

functions (AccSGD) and our novel averaged accelerated SGD (AvAccSGD)2, on two different prob-149

lems: one deterministic (∥θ0 − θ∗∥ = 1, σ2 = 0) which will illustrate how the bias term behaves,150

and one purely stochastic (∥θ0 − θ∗∥ = 0, σ2 = 1) which will illustrate how the variance term151

behaves. For the bias (left plot of Figure 1), AvSGD converges at speed O(1/n), while AvAccSGD
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Figure 1: Synthetic problem (d = 25) and γ = 1/R2. Left: Bias. Right: Variance.
152

and AccSGD converge both at speed O(1/n2). However, as mentioned in the observations follow-153

ing Theorem 1, AccSGD takes advantage of the hidden strong convexity of the quadratic function154

and starts converging linearly at the end. For the variance (right plot of Figure 1), AccSGD is not155

converging to the opltimum and keeps oscillating whereas AvSGD and AvAccSGD both converge156

to the optimum at a speed O(1/n). However AvSGD remains slightly faster in the beginning.157

Note that for small n, or when the bias L∥θ0−θ∗∥2/n2 is much bigger than the variance σ2d/n, the158

bias may have a stronger effect, although asymptotically, the variance always dominates. It is thus159

essential to have an algorithm which is optimal in both regimes; this is achieved by AvAccSGD.160

2which is not the averaging of AccSGD because the momentum term is proportional to 1−3/n for AccSGD
instead of being equal to 1 for AvAccSGD.
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