Aymeric DIEULEVEUT

CMAP, Polytechnique (X)

October 3 -12, 2019

Autumn School on Machine Learning - Thilisi

ECOLE
POLYTECHNIQUE
N2: IP PARIS

Slides on my web page: www.cmap.polytechnique.fr/~aymeric.dieuleveut/

www.cmap.polytechnique.fr/~aymeric.dieuleveut/

Outline

1. Motivation: Large scale learning and Optimization

2. Classical rates for deterministic methods

3. Supervised learning setting - Stochastic Gradient
Algorithms

3.1 SGD vs GD

3.2 Variance reduced SGD

3.3 SGD to avoid overfitting (Generalization Risk)

4. Mini-batch, Adaptive algorithms
4.1 Mini-batch Algotirhms

4.2 Adaptive algorithms
ADAGrad Optimizer
AdaDelta Optimizer
RMSprop optimizer

5. Wednesday: python practical
6. Larger steps

Outline

1. Motivation: Large scale learning and Optimization

Large scale learning: multiple contexts and
applications

What happened over the last 20 years?
1. Increase in computational power
2 Data everywhere — learning from examples.

2 New algorithms, new models

Large scale framework:
Data increase in number n and quality/dimension d.

New Applications: Translation

= Google Translate HH @
% Text [§ Documents
ENGLISH - DETECTED ENGLISH FRENCH SPANI v & GEORGIAN FRENCH ENGLISH v
Hi, thank you for inviting mel X 2sBs6ds, 3830MNMBM, 8 ¥
® 0s33s@0gq0n!
gamarjoba, gmadiobt, rom damp'atiizhet!
ED) 30/5000 ‘D
Send feedback
NLP tasks:

1. Words representations, sentence representations, etc.
2. Automatic translation

3. Text generation, ...

number n: billions of observations (wikipedia)
features dimension d: high dimensional representations of
words

Advertisement

Se Nonde

ECONOMIE viogos. OPINIONS CULTURE MLEWAG SERVICES a

Sabonner

NESPRESSO

PROFESSIONNEL

ssavs = 40 Y 2lesmachines

h3g! O Nespresso Professionnel
PN

Coupe du monde de rugby :
« Quelque chose se passe » chez

les Bleus
-

Procédure de
destitution : Donald
‘Trump dénonce un
«coup d'Etat »

wtor

Auprocs du Mediator: «La
vie dumédicament est prioritaire
rla vie des:

Ausein duXV de France, qui affronte successivement
los Etats-Unis mercrodi 29 h 45 ot e royaume do Tonga ARouen, «lodeur
dimanche 4.9 h 45, esprit e groupe prend forme, au demeu)
son diAya Nakamura. inquiétudes persistent
aprés lincendie de

number n: billions of people
features dimension d: cookies, clicks

Bio-informatics

Bio-informatics

Input: DNA/RNA sequence,

Output: Drug responsiveness

number n: not always many patients

features dimension d: e.g., number of basis — 10°.

Image recognition

K NN N
SNUNYNA

@]
[~
o
o
0
0
0

——— e
CPVLYLY
DWW ws
P LR L
oo
> °Q) % o B o)
H0O0VIVI

Image classification

¢}

Input: Images, Videos
Output: Digit , more complex category, action recognition...

number n: millions of images
features dimension d: millions of pixels, potentially thousand
of frames in short video.

Large scale learning : Tons of applications, fewer
algorithms & frameworks

Meaningful Structure
Compression Discover

Dimensionality Idenity Fraud

Classification.
Detection

Unsupervised Supervised
Learning Learning

Machine

Market
Forecasting

Learning

Reinforcement
Learning

» Sometimes combine supervised + unsupervised

» Many methods for each domain. For example for regression:
Nearest neighbours, Linear regression, Kernel Regression, etc.

» Why is optimization about?

Image taken from https://wordstream-files-prod.s3.amazonaws.com/s3fs-public/machine-learning.png

Optimization is a key tool for large scale learning.

What is optimization about?

With 6 a parameter, and f a cost function.

Why?
We formulate our problem as a cost minimization problem.
A few examples:

» Supervised machine learning
» Signal Processing

» Optimal transport

» GANS

10

Optimization: some Examples 1/4

Consider an input/output pair (X,Y) € X X Y, (X,Y) ~ p.
Goal: function 0 : X — R, s.t. good prediction for Y.
Here, as a linear function of features ®(X) € RY.
Consider a loss function £: Y X R — Ry

Define the Generalization risk :

o0

11

Empirical Risk minimization (1)

Data: n observations (x;,y;) € X X Y, i=1,...,n, i.i.d.

Empirical risk (or training error):

R(0) = 3 £l (0, 0(x).
i=1

Empirical risk minimization (ERM) : find 8 solution of

. 1
min H;E(y;,w,d’(xi))) + pQ(6).

convex data fitting term + regularizer

12

Empirical Risk minimization (Il)

For example, least-squares regression:

& S (yi— (8, 0(x))? + uA6),

i=1

min —
0cRd 2n

and logistic regression:

;2;1@ i;log (14 exp(—yi(0, ®(x;)))) + 12(0).

13

Optimization: some Examples 2/4

Observe a signal Y € R"*49, try to recover the source
B € RP*X4, knowing the “forward matrix” X € R"%P,
(multi-task regression)

. 2
min || X3 — Y|
B
Q sparsity inducing regularization.

How to choose \?

% non smooth optimization, optimization with sparsity
inducing norms, etc.

14

Optimization: some Examples 3/4

rip | et)ity

N set of probability distributions c(x,y) “distance” from x
toy.

+ regularization

Kantorovic formulation of OT.

% alternating directions algorithms,

15

Optimization: some Examples 4/4

min max {Exx p,[108 D(x)] + Ezvp,llog(1 — D(G(2))]}

» D discriminator: tries to discriminate between real and
fake images

» G generator: tries to fool the discriminator.

% minimax optimization, non convex optimization....

» Optimization is at the heart of most Learning methods.

> Is it difficult ?

16

Is it a (hard) problem?

for convex optimization, in 99 % of the cases, no.

In the words of Steven Boyd:

17

http://www.cvxpy.org/en/latest/

What makes it hard: 1. Convexity

Why?
J‘ill;,::':.:.:‘:“:“\\“\ 2 {000
) l,'o’!.O‘g‘ “\\‘ I\ o
2
-4
2
Typical non-convex problems: ¥

Empirical risk minimization with 0-1 loss.

R(O) = 2501 1y sign(0,0(x)) - :

0
Neural networks: parametric non-convex functions.

18

What makes it hard:

» A function f : R — R is L-smooth if and only if it is
twice differentiable and

VO € RY, eigenvalues[g”(0)] < L

smooth non-smooth

\J

\
For all 8 € RY:

F(0) < F(O) + (F(8),0— 0+ & 0 — 0|

19

What makes it hard:

» A twice differentiable function f : R — R is pu-strongly
convex if and only if

VO € RY, eigenvalues[f”(0)] > p

convex my

\J

\
For all 6 € RY:

£(0) > F(0') + (F(6'),0 — &) + % o — o

20

What makes it hard:

Rates typically depend on the condition number «k = ﬁ:

Large Small &
harder to optimize easier to optimize

Smoothness and strong convexity in ML

We consider an a.s. convex loss in 6. Thus R and R are convex.
Hessian of R ~ IS o(x)P(x)T
If £ is smooth, and E[||®(X)|%*] < r?, R is smooth.

If £ is p-strongly convex, and data has an invertible covariance
matrix (low correlation/dimension), R is strongly convex.

Importance of : provides strong convexity, and avoids
overfitting.
Note: when considering of the problem:

» L-smoothness <+ 1/L-strong convexity.
» p-strong convexity <> 1/pu-smoothness

22

What makes it hard:

(if © is a convex set.)
» May be described implicitly (via equations):
©={0cR?s.t.|0|], <R and (0,1) = r}.
% Use of the problem.
» Projection might be difficult or impossible.
» Even when ® = RY, d might be very large (typically
millions)
% use only first order methods
If £ =R(6) = ; X1y £(vis (0, ©(x)))),
computing a gradient has a cost proportional to n.

23

Optimization
Take home

» We express problems as minimizing a function over a set
» Many convex problems are solved

» Difficulties come from non-convexity, lack of regularity,
complexity of the set ©, complexity of computing gradients

Our focus in this course:
» Supervised Machine Learning.
» Stochastic algorithms.

Goals:

> present (convex, large dimension, high number of
observations)

» show how rates depend on and
» show how we can use the

» not forgetting the initial problem:

24

Roadmap

2. Classical rates for deterministic methods

Goals:
1. Rates
2. Proof techniques

Some slides from this section are adapted from Francis Bach’s lecture in Orsay.

25

Classical rates for deterministic methods

v

Assumption: f convex on RY

v

Classical generic algorithms

» Gradient descent and accelerated gradient descent
» Newton method
» Subgradient method (and ellipsoid algorithm)

Key additional properties of f
» Lipschitz continuity, smoothness or strong convexity

Key references: Nesterov (2004), Bubeck (2015)

v

v

26

Several criteria for characterizing convergence

» Objective function values
F(O) — inf f
(9) n'gR J (n)

» Usually weaker condition
> lterates

. 2
e in 12~ 71

» Typically used for strongly-convex problems

» NB 1: relationships between the two types in several situations

» NB 2: similarity with prediction vs. estimation in statistics

27

Toolbox

We use a few very useful inequalities.
Convex: the function is above the tangent line:

f

\\ £(0) + (F(0).0 —)

t }
/o

f(0) > £(0) + (f(6),6 — &) (1)

28

Toolbox

We use a few very useful inequalities.
Strongly-convex: function above the tangent line + p*
quadratic.

t
F(O') + (F(0'),0 — 0') + |0 — 0|

f

F0) 2 F(O) +(F(8),0-0)+ D [lo—0° (2

(F(6') — £(0),0' — 0) > o —0'||” (3)

29

Toolbox

We use a few very useful inequalities.
Smooth-convex: function below the tangent line + L*
quadratic.

f

(4)
Co-coercivity:

|F/(0) — £(8)||> < L(F(O") — F(6'),0 — &) (5)

30

Toolbox

3 Starting Points:
1. Expand ||6;+1 — 60.||? “Lyapunov approach”
2. Expand f(6¢+1) — f(0:) (if smooth!)
3. Expand 6¢y1 — 6,

31

(smooth) Gradient Descent

» Assumptions
» f convex with L-Lipschitz-continuous gradient (e.g.,
L-smooth)

» Algorithm:

1
0y = 0;_1 — Zg,(et_l)

32

(smooth) Gradient Descent - strong convexity

v

Assumptions

» f convex with L-Lipschitz-continuous gradient (e.g., L-smooth)
>

v

Algorithm:
1
0 =0;_1 — Zf,(et—l)

Bound:

v

F(0e) — £(0.) < (1 — p/L)*[f(B0) — £(64)]
Three-line proof. Challenge 1! (start from (||0; — 6.]|?)

v

v

Line search, steepest descent or constant step-size

33

Proof

34

(smooth) Gradient Descent - slow rate
» Assumptions

» f convex with L-Lipschitz-continuous gradient (e.g., L-smooth)
>

» Algorithm:
1
0y =01 — Zf,(ot—l)
» Bound: I 0 ”2
2L 90 — Ux
F(O) —f(O0,) < —
(6 - F(0.) < =0
» Five-lines proof

v

Adaptivity of gradient descent to problem difficulty

Gradient descent - Proof for quadratic functions

» Quadratic function: £(0) = 0THO — c' @
» 1 and L are smallest largest eigenvalues of H
» Global optimum 6, = H~!c (or H'c) such that HO, = ¢

» Gradient descent with v = 1/L:
1 1
0 = 0;1— Z(Het—l - C) =60; 1 — Z(Het_l - HH*)
1 1 *
0 —0, = (I ——-—H)(0t—1—6.)=(1——-H) (60— 06.)
L L
» Strong convexity 1 > 0: eigenvalues of (/ — %H)t in

[0,]

» Convergence of iterates: ||8; — 0. < 160 — 6.2

» Function values: f(6;) — f(6.) < [F(60) — F(6.)]

36

Gradient descent - Proof for quadratic functions
» Quadratic function: F(0) = 0THO — c' @
» w1 and L are smallest largest eigenvalues of H
» Global optimum 6, = H~!c (or H'c) such that HO, = ¢

» Gradient descent with v = 1/L:
1 1
0 = 0;1— Z(Het—l - C) =0; 1 — Z(Het_l - HH*)
1 1 *
0 — 0, = I_ZH (0t—1 — 0.) = I_ZH (60 — 6.)

» Convexity p = 0: eigenvalues of (I — %H)t in [0, 1]

- 1100 — 0.1 < [160 — 6.2
» Function values:

F(0;) — f(6.) < vrg[g)il v(l — V/[_)2t||90 . 0*”2

< 160 — 64117

37

Accelerated gradient methods (Nesterov, 1983)

» Assumptions f convex
and smooth L. A

» Algorithm: . oL 00 = 0,1)

0 = me—1— f'(me-1) | nf\l

—. [«////,
t—1 0
_ 0 t—1 0 . 0 3 n+1

U t + t+ 2(t t 1)

» Bound:
2L||6 — 6.2

f(6:) — £(0,) < 1)

» Ten-line proof (see, e.g., Schmidt et al., 2011)
» Not improvable

» Extension to strongly-convex functions

38

Accelerated gradient methods - strong convexity
» Assumptions

» f convex with L-Lipschitz-cont. gradient , min. attained at 6,
» f p-strongly convex

» Algorithm:
1 /
0 = ne—1— Zf (me-1)
1—/p/L
Nt = 0+ 7/(& —0:_1)
14+ /p/L
» Bound: f(6;) — f(0.) < L||6p — 0.]|>(1 —)t

» Ten-line proof (see, e.g., Schmidt et al., 2011)
» Not improvable
» Relationship with conjugate gradient for quadratic functions

Proof in the quadratic setting: compute the largest eigenvalue of a
non-symmetric matrix. Challenge 2! Simple an insightful
computation!

39

Other methods: Projected gradient descent

» Problems of the form: (l;réin f(0)

> Oup1 = arg min £(6:) + (0 — 6:)T VF(6:)
"1 1 2
> 0t+1 = arg 21€I’rcl 5”0 — (at — va(at))Hz

>

» Similar convergence rates than smooth optimization

» Acceleration methods (Nesterov, 2007; Beck and
Teboulle, 2009)

Other methods: Newton method
» Given 08;_1, minimize second-order Taylor expansion
F(0) =F(0e—1) + F'(0:-1)T (0 — 0:_1)

1
+ 5(9 —0:_1) " f"(6:-1) (6 — 6:_1)

» Expensive lteration: 8, = 0;_1 — f"(0,_1)"1f'(6:_1)
» Running-time complexity: O(d?) in general
> convergence: If ||0;_1 — 0. small enough, for some
constant C, we have

(Cll6r — 6.]]) = (C|6r—1 — 6]I)

» See Boyd and Vandenberghe (2003)

a1

Summary: minimizing convex functions

v

Assumption: f convex

Gradient descent: 0y = 0;_1 — ~¢ f/(0¢—1)
» O(1/t) convergence rate for smooth convex functions
> O(e_”‘/") convergence rate for strongly smooth convex

functions
» Optimal rates O(1/t?) and O(e~tV*/) with FOL.

v

» Newton method: 6; = 6,1 — " (0;_1) " f"(0:_1)
> O(e*?") convergence rate

» From smooth to non-smooth
» Subgradient method

42

Subgradient method/“descent” (Shor et al., 1985)

» Assumptions

» f convex and on {||8|]2 < D}

2D

» Algorithm: 6, = Np <0t_1 — tf'(Ot_l))

BVt

» Mp : orthogonal projection onto {||6|]> < D}

Constraints

43

Subgradient method/ “descent” (Shor et al.,

» Assumptions

» f convex and B-Lipschitz-continuous on {||0]|2 <

. 2D /
» Algorithm: 6, = Np(6;_1 — Wf (0¢-1)
» Mp : orthogonal projection onto {||0||, < D}
» Bound:

(1) o< 28

Three-line proof

v

v

Best possible convergence rate after O(d)
iterations (Bubeck, 2015)

1985)

D}

44

Need for decaying steps

Example of | x |

45

Subgradient method/ “descent” - proof - |
> lteration: 0, = Np(0;_1 — v:f' (6 1)) with v, = 20
» Assumption: ||f’(0)|]2 < B and ||0]|2 <

16 — 64115 < ||@c—1 — 0. — ~7:F'(6:—1)||5> by contractivity of projections
18e—1 = 0ll3 + V11" (Be-1) 113 — 27¢(Be—1 — 6.) T 8" (Be—-1)

< [10e-1 = 0.5 + B* v} — 27:(6:—1 — 9*)Tf'(9t—1)
because ||f’(9t D2 <
< 10e—1 — 0115 + — 27 [£(0.— 1) — £(8.)]

(property of subgradients)

» leading to

BZ
F(Or1) — F(0.) < —1

1
— [18s—1 — 04|12 — ||6; — 6.]|2
+2%[Ilt1 I — 116 113]

46

Subgradient method/ “descent” - proof - Il

» Starting from
2

B Yt 1
f(6:—1) — (6+) < t o [16e—1 — 6xl13 — 116c — 64]13]
t

2
> Ye =7

t

[f(Bu—1) — F(8.)] < Z L+ Z ||6’ —1 = 013 = 116 — 6.]3]

u=1 u=1
B2~ 1 2~

<t +5 ||0 0.2 < <27 +2D2
S 2 0 — 2 X 2 ~

» Optimized step-size v; = B\/_ depends on

» Leads to bound of 2DB+\/t
» Slightly more complex proof for setting (decreasing steps)

» Using convexity:

t—1 -
f(ikZZOOk) — f(64) < 1/;)“9,() — f(6,) < 2’-7\/;3

a7

Subgradient method/ “descent” - proof - IlI

» Starting from
2

B4~ 1
F(O—1) — F(0:) < —5— + -—[[16e—1 — 64113 — 116 — 6.]|2]
2 2v;

t t 2 t
B4~, 1
> [f(0un) = F(6-)] < D= +22 [116u—1 = 013 — 116w — 6.3
u=1 u=1 u=1 Yu
B2y 11 |60 — 6.
> OB =)+
= 2Yu41 2 T
t 2 t—1 2
By, 1 AD
< 3Ty + o
u=1 2 2'7’u+1 2'7u 2
t 2
B2y, 4D? 2D
+ < 3DBV/'t with ~, =
; 2 2y, ‘T BVt

» Using convexity: f(% th(;%) Ok) — f(0.) < %

48

Subgradient descent - strong convexity

» Assumptions

» f convex and B-Lipschitz-continuous on {||0]|2 <
>

2
Algorithm: et = nD <0t_1 — Mf/(et_l))
Bound:

v

v

2B?

(t(t+1)z"9k 1> —fe) < e

v

Three-line proof

v

Best possible convergence rate after O(d)
iterations (Bubeck, 2015)

D}

49

Subgradient method - strong convexity - proof - |
> Iteration: at = nD(Bt_l — ’th,(at_l)) With Yt = ﬁ
> Assumption: ||f/(0)||2 < B and ||0||2 < D and p-strong convexity of f

10: — 0115 <[|6e—1 — 0 — 7ef'(0:-1) I3
by contractivity of projections

<[10e—1 — 0413 + B?7? — 27,(0:—1 — 0,) T £ (0:—1)
because ||f'(0;:_1)|» < B

<0e—1 — 0,113 + B2 — 2ve[F(6:—1) — F(6.)]

(property of subgradients and strong convexity)

% leading to
B2y, 1.1 1
f(0,_1) — f(0.) < = — w01 — 0.2 — —||6, — 6.3
(0:—1) — £(6.) > +2[% p]116e—1 Il 2%Ht II2
B? pw t—1 p(t+1)
= 0,1 — 0.2 — =210, — 6.2
“(t+1)+2[110¢—1 I 2 [|6: II2

50

Subgradient method - strong convexity- proof - Il

B2y, 1.1 1
f(0,_1) — f(6,) < = — p||0r—1 — 0412 — — |6 — 0.||2
(0:—1) — £(6.) > +2[% p]16e—1 Il5 2%Ilt Il5
B2 pwt—1 w(t+1)
< -~ 0,1 — 0.2 — —— 7116, — 0.2
u(t+1)+2[116:—1 IB; 2 [10: II2

t t

1

> u[f(8u-1) — £(6.)] <Z 5 g 2 [u(u=1)[8u_1—6.]3
u=1 t=1 +) 4u=1

—u(u +1)16,—6.]3)

B%t 1 B2t

< T + Z[O — t(t+1)[|6; — 9*”%] S —

» Using convexity: f (ﬁ ZZ:l > — F(6) < E_%

> NB: with step-size v, = 1/(nu), extra logarithmic factor

51

Summary: minimizing functions

Gradient descent: 6y = 0;_1 — ~¢ f'(6¢—1)
Convergence rate (= speed of convergence)
O(1/+/t) for non-smooth convex functions
O(1/t) for smooth convex functions

O(e—t#/) for strongly smooth convex functions

52

Summary of rates of convergence

» Problem parameters

>

vV vy

D diameter of the domain

B Lipschitz-constant

L smoothness constant

p strong convexity constant

convex

strongly convex

nonsmooth

deterministic: BD/+/t

deterministic: B?/(tu)

smooth

deterministic: LD?/t?

deterministic: exp(—t./u/L)

quadratic

deterministic: LD?/t?

deterministic: exp(—t./u/L)

53

Summary of the first session

1. Optimizing a cost function is at the heart of Large scale
learning

2. Difficulty comes from the fact that both the number of
examples n and the number of dimensions d are very
large.

First method: Gradient descent:

54

Summary of the first session

First method: Gradient descent:
Convergence rate (= speed of convergence)
O(1/t) for smooth convex functions

O(e~t*/1) for strongly smooth convex functions

Optimal rates O(1/t2?) and O(e~tV#*/L) with acceleration
(optimal -)-

55

Spirit - Goals

Goals:
1. Understand what SGD is.
2. Comparison to GD (cost, convergence speed)

3. Important variants.

Approach:
1. convergence speed helps to choose between algorithms

2. influence of parameters — choice of paramaters (e.g.,
step size)
3. proofs help to understand assumptions

56

Roadmap

3. Supervised learning setting - Stochastic Gradient
Algorithms

3.1 SGD vs GD

3.2 Variance reduced SGD

3.3 SGD to avoid overfitting (Generalization Risk)

57

Back to Supervised Machine Learning framework

Consider an input/output pair (X,Y) € X X Y, (X,Y) ~ p.
Goal: function 0 : X — R, s.t. good prediction for Y.
Here, as a linear function of features ®(X) € RY.
Consider a loss function £: Y X R — Ry

Define the Generalization risk :

o0

58

Empirical Risk minimization (1)

Data: n observations (x;,y;) € X X Y,i=1,...,n, i.id.

Empirical risk (or training error):

- 18
R(0) = —>_ £y (6, ®(x)))-
i=1

Empirical risk minimization (ERM) : find 8 solution of

1 n
min n;ay.-,w,wx.-») + pu(6).

convex data fitting term + regularizer

59

Empirical Risk minimization (Il)

For example, least-squares regression:

& S (yi— (8, 0(x))? + uA6),

i=1

min —
0cRd 2n

and logistic regression:

;2;1@ i;log (14 exp(—yi(0, ®(x;)))) + 12(0).

60

Empirical Risk Minimization (ERM) setting.

0cRrd

min {7@(0) = '11Z£(,Via CH ¢(Xi)>)} .
i=1

Two fundamental questions: (a) (b) analyzing 6.

“Large scale” framework: number of examples n and the
number of explanatory variables d are both large.

1. High dimension d =
Gradient Descent (GD) :

0 =01 — 1t ﬁ,(et—l)

Problem: computing the gradient costs O(dn) per iteration.

61

Gradient descent for ERM A
» Assumptions (R is the expected risk, R the empirical risk)

> R(6) = 3+ 37, £(yi, ®(x)) T 6)
» £ smooth.

» Cost: At each step, compute
1 n
R/(0) = - > (i, ®(x) T O)O(x;).
i=1
cost = nd each step
» Convergence: after t iterations of subgradient method
R(0 inR(n) < -
(6c) — minR(n) < -

> for , convergence , with total

running-time complexity of
62

Empirical Risk Minimization (ERM) setting.

min {ﬁ(@) = ’1123(}% (0, ¢(Xi)>)} .
i=1

0cRd

Two fundamental questions: (a) (b) analyzing 6.

“Large scale” framework: number of examples n and the
number of explanatory variables d are both large.

1. High dimension d —-
Gradient Descent (GD) :

0 =01 — "t 75:’«,(et—l)

Problem: computing the gradient costs O(dn) per iteration.
2. Large n —>
Stochastic Gradient Descent (SGD)

63

Idea of SGD

What is our main problem? computing
7%,(9) Z el(yn d)(xl)TO)(b(xI) = Z f’(@)

costs nd per iteration

Solution?
Use instead for the gradient just

F(0) (=4(yi ®(x)"0)®(x))
with i € U{1,...,n}.

One observation at each step — complexity d per iteration.

64

SGD for ERM: f = R

Loss for a single pair of observations, for any j < n:
f;(6) = £(yj, (0, ®(x;)))-
For the R(0) = 1 ile(yt, (8, ®(x:)))-
t=
» At each step t € N*, sample I, ~ U{1,...n}:
f, (0:—1) = £ (y1,, (0t—1, D(x1,)))
18 .
E[f] (0:-1)] = — Zl f/(6:-1) = R'(6:-1)-

More generally, let’s define SGD for a general function f.

65

Stochastic Gradient descent

» Goal:

given unbiased gradient
estimates f/

» 0, := argmingas f(60).

66

Why is randomness not a problem

Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below
statistical error

2. In machine learning, cost functions are averages

3. Testing errors are more important than training errors

Take home
SGD is :

1. Necessary in the Large Scale setting (complexity)

2. Well suited to Learning problems !

Convergence ?

67

Analysis: behaviour of (0,),>0

0 =01 — 7t ft,(et—l)

Importance of the (7e)e>o0-

For smooth and strongly convex problem,

oo oo
Z’)’t = o0 Z’yf < oo.
t=1 t=1

» Limit (variance) scales as 1/u?

» Very sensitive to ill-conditioned problems.

> u generally unknown...

a.s.

if

68

Polyak Ruppert averaging

Introduced by Polyak and Juditsky
(1992) and Ruppert (1988):

» off line averaging reduces the noise effect.
» on line computing: 0,47 = ¢119t+1 + H_ilét.

69

Convex stochastic approximation: convergence

Known minimax rates for problems
» Strongly convex: O((ut)™!)
Attained by averaged stochastic gradient descent with
ve o< (ut) !
» Non-strongly convex: O(t—1/?)
Attained by averaged stochastic gradient descent with
v o /2

For problems, use larger steps

» Strongly convex: O(ut)™!
for v; o< t~1/2; adapts to strong convexity.

70

Convergence rate for f(0,) — f(6.),

min R
SGD GD
Convex O (ﬁ) (0] (%)

Stgly-Cvx O(%) O(e™#t)

Convergence rate for f(6,) — f(6.), f.

min R
SGD GD
Convex o (%) (0] (%)
Stgly-Cvx O <ﬁ) O(e™Ht)

© Gradient descent update costs n times as much as SGD
update.

Which one to choose?
Can we get best of both worlds?

71

Stochastic vs. deterministic methods

» Batch gradient descent:

0y =0;_1 — tf (Ot 1)—0t 1—7Zf,(9t 1)

» Stochastic gradient descent: 0; = 6;_1 — 'ytﬂ.’(t)(Gt_])

72

Comparison of convergence : SGD vs GD

Which one to choose?

1. Depends on the precision we want.

stochastic

deterministic

log(excess cost)

\/

time

Example: non strongly convex case.
2. If our goal is to get a convergence of 1/4/n, then
» Complexity of GD: n®/%d
» Complexity of SGD: nd.
3. If our goal is to get a convergence of 1/n?, then
» Complexity of GD: n®d (n? iterations)
» Complexity of SGD: n*d (n* iterations).

Why one is the most likely in Learning ? (Details later...)

73

Take home

. SGD is a great algorithm

Exactly suited for Large Scale Learning

2.1 Low complexity per iteration
2.2 3 rapid convergence

Question 2: Can we get best of both worlds?

74

1. Motivation: Large scale learning and Optimization

2. Classical rates for deterministic methods

3. Supervised learning setting - Stochastic Gradient
Algorithms

3.2 Variance reduced SGD

4. Mini-batch, Adaptive algorithms

5. Wednesday: python practical

6. Larger steps

75

Methods for finite sum minimization
» GD: at step t, use %Z?:o f/(6:)
» SGD: at step t, sample iy ~ U[1; n], use f/(0:)
> : at step t,
> keep a “full gradient” %Z?:o f/(0.), with 0y, € {61,...0:}
» sample i ~ U[1; n], use

f,(Zf/() £)+f,-:(9t)>,
i=0

In other words:

>

» Random selection i(t) € {1,...,n} with replacement

n
> Iteration: 6; = 6,1 — 3y with
nia
: {f,-'(et_l) if i = i(t)

yi = — .
! y; 1 otherwise

76

SAG
| 4
» Random selection i(t) € {1,...,n} with replacement

n
. Tt t .
» lteration: 0; = 0;_1 — — ; with
t t n Z.V,

i=1
(_ [F0) ii=i(r)
! y,.t_1 otherwise
functions — g=13"\f A L fs fi eee foi fa
SY YR eee Ui Wn

gradients € R? EDDRE yioovh Y

77

SAG
| 4
» Random selection i(t) € {1,...,n} with replacement

n
. Tt t .
» lteration: 0; = 0;_1 — — ; with
t t n Z.V,

i=1
c_ [F(O) ii=ir)
! y,.t_1 otherwise

functions 9=+ i

—
S~
s
.

.

.
e
3

|

AR
e
3

. 1 t t t ot
gradients € RY 2211 vt YiooYh Vs U cee Yn—1 Yn

78

SAG

» Random selection i(t) € {1,...,n} with replacement

n
. Tt t .
» lteration: 0; = 0;_1 — — ; with
t t n Z.V,

i=1
c_ [F(O) ii=ir)
! y,.t_1 otherwise

functions 9= ki oo fs cee

. 1 ., . t t t
gradients € RY 2211 vt viooYhovh cee

% @ update costs the same as SGD

fn,fl f’n,

t ot
Yn—1 Yn

% © needs to store all gradients f/(0;,) at “points in the past”

79

Variance reduced methods

Some references:

» SAG Schmidt et al. (2013), SAGA Defazio et al. (2014a)

» SVRG Johnson and Zhang (2013) (reduces memory cost
but 2 epochs...)

» FINITO Defazio et al. (2014b)
» S2GD Konetny and Richtarik (2013)...

And many others... See for example Niao He's lecture notes
for a nice overview.

80

http://niaohe.ise.illinois.edu/IE598_2016/pdf/IE598-lecture23-incremental%20gradient%20algorithms.pdf

Convergence rate for f(0,) — f(6.),
objective f.

min R
SGD GD SAG
1 1
Convex (0] (W) (0 (;)
t
Stgly-Cvx O (ﬁ) O(e ") O (1 —(rA %))

g ____stochastic

S

Eo deterministic

hybrid

time

GD, SGD, SAG (Fig. from Schmidt et al. (2013))

81

Summary

Take home

1. Variance reduced algorithms can have both:

» low iteration cost
» fast asymptotic convergence

How precisely do | need to converge?

82

1. Motivation: Large scale learning and Optimization

2. Classical rates for deterministic methods

3. Supervised learning setting - Stochastic Gradient
Algorithms

3.3 SGD to avoid overfitting (Generalization Risk)

4. Mini-batch, Adaptive algorithms

5. Wednesday: python practical

6. Larger steps

83

Generalization gap: the overfitting problem ?

My true goal is to control R:
Py L4
Optimization: after t iterations of one method

A A - C
R(0) - R(6:) <

Statistics: with probability greater than 1 — §

N GRD 2
sup [R(6) — R(9)] < {z+ \/210g 2]
:IC))

84

SGD for the generalization risk: f =R
SGD: key assumption E[f/ (0, _1)|F,_1] = f(6,-1).

For the
R(0) = E, [£(Y, (0, ®(X)))]
» At step 0 < k , use a new point independent of
0k—1:

fk’(0k_1) = El(y ’ <0k—1’ (D(X)>)
» For 0 < k < n, Fy = o((xi, yi)i<i<k)-

E[f{(Ok-1)|Fk-1] = Eo[€ (yk; (Ok—1, ®(xx)))| Fk—1]
= E, [£(Y, (6k-1,P(X)))] = R'(Ok-1)

» Single pass through the data, Running-time = O(nd),

v

“Automatic” regularization.
85

SGD for the generalization risk: f =R

Xis Yi 1S

ERM minimization
several passes : 0 < k
Fi-measurable for any t

Gen. risk minimization
One pass 0 < k
JFi-measurable for

86

Convergence rate for f(6,) — f(6.),
objective f.

min R min R
SGD GD SAG SGD
coer0(3) 0(1) . o

k
Stgly-Cvx (0] (lk) O(e ") O (1 — (e A %)) lo) (i)

nk pk

87

Convergence rate for f(6,) — f(6.),
objective f.

min R
SGD GD
Convex O <ﬁ) (0] (%)
Stgly-Cvx O (ﬁ)

SAG

0<k

O(e#%) 01— (un %))k

min R
SGD

o (.,

0 (i)

0<k<n

87

Take home
» In the context of large scale learning, we have to use SGD
» It is a stochastic algorithm
» Typically, steps sizes have to decay to 0

» For smooth problems, larger steps are allowed and adapts to
strong convexity.

Moreover: “one epoch = one pass over my observations”

Take home

» It is possible to use variance reduced algorithms to have a
faster convergence rate after many epochs.

» During the first epoch, we optimize the (unknown!)
generalization error!!

» powerful remark
> e.g., streaming setting.

Next Goals

1. Even larger steps ?
2. Mini-batch algorithms.
3. Adaptive algorithms.

89

90

Summary of the first two days

1. Large Scale Learning framework

2. Optimization
» First order methods: speed of convergence of GD
» SGD vs GD: SGD is fast & low precision

= &=

» Variance reduced SGD
» Generalization with SGD: we can optimize an unknown
function!

____stochastic

log(excess cost)

deterministic

time

91

Convergence rate f(0;) — f(6.),

min R
SGD GD SAG

Convex O <ﬁ) (0] (%)

Stgly-Cvx o(ﬁ) O(e—"*) 0(1—(;1,/\%))k

0<k

objective f.

min R
SGD

o[,

0 (i)

0<k<n

92

Today

1. Mini-batch algorithms
2. Adaptive algorithms

3. (Markov chain point of view)

93

Outline

4. Mini-batch, Adaptive algorithms
4.1 Mini-batch Algotirhms
4.2 Adaptive algorithms

See the very good post:
http://ruder.io/optimizing-gradient-descent/

9%

http://ruder.io/optimizing-gradient-descent/

Minibatch SGD for ERM: f = R

Loss for a single pair of observations, for any j < n:
fi(0) := £(y;, (6, ®(x;))).

R(9) = L élayt, (0, 0(x))).

SGD:
» At each step t € N*, sample I; ~ U{1,...n}:

0y =0;_1 — "thli(et—l)

Mini-batch SGD: choose m < n
» At each step t € N*, sample (l¢,...,Im:t) ~ U{1,

1 m
0t =60t 1 —ve— Z f}:t(et—l)
m i=1 ’

...n}®m;

95

Minibatch SGD : behavior

4,

Gradient is still stochastic (if m < n)

. Level of noise in the gradient is reduced: formally

1 Z 1
var <m ; f,:,t(at_1> = — var (f,i(&-l))

Cost/time per iteration?
> : O(md) per iteration
» In practice, distribution of the computation over many
cores can reduce the par iteration to less than
O(md).

Convergence ?

We denote o2 = var (f,i(et_l))

96

Convergence of SGD for smooth f

SGD:

1. What matters? For smooth functions - the Variance of
stochastic gradient. Bound ~:

160 — 6.

Yt

—0.112 .
2. “Optimal” step size: v; = 1/ ”0*’0726;*”: gives a rate

_ [52|60 — 6,2
£(8:) — F(8,) < 2 "”"t”

Step size has always to be < % otherwise SGD diverges.

F(5) — F(6.) < +evar (F(6c1)).

97

Convergence of mini-batch SGD for f
SGD:

> to keep same total complexity: t < t

» Reduced variance : 02 «+ o2

1. For smooth functions - the Variance of stochastic
gradient. Bound ~:

160 = 6.1 veo?

f(8:)m) — F(8:) <
Vet

. ” . —Ux 2 —Ux 2
2. “Optimal” step size: ~; = 1/% = m\/”a"aizet“:

gives a rate

_ [52]160 — 6,2
£(8,) — f(6,) < 2 ””“t”

Step size has always to be < % otherwise SGD diverges.

98

Convergence of mini-batch SGD for f

SGD —Mini-batch SGD
Steps C = O(td) t i3
Gradient Variance o2 a?
Optimal step %7’:2 c"\ﬂ/’;z A2L—11

Global rate \/ "2”9"7:9*”2

1. Same Global convergence rate
2. If mini-batch size starts being too large, saturation because of
the upper bound on the step size

3. Reasonable (n-minibatch = GD !)
4. In practice, used a lot because

99

Convergence of SGD for smooth non-smooth f

SGD:

1. What matters? For non-smooth functions - the upper
bound B? on stochastic gradient. Bound ~:

- 9 _0* 2
f(8;) — F(6,) < 1180 — 6.7
et

Mini-batch SGD:
2

supE < sup E|| £ (8:-1)|1?

1 m
S (8e)
m * ’

i=1

1. Same bound for same number of iterations

2. Higher cost par iteration

Using mini-batch is a bad idea.

+ e sup E|| £ (6:—1) |-

100

Convergence of minibatch SAG

In variance reduced method:
1. The variance is already reduced by the method itself
2. No need to use mini-batch

101

Take home
Mini-batch gradient descent:

1. Simple algorithm derived for SGD using a small
“batch” of examples
2. Reduces the variance of the random gradients

3. Helps when

» 1. Function is smooth, &
» 2. m not too large (Saturation) &
» 3. Time < Complexity

4. Does not help much for non smooth function or
Variance reduced methods.

Remark: all these insights come from theory and proofs.

Take home
Read papers or ask people with theoretical knowledge :)

102

Outline

4. Mini-batch, Adaptive algorithms
4.1 Mini-batch Algotirhms
4.2 Adaptive algorithms

See the very good post:
http://ruder.io/optimizing-gradient-descent/

103

http://ruder.io/optimizing-gradient-descent/

Challenge number 1: Acceleration

1. Earlier we saw that we could accelerate GD getting a
better rate
2. Similar process for SGD.

» Might cause instability or divergence
» Not fully understood theoretically
» Used a lot in practice

104

Momentum algorithml |

Aim: related to Nesterov Acceleration but older (1964)

Particularly useful for stochastic gradient descent.

https://distill.pub/2017/momentum/

. AN

ALL T
TAKESIS
AUTTLE
MOMENTWAN

105

https://distill.pub/2017/momentum/

Momentum algorithm 11|

Polyak’s momentum algorithm - Heavy ball method

1. starting point (0,
2. learning rate v > 0,
3. momentum 3 € [0, 1] (default 3 = 0.9).

Iterate

Ot1 =60 — ’YtVf(gt)

Return last 6(t+1),

106

Challenge number 2: Adaptation

1. Same learning rate for all coordinates. Could we use a
different learning rate for all coordinates ?
e, forl <j<d:

(0:)j = (0c—1); — Ye,i(f (0:-1));

107

Intuition: Gradient descent
» Quadratic function: F(0) = 0THO — c' @
» 1 and L are smallest largest eigenvalues of H
» Global optimum 6, = H~ !¢ (or H'c) such that HO, = ¢

v

Gradient descent with learning rate ~:

0 — 0, = (I —~H)(0:—1 —0,) = (I —~H) (6p — 6.)

v

If H = Diag(a,...,ag4), a1 =L, ag=p

v

For coordinate j, we have:
(6:); = (1 —vay)" (B0 — 04);

» 3 step size cannot be larger than 2/a;1 = 2/L otherwise first
coefficient | (1 — va1) | > 1 and this coordinate diverges.

v

% Rate is dictated by the smallest coordinate: rate
(1 - ag/01)" = (1 —p/L)

108

Notations

(8¢)j = (0e—1)j — Ve k(£ (0-1));

1. g = f,i(Gt_l) stochastic gradient at time t

(0e)j = (0t-1)j — Ye,j(8e)j

2. Avoiding double subscript:

(6); = (61 — ¥} (g");

t _ pt—1 _ _t_t
;=96 —8

109

ADAGRAD

t t—1 t .t
Gj = Hj - g
Special choice for step-sizes:

t _ pt—1 y t
=0~ 4
ADAptive GRADient algorithm
1. starting point 09,

2. learning rate v > 0, (default value of 0.01)
3. momentum 3, constant ¢.

For t =1,2,... until convergence do for 1 < j < d

o+l ot — T t
J

g.
J)
VEioa(g)? +e

Return last 6t

110

ADAGRAD
Update equation for ADAGRAD 0;“ — 0 — ——L—¢g

/Z:-=1(gjf)2+€gj

» Different dynamic rates on each coordinate

» Dynamic rates grow as the inverse of the gradient magnitude:

Pros:

1. Large/small gradients have small/large learning rates
2. The dynamic over each dimension tends to be of the same order

3. Interesting for NN in which gradient at different layers can be of
different order of magnitude.

» Accumulation of gradients in the denominator act as a
decreasing learning rate.
Cons:

» Very sensitive to initial condition: large initial gradients lead to
small learning rates.

» Can be fought by increasing the learning rate thus making the
algorithm sensitive to the choice of the learning rate.

111

Improving upon AdaGrad: AdaDelta

Idea : restricts the window of accumulated past gradients to
some fixed size.

1. starting point 0°, constant ¢,

2. : decay rate p > 0
Update:
~f
ottl =gt — 4 gt
J J Cj,t +€g:l

Before: Cj; = Ziﬂ(gf)z
Now: Cj.= pCjt_1 +(1 - P)(gjt)z

112

Adadelta

Interpretation:
» Less sensitivity to initial parameters than Adagrad.

> 'yjtis chosen to by size the previous step in memory and
enforce larger steps along directions in which large steps
were made.

» The denominator keeps the size of the previous
gradients in memory and acts as a decreasing learning
rate. Weights are lower than in Adagrad due to the
decay rate p.

113

RMSprop

Unpublished methode, from the online course of Geoff
Hinton

http://www.cs.toronto.edu/~tijmen/csc321/slides/
lecture_slides_lec6.pdf

1. starting point 0°, constant ¢,
2. decay rate p > 0
3. step size v (default = 0.001)

Update:
t+1 t t
Gj — ej I y——

VGt e

114

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Animation of Stochastic Gradient algorithms

W= s
Momentum
NAG
Adagrad
Adadelta
- Rmsprop

SGD
Momentum
- NAG

—— Adagrad
Adadelta
Rmsprop

~
A

B

TR

R S
RROOONNN
RSN

|
A "
S TRTRTRTKIN

KL,
L

°
R
RO
R
R

ol
XA
BB
e
S5 W

%
X

S5

Tas : Credits to Alec Radford for the
animations.

Wednesday

Goal: Code:
1. gradient descent (GD)
2. accelerated gradient descent (AGD)
3. coordinate gradient descent (CD)
4. stochastic gradient descent (SGD)
5. stochastic variance reduced gradient descent (SAG)
6. Adagrad

for the linear regression and logistic regression models, with
the ridge penalization.

—— Ll inn
0 10 20 30 40 50
Number of passes on the data

116

Wednesday

1. Who knows python ?
2. Who's using anaconda?

117

1. Motivation: Large scale learning and Optimization

2. Classical rates for deterministic methods

3. Supervised learning setting - Stochastic Gradient
Algorithms

3.1 SGD vs GD

3.2 Variance reduced SGD

3.3 SGD to avoid overfitting (Generalization Risk)

4. Mini-batch, Adaptive algorithms
4.1 Mini-batch Algotirhms

4.2 Adaptive algorithms
ADAGrad Optimizer
AdaDelta Optimizer
RMSprop optimizer

5. Wednesday: python practical

6. Larger steps

118

Least Mean Squares: rate independent of u
Least-squares: R(0) = 1E[(Y — (®(X), 6))?]

Analysis for averaging and constant step-size v = 1/(4R?)
()
» Assume ||®(x,)|| < r and |y, — (P(xn),0)| < o

» No assumption regarding lowest eigenvalues of the

Hessian
- 6o — 6.2
ER(0n) — R(6:) < + 1180 — 041
yn
» Matches (Tsybakov, 2003).

» Optimal rate with “large” step sizes

119

Take home
» SGD can be used to minimize the true risk directly
>
» No regularization needed, only one pass

» For Least Squares, with constant step, optimal rate .

120

Beyond least squares. Logistic regression
min Elog (1 + exp(—Y (9, ¢(X))))

gemd
—
*
)
g
|
s 25
o
g0 35
=)
-4 {—1/2R?
—1/2R*\/n
451 ‘ ‘

1 2 3 4 5 6
log1o(n)

Logistic regression. Final iterate (dashed), and averaged recursion
(plain).

Motivation 2/ 2. Difference between quadratic and

logistic loss

Eml)
1 2 3 4 5 6
Logistic Regression Least-Squares Regression
- - 1
ER(E) - R(0.) = 0() ER(E) - R(0.) =0 (
n

with v = 1/(4R?) with v = 1/(4R?)

122

SGD: an homogeneous Markov chain

Consider a L—smooth and function R.

SGD with a step-size v > 0 is an

01 =0, —v[R'(6)) + ek+1(6,)]

» satisfies Markov property

» is homogeneous, for v constant, (ex)ken i.i.d.
Also assume:

» R, = R’ + ek+1 is almost surely L-co-coercive.
» Bounded moments

E[llex(8:)]1"] < oo.

123

Stochastic gradient descent as a Markov Chain:
Analysis framework'

» Existence of a limit distribution 7., and linear convergence to
this distribution:

» Convergence of second order moments of the chain,

» Behavior under the limit distribution (v — 0):

% Provable convergence improvement with extrapolation tricks.

Dieuleveut, Durmus, Bach [2017], published in AOS 19

124

Existence of a limit distribution v — 0

Goal:

| Theorem
For any v < L1, the chain (6})k>0
. In addition for all 8y € RY, k € N:

W3], m,) < (1= 2u9(1 = yL)* [1160 = 9|12 dmy(9)

: distance between probability measures.

125

Behavior under limit distribution.
Ergodic theorem: 0, — Er_[0] =: 6. Where is

0y ~ m, then 6; ~ ..

67 = 03 —~[R'(63) + =1(67))] -

Er, [R'(0)] =0

In the (linear gradients) XE,_ [0 — 6,] = 0:

126

Constant learning rate SGD: convergence in the
guadratic case

127

Constant learning rate SGD: convergence in the
guadratic case

127

Constant learning rate SGD: convergence in the
guadratic case

127

Constant learning rate SGD: convergence in the
guadratic case

127

Behavior under limit distribution.
Ergodic theorem: 6, — Er [0] =: 6.. Where is
Oy ~ Trys then 61 ~ Ty

67 = 03 — v [R'(6) + 1(63)] -

Er, [R'(0)] =0
In the (linear gradients) XE,_ [0 — 6,] = 0: !

In the general case, Taylor expansion of R, and same reasoning on
higher moments of the chain leads to

0, — 0, ~ 772"(0*)_171"'(0*)([R"(B*) ® 1418 R"(6.)] _IEE[E(Q*)®2])

128

Constant learning rate SGD: convergence in the
non-quadratic case

Constant learning rate SGD: convergence in the
non-quadratic case

Constant learning rate SGD: convergence in the
non-quadratic case

129

Constant learning rate SGD: convergence in the
non-quadratic case

129

Richardson extrapolation

130

Richardson extrapolation

130

Richardson extrapolation

0. + A

—0, +27A

130

Richardson extrapolation

130

Richardson extrapolation

130

Richardson extrapolation

Recovering convergence closer to 6, by Richardson
extrapolation 207 — 627

130

Experiments:

smaller dimension

~ L R R R A L NV VAU A
\\ A L O R T N AR]

—1/R?
—1/2R?
—1/2R*\/n
—Richardson
—Online-Newton

— -1
5
> 2
&
I
—_ '3’
S
& 4
=
=11]
L2 5t
-6t
0

Synthetic data,

2 4 6
logo(n)

logistic regression, n = 8.10°

131

Experiments: Double Richardson

-3+ _1/R2
—1/2R?

41 —1/4R?
—1/2R*\/n

logyo [R(6) — R(6+)]

-5 [|—Richardson
Richardson 3~
-6 -|—Online-Newton

0 2 4 6
log10(n)
Synthetic data, logistic regression, n = 8.10°

“Richardson 3~”: estimator built using Richardson on 3
different sequences:

Conclusion MC

Take home

>

Asymptotic sometimes matter less than first iterations:
consider large step size.

Constant step size SGD is a homogeneous Markov chain.

Difference between LS and general smooth loss is intuitive.

Convergence in terms of Wasserstein distance.

Decomposition as three sources of error: variance, initial
conditions, and “drift”

Detailed analysis of the position of the limit point: the
direction does not depend on ~ at first order —>
Extrapolation tricks can help.

Further references

Many stochastic algorithms not covered in this talk
(coordinate descent, online Newton, composite optimization,
non convex learning) ...

» Good introduction: Francis’s lecture notes at Orsay

» Book:
Convex Optimization: Algorithms and Complexity,
Sébastien Bubeck

http://www.di.ens.fr/~fbach/orsay2017.html
https://arxiv.org/pdf/1405.4980v2.pdf

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202.

Bottou, L. and Bousquet, O. (2008). The tradeoffs of large scale learning. In Adv.
NIPS.

Boyd, S. and Vandenberghe, L. (2003). Convex Optimization. Cambridge
University Press.

Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231-357.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014a). Saga: A fast incremental
gradient method with support for non-strongly convex composite objectives. In
Advances in Neural Information Processing Systems, pages 1646-1654.

Defazio, A., Domke, J., and Caetano, T. (2014b). Finito: A faster, permutable
incremental gradient method for big data problems. In Proceedings of the 31st
international conference on machine learning (ICML-14), pages 1125-1133.

Johnson, R. and Zhang, T. (2013). Accelerating stochastic gradient descent using
predictive variance reduction. In Advances in neural information processing
systems, pages 315-323.

Konetny, J. and Richtarik, P. (2013). Semi-stochastic gradient descent methods.
arXiv preprint arXiv:1312.1666.

Nesterov, Y. (1983). A method of solving a convex programming problem with
convergence rate o (1/k2). In Soviet Mathematics Doklady, volume 27, pages
372-376.

Nesterov, Y. (2004). Introductory lectures on convex optimization: A basic course.
Springer.

134

Nesterov, Y. (2007). Gradient methods for minimizing composite objective
function. Center for Operations Research and Econometrics (CORE), Catholic
University of Louvain, Tech. Rep, 76.

Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of stochastic approximation
by averaging. SIAM J. Control Optim., 30(4):838-855.

Robbins, H. and Monro, S. (1951). A stochastic approxiation method. The Annals
of mathematical Statistics, 22(3):400-407.

Ruppert, D. (1988). Efficient estimations from a slowly convergent Robbins-Monro
process. Technical report, Cornell University Operations Research and Industrial
Engineering.

Schmidt, M., Le Roux, N., and Bach, F. (2011). Convergence rates for inexact
proximal-gradient method. In Adv. NIPS.

Schmidt, M., Le Roux, N., and Bach, F. (2013). Minimizing finite sums with the
stochastic average gradient. Mathematical Programming, 162(1-2):83-112.
Shor, N. Z., Kiwiel, K. C., and Ruszcay?ski, A. (1985). Minimization methods for

non-differentiable functions. Springer-Verlag New York, Inc.

Tsybakov, A. B. (2003). Optimal rates of aggregation. In Proceedings of the
Annual Conference on Computational Learning Theory.

134

	Motivation: Large scale learning and Optimization
	Classical rates for deterministic methods
	Supervised learning setting - Stochastic Gradient Algorithms
	SGD vs GD
	Variance reduced SGD
	SGD to avoid overfitting (Generalization Risk)

	Mini-batch, Adaptive algorithms
	Mini-batch Algotirhms
	Adaptive algorithms

	Wednesday: python practical
	Larger steps

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	2.30:
	2.31:
	2.32:
	2.33:
	2.34:
	2.35:
	2.36:
	2.37:
	2.38:
	2.39:
	2.40:
	2.41:
	2.42:
	2.43:
	2.44:
	2.45:
	2.46:
	2.47:
	2.48:
	2.49:
	2.50:
	2.51:
	2.52:
	2.53:
	2.54:
	2.55:
	2.56:
	2.57:
	2.58:
	2.59:
	2.60:
	2.61:
	2.62:
	2.63:
	2.64:
	2.65:
	2.66:
	2.67:
	2.68:
	2.69:
	2.70:
	2.71:
	2.72:
	2.73:
	2.74:
	2.75:
	2.76:
	2.77:
	2.78:
	2.79:
	2.80:
	2.81:
	2.82:
	2.83:
	2.84:
	2.85:
	2.86:
	2.87:
	2.88:
	2.89:
	2.90:
	2.91:
	2.92:
	2.93:
	2.94:
	2.95:
	2.96:
	2.97:
	2.98:
	2.99:
	2.100:
	2.101:
	2.102:
	2.103:
	2.104:
	2.105:
	2.106:
	2.107:
	2.108:
	2.109:
	2.110:
	2.111:
	2.112:
	2.113:
	2.114:
	2.115:
	2.116:
	2.117:
	2.118:
	2.119:
	2.120:
	2.121:
	2.122:
	2.123:
	2.124:
	2.125:
	2.126:
	2.127:
	2.128:
	2.129:
	2.130:
	2.131:
	2.132:
	2.133:
	2.134:
	2.135:
	2.136:
	2.137:
	2.138:
	2.139:
	2.140:
	2.141:
	2.142:
	2.143:
	2.144:
	2.145:
	2.146:
	2.147:
	2.148:
	2.149:
	2.150:
	2.151:
	2.152:
	2.153:
	2.154:
	2.155:
	2.156:
	2.157:
	2.158:
	2.159:
	2.160:
	2.161:
	2.162:
	2.163:
	2.164:
	2.165:
	2.166:
	2.167:
	2.168:
	2.169:
	2.170:
	2.171:
	2.172:
	2.173:
	2.174:
	2.175:
	2.176:
	2.177:
	2.178:
	2.179:
	2.180:
	2.181:
	2.182:
	2.183:
	2.184:
	2.185:
	2.186:
	2.187:
	2.188:
	2.189:
	2.190:
	2.191:
	2.192:
	2.193:
	2.194:
	2.195:
	2.196:
	2.197:
	anm2:
	3.0:
	3.1:
	3.2:
	3.3:
	3.4:
	3.5:
	3.6:
	3.7:
	3.8:
	3.9:
	3.10:
	3.11:
	3.12:
	3.13:
	3.14:
	3.15:
	3.16:
	3.17:
	3.18:
	3.19:
	3.20:
	3.21:
	3.22:
	3.23:
	3.24:
	3.25:
	3.26:
	3.27:
	3.28:
	3.29:
	3.30:
	3.31:
	3.32:
	3.33:
	3.34:
	3.35:
	3.36:
	3.37:
	3.38:
	3.39:
	3.40:
	3.41:
	3.42:
	3.43:
	3.44:
	3.45:
	3.46:
	3.47:
	3.48:
	3.49:
	3.50:
	3.51:
	3.52:
	3.53:
	3.54:
	3.55:
	3.56:
	3.57:
	3.58:
	3.59:
	3.60:
	3.61:
	3.62:
	3.63:
	3.64:
	3.65:
	3.66:
	3.67:
	3.68:
	3.69:
	3.70:
	3.71:
	3.72:
	3.73:
	3.74:
	3.75:
	3.76:
	3.77:
	3.78:
	3.79:
	3.80:
	3.81:
	3.82:
	3.83:
	3.84:
	3.85:
	3.86:
	3.87:
	3.88:
	3.89:
	3.90:
	3.91:
	3.92:
	3.93:
	3.94:
	3.95:
	3.96:
	3.97:
	3.98:
	3.99:
	3.100:
	3.101:
	3.102:
	3.103:
	3.104:
	3.105:
	3.106:
	3.107:
	3.108:
	3.109:
	3.110:
	3.111:
	3.112:
	3.113:
	3.114:
	3.115:
	3.116:
	3.117:
	3.118:
	3.119:
	3.120:
	3.121:
	3.122:
	3.123:
	3.124:
	3.125:
	3.126:
	3.127:
	3.128:
	3.129:
	3.130:
	3.131:
	3.132:
	3.133:
	3.134:
	3.135:
	3.136:
	3.137:
	3.138:
	3.139:
	3.140:
	3.141:
	3.142:
	3.143:
	3.144:
	3.145:
	3.146:
	3.147:
	3.148:
	3.149:
	3.150:
	3.151:
	3.152:
	3.153:
	3.154:
	3.155:
	3.156:
	3.157:
	3.158:
	3.159:
	3.160:
	3.161:
	3.162:
	3.163:
	3.164:
	3.165:
	3.166:
	3.167:
	3.168:
	3.169:
	3.170:
	3.171:
	3.172:
	3.173:
	3.174:
	3.175:
	3.176:
	3.177:
	3.178:
	3.179:
	3.180:
	3.181:
	3.182:
	3.183:
	3.184:
	3.185:
	3.186:
	3.187:
	3.188:
	3.189:
	3.190:
	3.191:
	3.192:
	3.193:
	3.194:
	3.195:
	3.196:
	3.197:
	anm3:

