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Compression - multiple directions

Compression is a well identified problem in Federated Learning. [KMA+19].
Multiple very active lines of research:

1 Proposing compression operators.
QSGD, Nu-QSGD,
Atomo, Power-SGD, HSQ etc. .

2 Studying the impact of the properties of algorithms on convergence:
Biased vs Unbiased
Independent or not
Bounded variance, relatively bounded variance,
Adaptation

3 Adapting algorithms with compression.
Even if we communicate at each step, compression can prevent the algorithm from
converging.

Impact of Bias in the compression operator. Error-Feedback line of work
[SCJ18, SK19]
Impact of Heterogeneity. Memory line of work [MGTR19].
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Outline

1 Part 1: Preserved iterate for double compression in distributed-heterogeneous
framework.
# Adapting algorithms with compression
Joint work with Constantin Philippenko

2 Another time: DoStoVoQ # Proposing compression operators, Studying the
impact of the properties of algorithms on convergence,
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Introduction

Bi-directional compression

To limit the number of bits exchanged, we compress each signal before transmitting it.
We introduce compression operators Cdwn and Cup.

Gradient B
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Update
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Aggregation & 

Global Update
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Figure: Bidirectional compression. 1) Uplink: compress the gradients. 2) Downlink: compress the
update.
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Introduction

1. Bi-directional compression

We introduce compression operators Cdwn and Cup.

Assumption 1

For dir ∈ {up, dwn}, there exists a constant ωdir ∈ R∗ s.t. Cdir satisfies. for all ∆ in Rd :

E[Cdir(∆)] = ∆ and E
[
‖Cdir(∆)−∆‖2

]
≤ ωdir ‖∆‖2 .

Several well-known compression operator: quantization, sparsification, etc. .
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Introduction

Do we need double compression?

Objectives of compression:

1 Accelerate the learning process,

2 Limit the number of communicated bits

In terms of speed, double compression depends on how the exchange is performed:

If broadcast (1 to N) is much faster than
upload (N to 1) then no need for double
compression.

if we consider mobile devices (using for
example fast Internet connexion), only a small
difference between upload and download speed.

In terms of communicated bits: upload and download are symmetric.
Example: no one wants to download a large update everyday on its phone!
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Introduction

Double compression: first attempts and related work

⇒ The update equation becomes: wk = wk−1 − γCdwn

(
1
N

∑N
i=1 Cup(g i

k)
)

Table: Features of the main existing algorithms performing compression. e ik (resp. Ek ) denotes

the use of error-feedback at uplink (resp. downlink). hik (resp. Hk ) denotes the use of a memory
at uplink (resp. downlink). Note that Dist-EF-SGD is identical to Double-Squeeze but has been
developed simultaneously and independently.

Compr. e ik hi
k Ek Hk Rand. update point

Qsgd [AGL+17] one-way
ECQ-sgd [WHHZ18] one-way 3

Diana [MGTR19] one-way 3

Dore [LLTY20] two-way 3 3 degraded
Double-Squeeze [TYL+19], Dist-EF-SGD [ZHK19] two-way 3 3 degraded
Artemis [PD20] two-way 3 degraded
Doubly compressed SGD [GKMR20] two-way 3 degraded

MCM two-way 3 3 non-degraded
Rand-MCM two-way 3 3 3 non-degraded

Precise comparison of convergence results will be given afterwards.
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Introduction

Expected results for Double compression

1 The level of noise in the gradient increases,

2 Proportionally to ωdwn

3 In fact, we can prove that the limit Variance
indeed provably increases [PD20].
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Introduction

2. The memory mechanism

Motivation: The distribution of the observations on worker i and j are often different.

Assumption 2

For all i ∈ [N]:
‖∇Fi (w∗)‖2 ≤ B2

Challenge: Compression of a quantity that goes to 0 !

Solution: Compute (on the server and the worker independently) a “memory” hi
k s.t.

hi
k →k→∞ ∇Fi (w∗).

⇒ The update equation becomes:

wk = wk−1 − γCdwn

(
1

N

N∑
i=1

Cup(g i
k − hi

k) + hi
k

)
hi
k+1 = hi

k + αCup(g i
k − hi

k)

Crucial role of (uplink)-memory on heterogeneous data. [MGTR19, PD20].
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Introduction

The memory mechanism

Expected improvement with uplink memory
in the heterogeneous framework.

Figure
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Introduction

The non-degraded update

Classical double compression (e.g., Artemis)- compress the update sent back to the
workers and use it to update the model.

wk = wk−1 − γCdwn

(
1

N

N∑
i=1

Cup(g i
k(wk−1))

)

The gradient is taken at the point wk held by the central server.

MCM - preserve the model on the central server.

wk = wk−1 − γ

(
1

N

N∑
i=1

Cup(g i
k(ŵk−1))

)

ŵk = wk−1 − γCdwn

(
1

N

N∑
i=1

Cup(g i
k(ŵk−1))

)
(1)

The gradient is taken at a random point ŵk s.t. E[ŵk |wk ] = wk

Update (1) is not feasible in practice. We refer to this algorithm as a Ghost algorithm.
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k(ŵk−1))

)
(1)

The gradient is taken at a random point ŵk s.t. E[ŵk |wk ] = wk
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k(ŵk−1))

)
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Introduction

Ghost algorithm

What do we hope for?

Outline towards proof of convergence:

1 Assumptions

2 Convergence of Ghost

3 Sketch of proof

4 Adaptation into a practical algorithm

5 Extensions
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Theoretical results - Ghost

Assumptions

We make standard assumptions on F : Rd → R.

Assumption 3 (Smoothness)

F is twice continuously differentiable, and is L-smooth, that is for all vectors w1,w2 in
Rd : ‖∇F (w1)−∇F (w2)‖ ≤ L‖w1 − w2‖.

Assumption 4 (Convexity)

F is convex, that is for all vectors w1,w2 in Rd : F (w2) ≥ F (w1) + (w2 − w1)T∇F (w1) .

Assumption 5 (Noise over stochastic gradients computation)

The noise over stochastic gradients for a mini-batch of size b, is uniformly bounded:
there exists a constant σ ∈ R+, such that for all k in N, for all i in J1,NK and for all w
in Rd we have: E [‖gi

k(w)−∇F (w)‖2] ≤ σ2/b.
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Theoretical results - Ghost

Convergence of Ghost

Definition 1 (Ghost algorithm)

Recall that the Ghost algorithm is defined as follows, for k ∈ N, for all i ∈ J1,NK we
have:

wk = wk−1 − γ

(
1

N

N∑
i=1

Cup(g i
k(ŵk−1))

)

ŵk = wk−1 − γCdwn

(
1

N

N∑
i=1

Cup(g i
k(ŵk−1))

)
(2)

Proposition 1

Consider the Ghost update in eq. (1), under Assumptions 1, 3 and 5, for all k in N with
the convention ∇F (w−1) = 0:

E
[
‖wk − ŵk‖2

∣∣∣ ŵk−1

]
≤ γ2ωdwn

(
1 +

ωup

N

)
‖∇F (ŵk−1)‖2 +

γ2ωdwn(1 + ωup)σ2

Nb
.
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Theoretical results - Ghost

Sketch of Proof

Proof.

The proof of Proposition 1 is straightforward using 1. Let k in N, by 1 we have:

‖ŵk − wk‖2 =

∥∥∥∥∥
(
wk−1 − γCdwn

(
1

N

N∑
i=1

ĝi
k(ŵk−1)

))
−

(
wk−1 − γ

1

N

N∑
i=1

ĝi
k(ŵk−1)

)∥∥∥∥∥
2

= γ2

∥∥∥∥∥Cdwn

(
1

N

N∑
i=1

ĝi
k(ŵk−1)

)
− 1

N

N∑
i=1

ĝi
k(ŵk−1)

∥∥∥∥∥
2

.

Taking expectation w.r.t. down compression, as 1
N

∑N
i=1 ĝi

k(ŵk−1) is wk -measurable:

E
[
‖wk − ŵk‖2

∣∣∣ wk

]
= γ2ωdwnE

∥∥∥∥∥ 1

N

N∑
i=1

ĝi
k(ŵk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk

 = γ2ωdwn ‖g̃k‖
2 ,

then we do a Bias Variance decomposition.

# the variance of the local model is bounded by an affine function of the squared norm
of the previous stochastic gradients ∇F (ŵk−1).
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Theoretical results - Ghost

Sketch of proof, 2

Then, classical perturbed iterate approach [MPP+16],

E ‖wk − w∗‖2 = E ‖wk−1 − w∗‖2 − 2γE 〈∇F (ŵk−1) | wk−1 − w∗〉+ γ2E
[
‖ĝk(ŵk−1)‖2

]
.

Moreover,

−2γE 〈∇F (ŵk−1) | wk−1 − w∗〉 = −2γE 〈∇F (ŵk−1) | ŵk−1 − w∗〉
+ 2γE 〈∇F (ŵk−1)−∇F (wk−1) | wk−1 − ŵk−1〉 .

as E [ŵk−1 | wk−1] = wk−1.

1 −2γE 〈∇F (ŵk−1) | ŵk−1 − w∗〉 “strong contraction”, upper bounded by

−2γ(µ ‖ŵk−1 − w∗‖2 + F (ŵk−1)− F∗)

−2γ ‖∇F (ŵk−1)‖2 /L

2 2γE 〈∇F (ŵk−1)−∇F (wk−1) | wk−1 − ŵk−1〉 positive residual term.

Theorem 2 (Contraction for Ghost, convex case)

E‖wk − w∗‖2 ≤ E ‖wk−1 − w∗‖2 − γE(F (wk−1)− F∗)−
γ

2L
E
[
‖∇F (ŵk−1)‖2

]
+ 2γ3ωdwnL

(
1 +

ωup

N

)
E ‖∇F (ŵk−2)‖2 + γ2 (1 + ωup)σ2

Nb
(1 + 2γLωdwn) .
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−2γ(µ ‖ŵk−1 − w∗‖2 + F (ŵk−1)− F∗)
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Theoretical results - Ghost

Contraction for Ghost

Theorem 3 (Contraction for Ghost, convex case)

Under Assumptions 1 and 3 to 5, with µ = 0, if γL(1 + ωup/N) ≤ 1
2
.

E‖wk − w∗‖2 ≤ E ‖wk−1 − w∗‖2 − γE(F (wk−1)− F∗)−
γ

2L
E
[
‖∇F (ŵk−1)‖2

]
+ 2γ3ωdwnL

(
1 +

ωup

N

)
E ‖∇F (ŵk−2)‖2 + γ2 (1 + ωup)σ2

Nb
(1 + 2γLωdwn) .

We can make the following observations:

1 At step k, the residual can be upper bounded by a constant times squared norm of
the gradient at point ŵk−2.

2 if 2γ3ωdwnL(1 + ωup/N) ≤ γ/(2L), then these terms eventually cancel out.

3 This is equivalent to 2γL
√
ωdwn (1 + ωup/N) ≤ 1. It is natural to chose

γ ≤ 1/(2Lmax(1 + ωup/N, 1 + ωdwn)).

Line of proof is the same for strongly convex, but different for non-convex.
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Theoretical results - Ghost

Noise level, Ghost

Theorem 4 (Contraction for Ghost, convex case)

Under Assumptions 1 and 3 to 5, with µ = 0, if γL(1 + ωup/N) ≤ 1
2
.

E‖wk − w∗‖2 ≤ E ‖wk−1 − w∗‖2 − γE(F (wk−1)− F∗)−
γ

2L
E
[
‖∇F (ŵk−1)‖2

]
+ 2γ3ωdwnL

(
1 +

ωup

N

)
E ‖∇F (ŵk−2)‖2 + γ2 (1 + ωup)σ2

Nb
(1 + 2γLωdwn).

For Ghost algorithm

γ2 (1 + ωup)σ2

Nb
(1 + 2γLωdwn).

For classical double compression

γ2ωdwn(1 + ωup)σ2

Nb
.

For unidirectional-compression

γ2 (1 + ωup)σ2

Nb
.
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Theoretical results - MCM

A practical algorithm?

Summary:

1 For a hypothetical iterate, we can obtain convergence in the “preserved central
iterate” framework

2 The limit Variance is nearly of the same order as with simple compression.
3 This algorithm cannot be implemented in practice!

New attempts:

Ghost

wk = wk−1 − γ
(

1

N

N∑
i=1

Cup (g i
k (ŵk−1))

)

ŵk = wk−1 − γCdwn

(
1

N

N∑
i=1

Cup (g i
k (ŵk−1))

)
Update compression

wk = wk−1 − γ
(

1

N

N∑
i=1

Cup (g i
k (ŵk−1))

)

ŵk = ŵk−1 − γCdwn

(
1

N

N∑
i=1

Cup (g i
k (ŵk−1))

)

Model compression (αdwn = 0)

wk = wk−1 − γ
(

1

N

N∑
i=1

Cup (g i
k (ŵk−1))

)
ŵk = Cdwn (wk )

Model difference compression (αdwn = 1)

wk = wk−1 − γ
(

1

N

N∑
i=1

Cup (g i
k (ŵk−1))

)
ŵk = ŵk−1 − γCdwn (wk − ŵk−1)

Aymeric DIEULEVEUT MCM 29/09/2021 20 / 39



Theoretical results - MCM

A practical algorithm?

Summary:

1 For a hypothetical iterate, we can obtain convergence in the “preserved central
iterate” framework

2 The limit Variance is nearly of the same order as with simple compression.
3 This algorithm cannot be implemented in practice!

New attempts:

Ghost

wk = wk−1 − γ
(

1

N

N∑
i=1

Cup (g i
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k (ŵk−1))

)
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ŵk = ŵk−1 − γCdwn (wk − ŵk−1)
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Theoretical results - MCM

First attempts - Variance of the local iterate is too high.

Update compression

Model difference compression (αdwn = 1)

Model compression (αdwn = 0)

MCM

0 150 300 450
Number of passes on data

(non-iid)
(N=20, d=82)

−2
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0

1

2

lo
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0(
F(
w
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−
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w
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) Artemis-ND

MCM - α= 0
MCM - α= 1
MCM
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w
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−
F(
w

* )
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MCM - α= 0
MCM - α= 1
MCM

Figure: Comparing MCM on two datasets with three other algorithms using a non-degraded
update, γ = 1/L.
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Theoretical results - MCM

The downlink memory mechanism for MCM

We introduce a downlink memory term (Hk)k∈N:

1 available on both workers and central server

2 the difference Ωk+1 between the model and this memory is compressed and
exchanged

3 the local model is reconstructed from this information


wk = wk−1 − γ

(
1
N

∑N
i=1 Cup(g i

k(ŵk−1))
)

Ωk+1 = wk+1 − Hk

ŵk+1 = Hk + Cdwn(Ωk+1)
Hk+1 = Hk + αdwnCdwn(Ωk+1).

(3)

Introducing this memory mechanism is crucial to control the variance of the local model
ŵk+1.
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Theoretical results - MCM

Control of the local Variance

Let Υk := ‖wk − Hk−1‖2.

Theorem 5

Consider the MCM update. Under Assumptions 1, 3 and 5 with µ = 0, if γ ≤ (8ωdwnL)−1

and αdwn ≤ (4ωdwn)−1, then for all k in N:

E [Υk ] ≤
(

1− αdwn

2

)
E [Υk−1] + 2γ2

(
1

αdwn
+
ωup

N

)
E
[
‖∇F (ŵk−1)‖2

]
+

2γ2σ2(1 + ωup)

Nb
.
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Theoretical results - MCM

Convergence of MCM - Convex

Let

1 Vk = E[‖wk − w∗‖2] + 32γLω2
dwnE[Υk ].

2 Φ(γ) := (1 + ωup)
(
1 + 64γLω2

dwn

)
.

Theorem 6 (Convergence of MCM, convex case)

Under Assumptions 1 and 3 to 5 with µ = 0. For all k > 0, for any γ ≤ γmax, we have,
for w̄k = 1

k

∑k−1
i=0 wi ,

γE [F (wk−1)− F (w∗)] ≤ Vk−1 − Vk +
γ2σ2Φ(γ)

Nb
=⇒ E[F (w̄k)− F∗] ≤

V0

γk
+
γσ2Φ(γ)

Nb
.

Consequently, for K in N large enough, a step-size γ =
√
‖w0−w∗‖2Nb

(1+ωup)σ2K
, we have,

E[F (w̄K )− F∗] ≤ 2

√
‖w0 − w∗‖2 (1 + ωup)σ2

NbK
+ O(K−1).

Moreover if σ2 = 0, we recover a faster convergence: E[F (w̄K )− F∗] = O(K−1).
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Theoretical results - MCM

Comparison to previous results: Limit Variance

Better limit variance ⇒ better rate.

For a constant γ,
1 the variance term is upper bounded by

γ2σ2

Nb
(1 + ωup)(1 + 64γLω2

dwn).

2 impact of the downlink compression is attenuated by a factor γ. As γ → 0 we get
close to Diana, i.e., without downlink compression [MGTR19, Eq. 16 in Th. 2]

γ2σ2

Nb
(1 + ωup).

3 This is much lower than the variance for previous algorithms using double
compression for

γ2σ2(1 + ωup)(1 + ωdwn)/N

for Dore, see Corollary 1 in Liu et al. [LLTY20] (who indicate
(1− ρ)−1 ≥ (1 + ωup/N)(1 + ωdwn)),
for Artemis see Table 2 and Th. 3 point 2 in [PD20],
for Gorbunov et al. [GKMR20], see Theorem I.1. (with
γD′1 ∝ γ2σ2(1 + ωup)(1 + ωdwn)/N).
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Theoretical results - MCM

Comparison to previous results: Limit learning rate

Limit learning rate: Maximal learning rate to ensure convergence.
γmax := min(γup

max, γ
dwn
max , γ

Υ
max), where

γup
max := (2L (1 + ωup/N))−1 corresponds to the classical constraint on the learning

rate in the unidirectional regime [see MGTR19, PD20],

γdwn
max := (8Lωdwn)−1 is a similar constraint coming from the downlink compression,

γΥ
max :=

(
8
√

2Lωdwn

√
8ωdwn + ωup/N

)−1
is a combined constraint that arises when

controlling the variance term Υ.2

Remarks

weaker constraints than in the “degraded” framework [LLTY20, PD20], in which

γDore
max ≤

(
8L(1 + ωdwn)(1 + ωup/N)

)−1
.

e.g., if ωup,dwn →∞ and ωdwn ' ωup ': ω, the maximal learning rate for MCM is
(Lω3/2)−1, while it is (Lω2)−1 in [LLTY20, PD20]. Our γmax is thus larger by a
factor

√
ω.

2The dependency in ω3/2 is similar to the one obtained by Horváth [HKM+19] in unidirectional compression
in the non-convex case (Theorem 4).
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Theoretical results - MCM

Convergence of MCM - Strongly Convex

We define L̃ such that γmax = (2L̃)−1.

Theorem 7 (Convergence of MCM in the homogeneous and strongly-convex case)

Under Assumptions 1 and 3 to 5 with µ > 0, for k in N, for any sequence (γk)k≥0 ≤ γmax:

Vk ≤ (1− γkµ)Vk−1 − γkE [F (ŵk−1)− F (w∗)] +
γ2
kσ

2Φ(γk)

Nb
,

where Φ(γk) = (1 + ωup)
(
1 + 64γkLω

2
dwn

)
. Consequently,

1 if σ2 = 0 (noiseless case), for γk ≡ γmax we recover a linear convergence rate:
E[‖wk − w∗‖2] ≤ (1− γmaxµ)kV0;

2 if σ2 > 0, taking for all K in N, γK = 2/(µ(K + 1) + L̃), for the weighted
Polyak-Ruppert average w̄K =

∑K
k=1 λkwk−1/

∑K
k=1 λk , with λk := (γk−1)−1,

E [F (w̄K )− F (w∗)] ≤ µ+ 2L̃

4µK 2 ‖w0 − w∗‖2 +
4σ2(1 + ωup)

µKNb

(
1 +

64Lω2
dwn

µK
ln(µK + L̃)

)
.
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Theoretical results - MCM

Summary of rates and complexities

Summary of rates. In this Table, we summarize the rates and complexities, and maximal
learning rate for Diana, Artemis, Dore and MCM. For simplicity, we ignore absolute
constants, and provide asymptotic values for large ωup, ωdwn, and complexities for ε→ 0.

Table: Summary of rates on the initial condition, limit variance, asympt. complexities and γmax.

Problem Diana Artemis, Dore MCM, Rand-MCM

Lγmax ∝ 1/(1 + ωup) 1/(1 + ωup)(1 + ωdwn) 1/(1 + ωdwn)
√

1 + ωup ∧ 1/(1 + ωup)
Lim. var. ∝ γ2σ2/n× (1 + ωup) (1 + ωup)(1 + ωdwn) (1 + ωup)(1 + γLω2

dwn)

Str.-convex Rate on init. cond. (SC) (1− γµ)k (1− γµ)k (1− γµ)k

Complexity (1 + ωup)/µεN (1 + ωdwn)(1 + ωup)/µεN (1 + ωup)/µεN

Convex Complexity (ωup + 1)/ε2 (1 + ωup)(1 + ωdwn)/ε2 (ωup + 1)/ε2
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Theoretical results - MCM

Extensions - and partial take away

1 Heterogeneous framework: previous theorems are valid in the heterogeneous
framework (at the cost of a constant 2), under Assumption 2.

2 Another theorem is provided in the non-convex regime, with similar take-away.

Take away:

1 MCM= Model Compression with memory

2 Uses a memory on the downlink direction, as introduced by Mishchenko [MGTR19]
for the uplink.

3 Leverages the unbiased-ness of ŵk around wk .
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Theoretical results - MCM

Next step: worker dependent downlink compression: Rand-MCM!

No (or few) reasons to use the same compression for all workers !
wk = wk−1 − γ

(
1
N

∑N
i=1 Cup(g i

k(ŵ i
k−1))

)
Ωk+1 = wk+1 − Hk

ŵ i
k+1 = Hk

i + Cdwn,i (Ωk+1)
H i

k+1 = Hk
i + αdwnCdwn,i (Ωk+1).

(4)

Advantages:
1 Independence could help reduce the variance
2 Workers can be allowed to choose the size (or equivalently the compression level) of

their updates.
3 Helps in case of Partial Participation
4 Could be leveraged to tackle honest-but-curious clients.

Drawbacks
1 Storing the N memories (H i

k)i∈[N] instead of one

Solutions:
1 Keep and use a single memory H̄k = N−1∑N

i=1 H
i
k .

It is then necessary to periodically reset the local memories H i
k on all workers to the

averaged value H̄k (rarely enough not to impact the communication budget)
2 Use Rand-MCM with an arbitrary number of groups G � N of workers. In each group
Gg , g ∈ [G ], all workers share the same memory (Hg

k ) and receive the same update
Cdwn,g (wk+1 − Hg

k ). We call this algorithm Rand-MCM-G.
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Theoretical results - Rand-MCM

Convergence of Rand-MCM

1. At least as good:

Theorem 8

Theorems 5 to 7 are valid for Rand-MCM and Rand-MCM-G.

2. Better on residual term:

Theorem 9 (Convergence in the quadratic case)

Under Assumptions 1 and 3 to 5 with µ = 0, if the function is quadratic, after running
K > 0 iterations, for any γ ≤ γmax, and we have

E[F (w̄K )− F∗] ≤
V0

γK
+
γσ2ΦRd(γ)

Nb
,

with ΦRd(γ) = (1 + ωup)
(

1 + 4γ2L2ωdwn
K

( 1
C +

ωup

N
)
)

and C = N for Rand-MCM, C = G

Rand-MCM-G, and C = 1 for MCM.

Extending the proof beyond quadratic functions is possible, though it requires an
assumption on third or higher order derivatives of F (e.g., using self-concordance
[Bac10]) to control of E

[
||∇F (ŵk−1)− E[∇F (ŵk−1)]||2

∣∣ wk−1

]
.
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Experiments

Experiments
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Figure: Quantum with b = 400, γ = 1/L (LSR).
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Experiments

More experiments
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Figure: Convergence on toy dataset on LSR (a,b) and on neural networks (c, d).
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Figure: Experiments on real dataset with γ = 1/L, quantization with s = 1, LSR (a,b), LR (c,d).
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Experiments

More experiments (convex)

Excess loss after 450 epochs SGD DIANA MCM DORE
a9a b=50 −3.5 −2.7 −2.7 −1.8
Phishing b=50 −3.7 −3.5 −3.4 −2.7
w8a b=8 −3.5 −3.0 −2.5 −1.75
Compression no uni-dir bi-dir bi-dir
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Experiments

More experiments, non convex

Nonconvex
framework

MNIST (CNN, d=2e4,
2 bits-quantization

with norm 2)

Fashion MNIST
(FashionSimpleNet, d=4e5,

2 bits-quantization
with norm 2)

Heterogeneous EMNIST
(CNN, d=2e4,

2 bits-quantization
with norm 2)

CIFAR-10
(LeNet, d=62e3,

2-bits-quantization
with norm inf)

Baseline accuracy
for the selected
network [Ref]

92.3% [Link] 67.52% [Link]

Accuracy after
300 epochs

SGD: 99.0% SGD: 92.4% SGD: 99.0% SGD: 69.1%

Diana: 98.9% Diana: 92.4% Diana: 98.9% Diana: 64.0%
MCM: 98.8% MCM: 90.6% MCM: 98.9% MCM: 63.5%

Artemis: 97.9% Artemis: 86.7% Artemis: 98.3% Artemis: 54.8%
Dore: 97.9% Dore: 87.9% Dore: 98.5% Dore: 56.3%

Train loss after
300 epochs

SGD:0.025 SGD: 0.093 SGD: 0.026 SGD: 0.909

Diana: 0.034 Diana: 0.141 Diana: 0.031 Diana: 1.047
MCM: 0.033 MCM: 0.209 MCM: 0.030 MCM: 1.096

Artemis: 0.075 Artemis: 0.332 Artemis: 0.052 Artemis: 1.342
Dore: 0.072 Dore: 0.300 Dore: 0.048 Dore: 1.292
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Experiments

Experiments: Randomization + single memory.
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Figure: Rand-MCM (PP) on quantum with a single memory (s = 2).
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Conclusion

Conclusion and open directions

MCM underlines the importance to not degrade the global model.

Summary:
2 New algorithm for bi-directional compression with a preserved central model
3 Reduces (nearly cancels) impact of downlink compression
4 Achieves the same asymptotic rate of convergence as unidirectional compression.

Open directions:
1 Can we provably benefit from the smoothing effect?
2 Extending proofs of Rand-MCM to the self-concordant framework
3 Leveraging the randomization effect in applications
4 Even better double compression:

combination with better techniques on the up-link direction
unaffected γmax

biased compression operators.

Thank you for your attention :)

Advertisement

1 I am looking for excellent students and postdocs to work on various aspects of Federated Learning in
Paris!

2 Research visits can also be organized (3 month+)
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