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Setting : random-design least-squares regression problem in a RKHS framework.
Risk : forg: X - R
e(g) =E, [(g(X) - Y)?].

We thus want to minimize prediction error.

Regression function : g,(X) = E[Y|X] minimises € on L2 .
We build a sequence (gi) of estimators in an RKHS H.
Why considering RKHS ?

@ hypothesis space for non parametric regression,
@ high dimensional problem (d >> n) analysis framework,

@ natural analysis when mapping data in feature space via a p.d. kernel.
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Regularity assumptions

Algorithm (Stochastic approximation)

Simple one pass stochastic gradient descent with constant step sizes and
averaging.

Difficulty of the problem

o Let ¥ = E[K\K]] be the covariance operator. We assume that
tr(X1/) < oo

o We assume g, € (L2 ).

PX

(a, r) encode the difficulty of the problem.
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Results

Theorem (Non parametric regression)

Under a suitable choice of the learning rate, we get the optimal rate of
convergence for non parametric regression.

Theorem (Adaptativity in Euclidean spaces)

If H is a d-dimensional Euclidean space :

(1602 (/) m IT 0l
<1 n

Ee(&n) —e(gp)] < min (ny)2a+1

1<a, 5+ <q

SGD is adaptative to the regularity of the objective function and to the decay

of the spectrum of the covariance matrix.
% explains behaviour for d >> n.
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