
Optimization

Aymeric DIEULEVEUT

EPFL, Lausanne

January 26, 2018

Journées YSP

1

Outline

1. General context and examples.

2. What makes optimization hard ?

In the context of supervised machine learning:

3. Minimizing Empirical Risk.

4. Minimizing Generalization Risk.

2

Outline

1. General context and examples.

2. What makes optimization hard ?

In the context of supervised machine learning:

3. Minimizing Empirical Risk.

4. Minimizing Generalization Risk.

2

Outline

1. General context and examples.

2. What makes optimization hard ?

In the context of supervised machine learning:

3. Minimizing Empirical Risk.

4. Minimizing Generalization Risk.

2

General context

What is optimization about ?

min
θ∈Θ

f (θ)

With θ a parameter, and f a cost function.

Why ?
We formulate our problem as an optimization problem.
3 examples:

I Supervised machine learning

I Signal Processing

I Optimal transport

3

General context

What is optimization about ?

min
θ∈Θ

f (θ)

With θ a parameter, and f a cost function.

Why ?

We formulate our problem as an optimization problem.
3 examples:

I Supervised machine learning

I Signal Processing

I Optimal transport

3

General context

What is optimization about ?

min
θ∈Θ

f (θ)

With θ a parameter, and f a cost function.

Why ?
We formulate our problem as an optimization problem.
3 examples:

I Supervised machine learning

I Signal Processing

I Optimal transport

3

Some Examples

Example 1: Supervised Machine Learning

Goal: predict a phenomenon from “explanatory variables”, given a
set of observations.

Bio-informatics

Input: DNA/RNA sequence,
Output: Drug responsiveness

Image classification

Input: Images,
Output: Digit

4

Some Examples

Example 1: Supervised Machine Learning

Goal: predict a phenomenon from “explanatory variables”, given a
set of observations.

Bio-informatics

Input: DNA/RNA sequence,
Output: Drug responsiveness

Image classification

Input: Images,
Output: Digit

4

Supervised Machine Learning

Example 1: Supervised Machine Learning

Consider an input/output pair (X ,Y) ∈ X × Y, (X ,Y) ∼ ρ.

Goal: function θ : X → R, s.t. θ(X) good prediction for Y .

Here, as a linear function 〈θ,Φ(X)〉 of features Φ(X) ∈ Rd .

Consider a loss function ` : Y × R→ R+

Define the Generalization risk :

R(θ) := Eρ [`(Y , 〈θ,Φ(X)〉)] .

5

Supervised Machine Learning

Example 1: Supervised Machine Learning

Consider an input/output pair (X ,Y) ∈ X × Y, (X ,Y) ∼ ρ.

Goal: function θ : X → R, s.t. θ(X) good prediction for Y .

Here, as a linear function 〈θ,Φ(X)〉 of features Φ(X) ∈ Rd .

Consider a loss function ` : Y × R→ R+

Define the Generalization risk :

R(θ) := Eρ [`(Y , 〈θ,Φ(X)〉)] .

5

Supervised Machine Learning

Example 1: Supervised Machine Learning

Consider an input/output pair (X ,Y) ∈ X × Y, (X ,Y) ∼ ρ.

Goal: function θ : X → R, s.t. θ(X) good prediction for Y .

Here, as a linear function 〈θ,Φ(X)〉 of features Φ(X) ∈ Rd .

Consider a loss function ` : Y × R→ R+

Define the Generalization risk :

R(θ) := Eρ [`(Y , 〈θ,Φ(X)〉)] .

5

Empirical Risk minimization (I)

Data: n observations (xi , yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

Empirical risk (or training error):

R̂(θ) =
1

n

n∑
i=1

`(yi , 〈θ,Φ(xi)〉).

Empirical risk minimization (ERM) : find θ̂ solution of

min
θ∈Rd

1

n

n∑
i=1

`
(
yi , 〈θ,Φ(xi)〉

)
+ µΩ(θ).

convex data fitting term + regularizer

6

Empirical Risk minimization (I)

Data: n observations (xi , yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

Empirical risk (or training error):

R̂(θ) =
1

n

n∑
i=1

`(yi , 〈θ,Φ(xi)〉).

Empirical risk minimization (ERM) : find θ̂ solution of

min
θ∈Rd

1

n

n∑
i=1

`
(
yi , 〈θ,Φ(xi)〉

)
+ µΩ(θ).

convex data fitting term + regularizer

6

Empirical Risk minimization (II)

For example, least-squares regression:

min
θ∈Rd

1

2n

n∑
i=1

(
yi − 〈θ,Φ(xi)〉

)2
+ µΩ(θ),

and logistic regression:

min
θ∈Rd

1

n

n∑
i=1

log
(
1 + exp(−yi 〈θ,Φ(xi)〉)

)
+ µΩ(θ).

Two fundamental questions: (1) computing (2) analyzing θ̂.
Problem is formalized as a (convex) optimization problem.
In the large scale setting, high dimensional problem and

many examples.

7

Empirical Risk minimization (II)

For example, least-squares regression:

min
θ∈Rd

1

2n

n∑
i=1

(
yi − 〈θ,Φ(xi)〉

)2
+ µΩ(θ),

and logistic regression:

min
θ∈Rd

1

n

n∑
i=1

log
(
1 + exp(−yi 〈θ,Φ(xi)〉)

)
+ µΩ(θ).

Two fundamental questions: (1) computing (2) analyzing θ̂.
Problem is formalized as a (convex) optimization problem.
In the large scale setting, high dimensional problem and

many examples.

7

Some Examples

Example 2: Signal processing
Observe a signal Y ∈ Rn×q , try to recover the source
B ∈ Rp×q , knowing the “forward matrix” X ∈ Rn×p.
(multi-task regression)

min
β
‖Xβ − Y ‖2

F + λΩ(β)

Ω sparsity inducing regularization.

How to choose λ?

8

Some Examples

Example 2: Signal processing
Observe a signal Y ∈ Rn×q , try to recover the source
B ∈ Rp×q , knowing the “forward matrix” X ∈ Rn×p.
(multi-task regression)

min
β
‖Xβ − Y ‖2

F + λΩ(β)

Ω sparsity inducing regularization.

How to choose λ?

8

Some Examples

Example 2: Signal processing
Observe a signal Y ∈ Rn×q , try to recover the source
B ∈ Rp×q , knowing the “forward matrix” X ∈ Rn×p.
(multi-task regression)

min
β
‖Xβ − Y ‖2

F + λΩ(β)

Ω sparsity inducing regularization.

How to choose λ?

8

Some Examples

Example 3: Optimal transport

min
π∈Π

∫
c(x, y)dπ(x, y)

Π set of probability distributions c(x, y) “distance” from x
to y .

+ regularization

Kantorovic formulation of OT.

9

Is it a (hard) problem?

for convex optimization, in 99 % of the cases, no.

In other words:

Use cvxpy

�
Interesting (or hard) problems

10

http://www.cvxpy.org/en/latest/

Is it a (hard) problem?

for convex optimization, in 99 % of the cases, no.

In other words:

Use cvxpy

�
Interesting (or hard) problems

10

http://www.cvxpy.org/en/latest/

Is it a (hard) problem?

for convex optimization, in 99 % of the cases, no.

In other words:

Use cvxpy

�
Interesting (or hard) problems

10

http://www.cvxpy.org/en/latest/

Is it a (hard) problem?

for convex optimization, in 99 % of the cases, no.

In other words:

Use cvxpy

�
Interesting (or hard) problems

10

http://www.cvxpy.org/en/latest/

What makes it hard: 1. Convexity
Why?

Typical non-convex problems:

Empirical risk minimization with 0-1 loss.

R̂(θ) = 1
n
∑n

i=1 1yi 6=sign〈θ,Φ(xi)〉.

Matrix factorization minY ,W ‖X − YW‖2
F

not jointly convex.

Neural networks: parametric non-convex functions.

11

What makes it hard: 1. Convexity
Why?

Typical non-convex problems:

Empirical risk minimization with 0-1 loss.

R̂(θ) = 1
n
∑n

i=1 1yi 6=sign〈θ,Φ(xi)〉.

Matrix factorization minY ,W ‖X − YW‖2
F

not jointly convex.

Neural networks: parametric non-convex functions.

11

What makes it hard: 1. Convexity
Why?

Typical non-convex problems:

Empirical risk minimization with 0-1 loss.

R̂(θ) = 1
n
∑n

i=1 1yi 6=sign〈θ,Φ(xi)〉.

Matrix factorization minY ,W ‖X − YW‖2
F

not jointly convex.

Neural networks: parametric non-convex functions.

11

What makes it hard: 1. Convexity
Why?

Typical non-convex problems:

Empirical risk minimization with 0-1 loss.

R̂(θ) = 1
n
∑n

i=1 1yi 6=sign〈θ,Φ(xi)〉.

Matrix factorization minY ,W ‖X − YW‖2
F

not jointly convex.

Neural networks: parametric non-convex functions.

11

What makes it hard: 1. Convexity
Why?

Typical non-convex problems:

Empirical risk minimization with 0-1 loss.

R̂(θ) = 1
n
∑n

i=1 1yi 6=sign〈θ,Φ(xi)〉.

Matrix factorization minY ,W ‖X − YW‖2
F

not jointly convex.

Neural networks: parametric non-convex functions.
11

What makes it hard: 2. Regularity of the function

a. Smoothness

I A function g : Rd → R is L-smooth if and only if it is
twice differentiable and

∀θ ∈ Rd , eigenvalues
[
g ′′(θ)

]
6 L

For all θ ∈ Rd :

g(θ) ≤ g(θ′) + 〈g(θ′), θ − θ′〉+ L
∥∥θ − θ′∥∥2

12

What makes it hard: 2. Regularity of the function

a. Smoothness

I A function g : Rd → R is L-smooth if and only if it is
twice differentiable and

∀θ ∈ Rd , eigenvalues
[
g ′′(θ)

]
6 L

For all θ ∈ Rd :

g(θ) ≤ g(θ′) + 〈g(θ′), θ − θ′〉+ L
∥∥θ − θ′∥∥2

12

What makes it hard: 2. Regularity of the function

b. Strong Convexity

I A twice differentiable function g : Rd → R is µ-strongly
convex if and only if

∀θ ∈ Rd , eigenvalues
[
g ′′(θ)

]
> µ

For all θ ∈ Rd :

g(θ) ≥ g(θ′) + 〈g(θ′), θ − θ′〉+ µ
∥∥θ − θ′∥∥2

13

What makes it hard: 2. Regularity of the function

b. Strong Convexity

I A twice differentiable function g : Rd → R is µ-strongly
convex if and only if

∀θ ∈ Rd , eigenvalues
[
g ′′(θ)

]
> µ

For all θ ∈ Rd :

g(θ) ≥ g(θ′) + 〈g(θ′), θ − θ′〉+ µ
∥∥θ − θ′∥∥2

13

What makes it hard: 2. Regularity of the function

Why?
Rates typically depend on the condition number κ = L

µ
:

Large κ Small κ
harder to optimize easier to optimize

14

What makes it hard: 2. Regularity of the function

Why?
Rates typically depend on the condition number κ = L

µ
:

Large κ Small κ
harder to optimize easier to optimize

14

Smoothness and strong convexity in ML

We consider an a.s. convex loss in θ. Thus R̂ and R are convex.

Hessian of R̂ ≈ covariance matrix 1
n
∑n

i=1 Φ(xi)Φ(xi)
>

If ` is smooth, and E[‖Φ(X)‖2] ≤ r2 , R is smooth.

If ` is µ-strongly convex, and data has an invertible covariance
matrix (low correlation/dimension), R is strongly convex.

Importance of regularization: provides strong convexity, and avoids
overfitting.

Note: when considering dual formulation of the problem:

I L-smoothness ↔ 1/L-strong convexity.

I µ-strong convexity ↔ 1/µ-smoothness

15

Smoothness and strong convexity in ML

We consider an a.s. convex loss in θ. Thus R̂ and R are convex.

Hessian of R̂ ≈ covariance matrix 1
n
∑n

i=1 Φ(xi)Φ(xi)
>

If ` is smooth, and E[‖Φ(X)‖2] ≤ r2 , R is smooth.

If ` is µ-strongly convex, and data has an invertible covariance
matrix (low correlation/dimension), R is strongly convex.

Importance of regularization: provides strong convexity, and avoids
overfitting.

Note: when considering dual formulation of the problem:

I L-smoothness ↔ 1/L-strong convexity.

I µ-strong convexity ↔ 1/µ-smoothness

15

Smoothness and strong convexity in ML

We consider an a.s. convex loss in θ. Thus R̂ and R are convex.

Hessian of R̂ ≈ covariance matrix 1
n
∑n

i=1 Φ(xi)Φ(xi)
>

If ` is smooth, and E[‖Φ(X)‖2] ≤ r2 , R is smooth.

If ` is µ-strongly convex, and data has an invertible covariance
matrix (low correlation/dimension), R is strongly convex.

Importance of regularization: provides strong convexity, and avoids
overfitting.

Note: when considering dual formulation of the problem:

I L-smoothness ↔ 1/L-strong convexity.

I µ-strong convexity ↔ 1/µ-smoothness

15

Smoothness and strong convexity in ML

We consider an a.s. convex loss in θ. Thus R̂ and R are convex.

Hessian of R̂ ≈ covariance matrix 1
n
∑n

i=1 Φ(xi)Φ(xi)
>

If ` is smooth, and E[‖Φ(X)‖2] ≤ r2 , R is smooth.

If ` is µ-strongly convex, and data has an invertible covariance
matrix (low correlation/dimension), R is strongly convex.

Importance of regularization: provides strong convexity, and avoids
overfitting.

Note: when considering dual formulation of the problem:

I L-smoothness ↔ 1/L-strong convexity.

I µ-strong convexity ↔ 1/µ-smoothness

15

Smoothness and strong convexity in ML

We consider an a.s. convex loss in θ. Thus R̂ and R are convex.

Hessian of R̂ ≈ covariance matrix 1
n
∑n

i=1 Φ(xi)Φ(xi)
>

If ` is smooth, and E[‖Φ(X)‖2] ≤ r2 , R is smooth.

If ` is µ-strongly convex, and data has an invertible covariance
matrix (low correlation/dimension), R is strongly convex.

Importance of regularization: provides strong convexity, and avoids
overfitting.

Note: when considering dual formulation of the problem:

I L-smoothness ↔ 1/L-strong convexity.

I µ-strong convexity ↔ 1/µ-smoothness

15

What makes it hard: 3. Set Θ, complexity of f

a. Set Θ: (if Θ is a convex set.)

I May be described implicitly (via equations):
Θ = {θ ∈ Rd s.t. ‖θ‖2 ≤ R and 〈θ, 1〉 = r}.

Use dual formulation of the problem.

I Projection might be difficult or impossible.
use algorithms requiring linear minimization oracle
instead of quadratic oracles (Frank Wolfe)

I Even when Θ = Rd , d might be very large (typically
millions)
use only first order methods

b. Structure of f . If f = R̂(θ) = 1
n
∑n

i=1 `(yi , 〈θ,Φ(xi)〉),
computing a gradient has a cost proportional to n.

16

What makes it hard: 3. Set Θ, complexity of f

a. Set Θ: (if Θ is a convex set.)

I May be described implicitly (via equations):
Θ = {θ ∈ Rd s.t. ‖θ‖2 ≤ R and 〈θ, 1〉 = r}.
Use dual formulation of the problem.

I Projection might be difficult or impossible.
use algorithms requiring linear minimization oracle
instead of quadratic oracles (Frank Wolfe)

I Even when Θ = Rd , d might be very large (typically
millions)
use only first order methods

b. Structure of f . If f = R̂(θ) = 1
n
∑n

i=1 `(yi , 〈θ,Φ(xi)〉),
computing a gradient has a cost proportional to n.

16

What makes it hard: 3. Set Θ, complexity of f

a. Set Θ: (if Θ is a convex set.)

I May be described implicitly (via equations):
Θ = {θ ∈ Rd s.t. ‖θ‖2 ≤ R and 〈θ, 1〉 = r}.
Use dual formulation of the problem.

I Projection might be difficult or impossible.

use algorithms requiring linear minimization oracle
instead of quadratic oracles (Frank Wolfe)

I Even when Θ = Rd , d might be very large (typically
millions)
use only first order methods

b. Structure of f . If f = R̂(θ) = 1
n
∑n

i=1 `(yi , 〈θ,Φ(xi)〉),
computing a gradient has a cost proportional to n.

16

What makes it hard: 3. Set Θ, complexity of f

a. Set Θ: (if Θ is a convex set.)

I May be described implicitly (via equations):
Θ = {θ ∈ Rd s.t. ‖θ‖2 ≤ R and 〈θ, 1〉 = r}.
Use dual formulation of the problem.

I Projection might be difficult or impossible.
use algorithms requiring linear minimization oracle
instead of quadratic oracles (Frank Wolfe)

I Even when Θ = Rd , d might be very large (typically
millions)
use only first order methods

b. Structure of f . If f = R̂(θ) = 1
n
∑n

i=1 `(yi , 〈θ,Φ(xi)〉),
computing a gradient has a cost proportional to n.

16

What makes it hard: 3. Set Θ, complexity of f

a. Set Θ: (if Θ is a convex set.)

I May be described implicitly (via equations):
Θ = {θ ∈ Rd s.t. ‖θ‖2 ≤ R and 〈θ, 1〉 = r}.
Use dual formulation of the problem.

I Projection might be difficult or impossible.
use algorithms requiring linear minimization oracle
instead of quadratic oracles (Frank Wolfe)

I Even when Θ = Rd , d might be very large (typically
millions)

use only first order methods

b. Structure of f . If f = R̂(θ) = 1
n
∑n

i=1 `(yi , 〈θ,Φ(xi)〉),
computing a gradient has a cost proportional to n.

16

What makes it hard: 3. Set Θ, complexity of f

a. Set Θ: (if Θ is a convex set.)

I May be described implicitly (via equations):
Θ = {θ ∈ Rd s.t. ‖θ‖2 ≤ R and 〈θ, 1〉 = r}.
Use dual formulation of the problem.

I Projection might be difficult or impossible.
use algorithms requiring linear minimization oracle
instead of quadratic oracles (Frank Wolfe)

I Even when Θ = Rd , d might be very large (typically
millions)
use only first order methods

b. Structure of f . If f = R̂(θ) = 1
n
∑n

i=1 `(yi , 〈θ,Φ(xi)〉),
computing a gradient has a cost proportional to n.

16

What makes it hard: 3. Set Θ, complexity of f

a. Set Θ: (if Θ is a convex set.)

I May be described implicitly (via equations):
Θ = {θ ∈ Rd s.t. ‖θ‖2 ≤ R and 〈θ, 1〉 = r}.
Use dual formulation of the problem.

I Projection might be difficult or impossible.
use algorithms requiring linear minimization oracle
instead of quadratic oracles (Frank Wolfe)

I Even when Θ = Rd , d might be very large (typically
millions)
use only first order methods

b. Structure of f . If f = R̂(θ) = 1
n
∑n

i=1 `(yi , 〈θ,Φ(xi)〉),
computing a gradient has a cost proportional to n.

16

Optimization

Take home

I We express problems as minimizing a function over a
set

I Most convex problems are solved

I Difficulties come from non-convexity, lack of
regularity, complexity of the set Θ (or high
dimension), complexity of computing gradients

What happens for supervised machine learning ? Goals:
I present algorithms (convex, large dimension, high

number of observations)
I show how rates depend onsmoothness and strong

convexity
I show how we can use the structure
I not forgetting the initial problem...!

17

Optimization

Take home

I We express problems as minimizing a function over a
set

I Most convex problems are solved

I Difficulties come from non-convexity, lack of
regularity, complexity of the set Θ (or high
dimension), complexity of computing gradients

What happens for supervised machine learning ?

Goals:
I present algorithms (convex, large dimension, high

number of observations)
I show how rates depend onsmoothness and strong

convexity
I show how we can use the structure
I not forgetting the initial problem...!

17

Optimization

Take home

I We express problems as minimizing a function over a
set

I Most convex problems are solved

I Difficulties come from non-convexity, lack of
regularity, complexity of the set Θ (or high
dimension), complexity of computing gradients

What happens for supervised machine learning ? Goals:
I present algorithms (convex, large dimension, high

number of observations)

I show how rates depend onsmoothness and strong
convexity

I show how we can use the structure
I not forgetting the initial problem...!

17

Optimization

Take home

I We express problems as minimizing a function over a
set

I Most convex problems are solved

I Difficulties come from non-convexity, lack of
regularity, complexity of the set Θ (or high
dimension), complexity of computing gradients

What happens for supervised machine learning ? Goals:
I present algorithms (convex, large dimension, high

number of observations)
I show how rates depend onsmoothness and strong

convexity

I show how we can use the structure
I not forgetting the initial problem...!

17

Optimization

Take home

I We express problems as minimizing a function over a
set

I Most convex problems are solved

I Difficulties come from non-convexity, lack of
regularity, complexity of the set Θ (or high
dimension), complexity of computing gradients

What happens for supervised machine learning ? Goals:
I present algorithms (convex, large dimension, high

number of observations)
I show how rates depend onsmoothness and strong

convexity
I show how we can use the structure

I not forgetting the initial problem...!

17

Optimization

Take home

I We express problems as minimizing a function over a
set

I Most convex problems are solved

I Difficulties come from non-convexity, lack of
regularity, complexity of the set Θ (or high
dimension), complexity of computing gradients

What happens for supervised machine learning ? Goals:
I present algorithms (convex, large dimension, high

number of observations)
I show how rates depend onsmoothness and strong

convexity
I show how we can use the structure
I not forgetting the initial problem...!

17

Stochastic algorithms for ERM

min
θ∈Rd

{
R̂(θ) =

1

n

n∑
i=1

`(yi , 〈θ,Φ(xi)〉)
}
.

Two fundamental questions: (a) computing (b) analyzing θ̂.

“Large scale” framework: number of examples n and the
number of explanatory variables d are both large.

1. High dimension d =⇒ First order algorithms

Gradient Descent (GD) :

θk = θk−1 − γk R̂′(θk−1)

Problem: computing the gradient costs O(dn) per iteration.

2. Large n =⇒ Stochastic algorithms

Stochastic Gradient Descent (SGD)

18

Stochastic algorithms for ERM

min
θ∈Rd

{
R̂(θ) =

1

n

n∑
i=1

`(yi , 〈θ,Φ(xi)〉)
}
.

Two fundamental questions: (a) computing (b) analyzing θ̂.

“Large scale” framework: number of examples n and the
number of explanatory variables d are both large.

1. High dimension d =⇒ First order algorithms

Gradient Descent (GD) :

θk = θk−1 − γk R̂′(θk−1)

Problem: computing the gradient costs O(dn) per iteration.

2. Large n =⇒ Stochastic algorithms

Stochastic Gradient Descent (SGD)

18

Stochastic algorithms for ERM

min
θ∈Rd

{
R̂(θ) =

1

n

n∑
i=1

`(yi , 〈θ,Φ(xi)〉)
}
.

Two fundamental questions: (a) computing (b) analyzing θ̂.

“Large scale” framework: number of examples n and the
number of explanatory variables d are both large.

1. High dimension d =⇒ First order algorithms

Gradient Descent (GD) :

θk = θk−1 − γk R̂′(θk−1)

Problem: computing the gradient costs O(dn) per iteration.

2. Large n =⇒ Stochastic algorithms

Stochastic Gradient Descent (SGD)
18

Stochastic Gradient descent

I Goal:
min
θ∈Rd

f (θ)

given unbiased gradient
estimates f ′n

I θ∗ := argminRd f (θ).

θ∗

I Key algorithm: Stochastic Gradient Descent (SGD) (Robbins
and Monro, 1951):

θk = θk−1 − γk f ′k (θk−1)

I E[f ′k (θk−1)|Fk−1] = f ′(θk−1) for a filtration (Fk)k≥0, θk is Fk
measurable.

19

Stochastic Gradient descent

I Goal:
min
θ∈Rd

f (θ)

given unbiased gradient
estimates f ′n

I θ∗ := argminRd f (θ).

I Key algorithm: Stochastic Gradient Descent (SGD) (Robbins
and Monro, 1951):

θk = θk−1 − γk f ′k (θk−1)

I E[f ′k (θk−1)|Fk−1] = f ′(θk−1) for a filtration (Fk)k≥0, θk is Fk
measurable.

19

Stochastic Gradient descent

I Goal:
min
θ∈Rd

f (θ)

given unbiased gradient
estimates f ′n

I θ∗ := argminRd f (θ).

θ∗

θ0

θn

θ1

I Key algorithm: Stochastic Gradient Descent (SGD) (Robbins
and Monro, 1951):

θk = θk−1 − γk f ′k (θk−1)

I E[f ′k (θk−1)|Fk−1] = f ′(θk−1) for a filtration (Fk)k≥0, θk is Fk
measurable.

19

SGD for ERM: f = R̂
Loss for a single pair of observations, for any j ≤ n:

fj (θ) := `(yj , 〈θ,Φ(xj)〉).

One observation at each step =⇒ complexity O(d) per iteration.

For the empirical risk R̂(θ) = 1
n

n∑
k=1

`(yk , 〈θ,Φ(xk)〉).

I At each step k ∈ N∗, sample Ik ∼ U{1, . . . n}, and use:

f ′Ik (θk−1) = `′(yIk , 〈θk−1,Φ(xIk)〉)

E[f ′Ik (θk−1)|Fk−1] =
1

n

n∑
k=1

`′(yk , 〈θ,Φ(xk)〉) = R̂′(θk−1).

with Fk = σ((xi , yi)1≤i≤n, (Ii)1≤i≤k).

20

SGD for ERM: f = R̂
Loss for a single pair of observations, for any j ≤ n:

fj (θ) := `(yj , 〈θ,Φ(xj)〉).

One observation at each step =⇒ complexity O(d) per iteration.

For the empirical risk R̂(θ) = 1
n

n∑
k=1

`(yk , 〈θ,Φ(xk)〉).

I At each step k ∈ N∗, sample Ik ∼ U{1, . . . n}, and use:

f ′Ik (θk−1) = `′(yIk , 〈θk−1,Φ(xIk)〉)

E[f ′Ik (θk−1)|Fk−1] =
1

n

n∑
k=1

`′(yk , 〈θ,Φ(xk)〉) = R̂′(θk−1).

with Fk = σ((xi , yi)1≤i≤n, (Ii)1≤i≤k).

20

SGD for ERM: f = R̂
Loss for a single pair of observations, for any j ≤ n:

fj (θ) := `(yj , 〈θ,Φ(xj)〉).

One observation at each step =⇒ complexity O(d) per iteration.

For the empirical risk R̂(θ) = 1
n

n∑
k=1

`(yk , 〈θ,Φ(xk)〉).

I At each step k ∈ N∗, sample Ik ∼ U{1, . . . n}, and use:

f ′Ik (θk−1) = `′(yIk , 〈θk−1,Φ(xIk)〉)

E[f ′Ik (θk−1)|Fk−1] =
1

n

n∑
k=1

`′(yk , 〈θ,Φ(xk)〉)

= R̂′(θk−1).

with Fk = σ((xi , yi)1≤i≤n, (Ii)1≤i≤k).

20

SGD for ERM: f = R̂
Loss for a single pair of observations, for any j ≤ n:

fj (θ) := `(yj , 〈θ,Φ(xj)〉).

One observation at each step =⇒ complexity O(d) per iteration.

For the empirical risk R̂(θ) = 1
n

n∑
k=1

`(yk , 〈θ,Φ(xk)〉).

I At each step k ∈ N∗, sample Ik ∼ U{1, . . . n}, and use:

f ′Ik (θk−1) = `′(yIk , 〈θk−1,Φ(xIk)〉)

E[f ′Ik (θk−1)|Fk−1] =
1

n

n∑
k=1

`′(yk , 〈θ,Φ(xk)〉) = R̂′(θk−1).

with Fk = σ((xi , yi)1≤i≤n, (Ii)1≤i≤k).

20

Analysis: behaviour of (θn)n≥0

θk = θk−1 − γk f ′k (θk−1)

Importance of the learning rate (γk)k≥0.

For smooth and strongly convex problem, θk → θ∗ a.s. if

∞∑
k=1

γk =∞
∞∑

k=1

γ2
k <∞.

And asymptotic normality
√

k(θk − θ∗)
d→ N (0,V), for

γk = γ0

k , γ0 ≥ 1
µ

.

I Limit variance scales as 1/µ2

I Very sensitive to ill-conditioned problems.

I µ generally unknown...

21

Analysis: behaviour of (θn)n≥0

θk = θk−1 − γk f ′k (θk−1)

Importance of the learning rate (γk)k≥0.

For smooth and strongly convex problem, θk → θ∗ a.s. if

∞∑
k=1

γk =∞
∞∑

k=1

γ2
k <∞.

And asymptotic normality
√

k(θk − θ∗)
d→ N (0,V), for

γk = γ0

k , γ0 ≥ 1
µ

.

I Limit variance scales as 1/µ2

I Very sensitive to ill-conditioned problems.

I µ generally unknown...

21

Analysis: behaviour of (θn)n≥0

θk = θk−1 − γk f ′k (θk−1)

Importance of the learning rate (γk)k≥0.

For smooth and strongly convex problem, θk → θ∗ a.s. if

∞∑
k=1

γk =∞
∞∑

k=1

γ2
k <∞.

And asymptotic normality
√

k(θk − θ∗)
d→ N (0,V), for

γk = γ0

k , γ0 ≥ 1
µ

.

I Limit variance scales as 1/µ2

I Very sensitive to ill-conditioned problems.

I µ generally unknown...

21

Polyak Ruppert averaging

Introduced by Polyak and Juditsky
(1992) and Ruppert (1988):

θ̄k =
1

k + 1

k∑
i=0

θi .

I off line averaging reduces the noise effect.

I on line computing: θ̄k+1 = 1
k+1θk+1 + k

k+1 θ̄k .

22

Polyak Ruppert averaging

Introduced by Polyak and Juditsky
(1992) and Ruppert (1988):

θ̄k =
1

k + 1

k∑
i=0

θi .
θ∗

θ0
θ1

θn

θn

θ1

θ2

I off line averaging reduces the noise effect.

I on line computing: θ̄k+1 = 1
k+1θk+1 + k

k+1 θ̄k .

22

Convex stochastic approximation: convergence

Known global minimax rates for non-smooth problems

I Strongly convex: O((µk)−1)
Attained by averaged stochastic gradient descent with
γk ∝ (µk)−1

I Non-strongly convex: O(k−1/2)
Attained by averaged stochastic gradient descent with
γk ∝ k−1/2

For smooth problems

I Strongly convex: O(µk)−1

for γk ∝ k−1/2: adapts to strong convexity.

23

Convex stochastic approximation: convergence

Known global minimax rates for non-smooth problems

I Strongly convex: O((µk)−1)
Attained by averaged stochastic gradient descent with
γk ∝ (µk)−1

I Non-strongly convex: O(k−1/2)
Attained by averaged stochastic gradient descent with
γk ∝ k−1/2

For smooth problems

I Strongly convex: O(µk)−1

for γk ∝ k−1/2: adapts to strong convexity.

23

Convergence rate for f (θ̃k)− f (θ∗), smooth f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
k

)

Stgly-Cvx O
(

1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n)
)k

O
(

1
µk

)
	 Gradient descent update costs n times as much as SGD
update.

Can we get best of both worlds ?

24

Convergence rate for f (θ̃k)− f (θ∗), smooth f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
k

)
Stgly-Cvx O

(
1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n)
)k

O
(

1
µk

)
	 Gradient descent update costs n times as much as SGD
update.

Can we get best of both worlds ?

24

Convergence rate for f (θ̃k)− f (θ∗), smooth f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
k

)
Stgly-Cvx O

(
1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n)
)k

O
(

1
µk

)
	 Gradient descent update costs n times as much as SGD
update.

Can we get best of both worlds ?

24

Convergence rate for f (θ̃k)− f (θ∗), smooth f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
k

)
Stgly-Cvx O

(
1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n)
)k

O
(

1
µk

)
	 Gradient descent update costs n times as much as SGD
update.

Can we get best of both worlds ?

24

Methods for finite sum minimization
I GD: at step k, use 1

n
∑n

i=0 f ′i (θk)

I SGD: at step k, sample ik ∼ U[1; n], use f ′ik (θk)

I SAG: at step k,
I keep a “full gradient” 1

n

∑n
i=0 f ′

i (θki), with θki ∈ {θ1, . . . θk}
I sample ik ∼ U[1; n], use

1

n

(
n∑

i=0

f ′
i (θki)− f ′

ik (θkik
) + f ′

ik (θk)

)
,

⊕ update costs the same as SGD
# 	 needs to store all gradients f ′i (θki) at “points in the past”

Some references:

I SAG Schmidt et al. (2013), SAGA Defazio et al. (2014a)

I SVRG Johnson and Zhang (2013) (reduces memory cost but 2 epochs...)

I FINITO Defazio et al. (2014b)

I S2GD Konečnỳ and Richtárik (2013)...

And many others... See for example Niao He’s lecture notes for a nice overview.

25

http://niaohe.ise.illinois.edu/IE598/pdf/IE598-lecture23-incremental%20gradient%20algorithms.pdf

Methods for finite sum minimization
I GD: at step k, use 1

n
∑n

i=0 f ′i (θk)

I SGD: at step k, sample ik ∼ U[1; n], use f ′ik (θk)

I SAG: at step k,
I keep a “full gradient” 1

n

∑n
i=0 f ′

i (θki), with θki ∈ {θ1, . . . θk}
I sample ik ∼ U[1; n], use

1

n

(
n∑

i=0

f ′
i (θki)− f ′

ik (θkik
) + f ′

ik (θk)

)
,

⊕ update costs the same as SGD
# 	 needs to store all gradients f ′i (θki) at “points in the past”

Some references:

I SAG Schmidt et al. (2013), SAGA Defazio et al. (2014a)

I SVRG Johnson and Zhang (2013) (reduces memory cost but 2 epochs...)

I FINITO Defazio et al. (2014b)

I S2GD Konečnỳ and Richtárik (2013)...

And many others... See for example Niao He’s lecture notes for a nice overview.

25

http://niaohe.ise.illinois.edu/IE598/pdf/IE598-lecture23-incremental%20gradient%20algorithms.pdf

Methods for finite sum minimization
I GD: at step k, use 1

n
∑n

i=0 f ′i (θk)

I SGD: at step k, sample ik ∼ U[1; n], use f ′ik (θk)

I SAG: at step k,
I keep a “full gradient” 1

n

∑n
i=0 f ′

i (θki), with θki ∈ {θ1, . . . θk}

I sample ik ∼ U[1; n], use

1

n

(
n∑

i=0

f ′
i (θki)− f ′

ik (θkik
) + f ′

ik (θk)

)
,

⊕ update costs the same as SGD
# 	 needs to store all gradients f ′i (θki) at “points in the past”

Some references:

I SAG Schmidt et al. (2013), SAGA Defazio et al. (2014a)

I SVRG Johnson and Zhang (2013) (reduces memory cost but 2 epochs...)

I FINITO Defazio et al. (2014b)

I S2GD Konečnỳ and Richtárik (2013)...

And many others... See for example Niao He’s lecture notes for a nice overview.

25

http://niaohe.ise.illinois.edu/IE598/pdf/IE598-lecture23-incremental%20gradient%20algorithms.pdf

Methods for finite sum minimization
I GD: at step k, use 1

n
∑n

i=0 f ′i (θk)

I SGD: at step k, sample ik ∼ U[1; n], use f ′ik (θk)

I SAG: at step k,
I keep a “full gradient” 1

n

∑n
i=0 f ′

i (θki), with θki ∈ {θ1, . . . θk}
I sample ik ∼ U[1; n], use

1

n

(
n∑

i=0

f ′
i (θki)− f ′

ik (θkik
) + f ′

ik (θk)

)
,

⊕ update costs the same as SGD
# 	 needs to store all gradients f ′i (θki) at “points in the past”

Some references:

I SAG Schmidt et al. (2013), SAGA Defazio et al. (2014a)

I SVRG Johnson and Zhang (2013) (reduces memory cost but 2 epochs...)

I FINITO Defazio et al. (2014b)

I S2GD Konečnỳ and Richtárik (2013)...

And many others... See for example Niao He’s lecture notes for a nice overview.

25

http://niaohe.ise.illinois.edu/IE598/pdf/IE598-lecture23-incremental%20gradient%20algorithms.pdf

Methods for finite sum minimization
I GD: at step k, use 1

n
∑n

i=0 f ′i (θk)

I SGD: at step k, sample ik ∼ U[1; n], use f ′ik (θk)

I SAG: at step k,
I keep a “full gradient” 1

n

∑n
i=0 f ′

i (θki), with θki ∈ {θ1, . . . θk}
I sample ik ∼ U[1; n], use

1

n

(
n∑

i=0

f ′
i (θki)− f ′

ik (θkik
) + f ′

ik (θk)

)
,

⊕ update costs the same as SGD
# 	 needs to store all gradients f ′i (θki) at “points in the past”

Some references:

I SAG Schmidt et al. (2013), SAGA Defazio et al. (2014a)

I SVRG Johnson and Zhang (2013) (reduces memory cost but 2 epochs...)

I FINITO Defazio et al. (2014b)

I S2GD Konečnỳ and Richtárik (2013)...

And many others... See for example Niao He’s lecture notes for a nice overview. 25

http://niaohe.ise.illinois.edu/IE598/pdf/IE598-lecture23-incremental%20gradient%20algorithms.pdf

Convergence rate for f (θ̃k)− f (θ∗), smooth
objective f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
k

)

Stgly-Cvx O
(

1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n)
)k

O
(

1
µk

)

GD, SGD, SAG (Fig. from Schmidt et al. (2013))

26

Convergence rate for f (θ̃k)− f (θ∗), smooth
objective f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
k

)
Stgly-Cvx O

(
1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n)
)k

O
(

1
µk

)

GD, SGD, SAG (Fig. from Schmidt et al. (2013))

26

Take home
Stochastic algorithms for Empirical Risk Minimization.

I Rates depend on the regularity of the function.

I Several algorithms to optimize empirical risk, most
efficient ones are stochastic and rely on finite sum
structure

I Stochastic algorithms to optimize a deterministic
function.

27

Take home
Stochastic algorithms for Empirical Risk Minimization.

I Rates depend on the regularity of the function.

I Several algorithms to optimize empirical risk, most
efficient ones are stochastic and rely on finite sum
structure

I Stochastic algorithms to optimize a deterministic
function.

27

What about generalization risk

Initial problem: Generalization guarantees.

I Uniform upper bound supθ

∣∣∣ R̂(θ)−R(θ)
∣∣∣. (empirical

process theory)

I More precise: localized complexities (Bartlett et al.,
2002), stability (Bousquet and Elisseeff, 2002).

Problems for ERM:

I Choose regularization (overfitting risk)

I How many iterations (i.e., passes on the data)?

I Generalization guarantees generally of order O(1/
√

n),
no need to be precise

2 important insights:

1. No need to optimize below statistical error,

2. Generalization risk is more important than empirical risk.

SGD can be used to minimize the generalization risk.

28

What about generalization risk

Initial problem: Generalization guarantees.

I Uniform upper bound supθ

∣∣∣ R̂(θ)−R(θ)
∣∣∣. (empirical

process theory)

I More precise: localized complexities (Bartlett et al.,
2002), stability (Bousquet and Elisseeff, 2002).

Problems for ERM:

I Choose regularization (overfitting risk)

I How many iterations (i.e., passes on the data)?

I Generalization guarantees generally of order O(1/
√

n),
no need to be precise

2 important insights:

1. No need to optimize below statistical error,

2. Generalization risk is more important than empirical risk.

SGD can be used to minimize the generalization risk.

28

What about generalization risk

Initial problem: Generalization guarantees.

I Uniform upper bound supθ

∣∣∣ R̂(θ)−R(θ)
∣∣∣. (empirical

process theory)

I More precise: localized complexities (Bartlett et al.,
2002), stability (Bousquet and Elisseeff, 2002).

Problems for ERM:

I Choose regularization (overfitting risk)

I How many iterations (i.e., passes on the data)?

I Generalization guarantees generally of order O(1/
√

n),
no need to be precise

2 important insights:

1. No need to optimize below statistical error,

2. Generalization risk is more important than empirical risk.

SGD can be used to minimize the generalization risk.

28

What about generalization risk

Initial problem: Generalization guarantees.

I Uniform upper bound supθ

∣∣∣ R̂(θ)−R(θ)
∣∣∣. (empirical

process theory)

I More precise: localized complexities (Bartlett et al.,
2002), stability (Bousquet and Elisseeff, 2002).

Problems for ERM:

I Choose regularization (overfitting risk)

I How many iterations (i.e., passes on the data)?

I Generalization guarantees generally of order O(1/
√

n),
no need to be precise

2 important insights:

1. No need to optimize below statistical error,

2. Generalization risk is more important than empirical risk.

SGD can be used to minimize the generalization risk.

28

SGD for the generalization risk: f = R
SGD: key assumption E[f ′n(θn−1)|Fn−1] = f ′(θn−1).

For the risk

R(θ) = Eρ [`(Y , 〈θ,Φ(X)〉)]

I At step 0 < k ≤ n, use a new point independent of
θk−1:

f ′k (θk−1) = `′(yk , 〈θk−1,Φ(xk)〉)

I For 0 ≤ k ≤ n, Fk = σ((xi , yi)1≤i≤k).

E[f ′k (θk−1)|Fk−1] = Eρ[`′(yk , 〈θk−1,Φ(xk)〉)|Fk−1]

= Eρ
[
`′(Y , 〈θk−1,Φ(X)〉)

]
= R′(θk−1)

I Single pass through the data, Running-time = O(nd),

I “Automatic” regularization.

29

SGD for the generalization risk: f = R
SGD: key assumption E[f ′n(θn−1)|Fn−1] = f ′(θn−1).

For the risk

R(θ) = Eρ [`(Y , 〈θ,Φ(X)〉)]

I At step 0 < k ≤ n, use a new point independent of
θk−1:

f ′k (θk−1) = `′(yk , 〈θk−1,Φ(xk)〉)

I For 0 ≤ k ≤ n, Fk = σ((xi , yi)1≤i≤k).

E[f ′k (θk−1)|Fk−1] = Eρ[`′(yk , 〈θk−1,Φ(xk)〉)|Fk−1]

= Eρ
[
`′(Y , 〈θk−1,Φ(X)〉)

]
= R′(θk−1)

I Single pass through the data, Running-time = O(nd),

I “Automatic” regularization.

29

SGD for the generalization risk: f = R
SGD: key assumption E[f ′n(θn−1)|Fn−1] = f ′(θn−1).

For the risk

R(θ) = Eρ [`(Y , 〈θ,Φ(X)〉)]

I At step 0 < k ≤ n, use a new point independent of
θk−1:

f ′k (θk−1) = `′(yk , 〈θk−1,Φ(xk)〉)

I For 0 ≤ k ≤ n, Fk = σ((xi , yi)1≤i≤k).

E[f ′k (θk−1)|Fk−1] = Eρ[`′(yk , 〈θk−1,Φ(xk)〉)|Fk−1]

= Eρ
[
`′(Y , 〈θk−1,Φ(X)〉)

]
= R′(θk−1)

I Single pass through the data, Running-time = O(nd),

I “Automatic” regularization.

29

SGD for the generalization risk: f = R
SGD: key assumption E[f ′n(θn−1)|Fn−1] = f ′(θn−1).

For the risk

R(θ) = Eρ [`(Y , 〈θ,Φ(X)〉)]

I At step 0 < k ≤ n, use a new point independent of
θk−1:

f ′k (θk−1) = `′(yk , 〈θk−1,Φ(xk)〉)

I For 0 ≤ k ≤ n, Fk = σ((xi , yi)1≤i≤k).

E[f ′k (θk−1)|Fk−1] = Eρ[`′(yk , 〈θk−1,Φ(xk)〉)|Fk−1]

= Eρ
[
`′(Y , 〈θk−1,Φ(X)〉)

]
= R′(θk−1)

I Single pass through the data, Running-time = O(nd),

I “Automatic” regularization.

29

SGD for the generalization risk: f = R
SGD: key assumption E[f ′n(θn−1)|Fn−1] = f ′(θn−1).

For the risk

R(θ) = Eρ [`(Y , 〈θ,Φ(X)〉)]

I At step 0 < k ≤ n, use a new point independent of
θk−1:

f ′k (θk−1) = `′(yk , 〈θk−1,Φ(xk)〉)

I For 0 ≤ k ≤ n, Fk = σ((xi , yi)1≤i≤k).

E[f ′k (θk−1)|Fk−1] = Eρ[`′(yk , 〈θk−1,Φ(xk)〉)|Fk−1]

= Eρ
[
`′(Y , 〈θk−1,Φ(X)〉)

]
= R′(θk−1)

I Single pass through the data, Running-time = O(nd),

I “Automatic” regularization.
29

SGD for the generalization risk: f = R
SGD: key assumption E[f ′n(θn−1)|Fn−1] = f ′(θn−1).

For the risk

R(θ) = Eρ [`(Y , 〈θ,Φ(X)〉)]

I At step 0 < k ≤ n, use a new point independent of
θk−1:

f ′k (θk−1) = `′(yk , 〈θk−1,Φ(xk)〉)

I For 0 ≤ k ≤ n, Fk = σ((xi , yi)1≤i≤k).

E[f ′k (θk−1)|Fk−1] = Eρ[`′(yk , 〈θk−1,Φ(xk)〉)|Fk−1]

= Eρ
[
`′(Y , 〈θk−1,Φ(X)〉)

]
= R′(θk−1)

I Single pass through the data, Running-time = O(nd),

I “Automatic” regularization.
29

SGD for the generalization risk: f = R

ERM minimization Gen. risk minimization
several passes : 0 ≤ k One pass 0 ≤ k ≤ n

xi , yi is Ft-measurable for any t Ft-measurable for t ≥ i .

30

Convergence rate for f (θ̃k)− f (θ∗), smooth
objective f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
k

)

Stgly-Cvx O
(

1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n)
)k

O
(

1
µk

)
0 ≤ k 0 ≤ k ≤ n

Lower Bounds α β γ δ

δ :Information theoretic LB - Statistical theory (Tsybakov, 2003).

Gradient does not even exist

31

Convergence rate for f (θ̃k)− f (θ∗), smooth
objective f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
k

)
Stgly-Cvx O

(
1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n)
)k

O
(

1
µk

)
0 ≤ k 0 ≤ k ≤ n

Lower Bounds α β γ δ

δ :Information theoretic LB - Statistical theory (Tsybakov, 2003).

Gradient does not even exist

31

Convergence rate for f (θ̃k)− f (θ∗), smooth
objective f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
n

)
Stgly-Cvx O

(
1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n)
)k

O
(

1
µn

)
0 ≤ k 0 ≤ k ≤ n

Gradient is unknown

31

Convergence rate for f (θ̃k)− f (θ∗), smooth
objective f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
n

)
Stgly-Cvx O

(
1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n)
)k

O
(

1
µn

)
0 ≤ k 0 ≤ k ≤ n

Gradient is unknown

31

Least Mean Squares: rate independent of µ

Least-squares: R(θ) = 1
2E
[
(Y − 〈Φ(X), θ〉)2

]
Analysis for averaging and constant step-size γ = 1/(4R2)
(Bach and Moulines, 2013)

I Assume ‖Φ(xn)‖ 6 r and |yn − 〈Φ(xn), θ∗〉| 6 σ
I No assumption regarding lowest eigenvalues of the

Hessian

ER(θ̄n)−R(θ∗) 6
4σ2d

n
+
‖θ0 − θ∗‖2

γn

I Matches statistical lower bound (Tsybakov, 2003).

I Optimal rate with “large” step sizes

32

Least Mean Squares: rate independent of µ

Least-squares: R(θ) = 1
2E
[
(Y − 〈Φ(X), θ〉)2

]
Analysis for averaging and constant step-size γ = 1/(4R2)
(Bach and Moulines, 2013)

I Assume ‖Φ(xn)‖ 6 r and |yn − 〈Φ(xn), θ∗〉| 6 σ
I No assumption regarding lowest eigenvalues of the

Hessian

ER(θ̄n)−R(θ∗) 6
4σ2d

n
+
‖θ0 − θ∗‖2

γn

I Matches statistical lower bound (Tsybakov, 2003).

I Optimal rate with “large” step sizes

32

Take home

I SGD can be used to minimize the true risk directly

I Stochastic algorithm to minimize unknown function

I No regularization needed, only one pass

I For Least Squares, with constant step, optimal rate .

#Stochastic approximation, beyond Least Squares ?

33

Take home

I SGD can be used to minimize the true risk directly

I Stochastic algorithm to minimize unknown function

I No regularization needed, only one pass

I For Least Squares, with constant step, optimal rate .

#Stochastic approximation, beyond Least Squares ?

33

Take home

I SGD can be used to minimize the true risk directly

I Stochastic algorithm to minimize unknown function

I No regularization needed, only one pass

I For Least Squares, with constant step, optimal rate .

#Stochastic approximation, beyond Least Squares ?

33

Further references

Many stochastic algorithms not covered in this talk
(coordinate descent, online Newton, composite optimization,
non convex learning) ...

I Good introduction: Francis’s lecture notes at Orsay

I Book:
Convex Optimization: Algorithms and Complexity,
Sébastien Bubeck

34

http://www.di.ens.fr/~fbach/orsay2017.html
https://arxiv.org/pdf/1405.4980v2.pdf

Agarwal, A., Bartlett, P. L., Ravikumar, P., and Wainwright, M. J. (2012).
Information-theoretic lower bounds on the oracle complexity of stochastic convex
optimization. IEEE Transactions on Information Theory, 58(5):3235–3249.

Agarwal, A. and Bottou, L. (2014). A Lower Bound for the Optimization of Finite
Sums. ArXiv e-prints.

Arjevani, Y. and Shamir, O. (2016). Dimension-free iteration complexity of finite
sum optimization problems. In Lee, D. D., Sugiyama, M., Luxburg, U. V.,
Guyon, I., and Garnett, R., editors, Advances in Neural Information Processing
Systems 29, pages 3540–3548. Curran Associates, Inc.

Bach, F. and Moulines, E. (2013). Non-strongly-convex smooth stochastic
approximation with convergence rate O(1/n). Advances in Neural Information
Processing Systems (NIPS).

Bartlett, P. L., Bousquet, O., and Mendelson, S. (2002). Localized Rademacher
Complexities, pages 44–58. Springer Berlin Heidelberg, Berlin, Heidelberg.

Bousquet, O. and Elisseeff, A. (2002). Stability and generalization. Journal of
Machine Learning Research, 2(Mar):499–526.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014a). Saga: A fast incremental
gradient method with support for non-strongly convex composite objectives. In
Advances in Neural Information Processing Systems, pages 1646–1654.

Defazio, A., Domke, J., and Caetano, T. (2014b). Finito: A faster, permutable
incremental gradient method for big data problems. In Proceedings of the 31st
international conference on machine learning (ICML-14), pages 1125–1133.

Fabian, V. (1968). On asymptotic normality in stochastic approximation. The
Annals of Mathematical Statistics, pages 1327–1332.

34

Johnson, R. and Zhang, T. (2013). Accelerating stochastic gradient descent using
predictive variance reduction. In Advances in neural information processing
systems, pages 315–323.

Konečnỳ, J. and Richtárik, P. (2013). Semi-stochastic gradient descent methods.
arXiv preprint arXiv:1312.1666.

Nemirovsky, A. S. and Yudin, D. B. (1983). Problem complexity and method
efficiency in optimization. A Wiley-Interscience Publication. John Wiley & Sons,
Inc., New York. Translated from the Russian and with a preface by E. R.
Dawson, Wiley-Interscience Series in Discrete Mathematics.

Nesterov, Y. (2004). Introductory Lectures on Convex Optimization: A Basic
Course. Applied Optimization. Springer.

Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of stochastic approximation
by averaging. SIAM J. Control Optim., 30(4):838–855.

Robbins, H. and Monro, S. (1951). A stochastic approxiation method. The Annals
of mathematical Statistics, 22(3):400–407.

Robbins, H. and Siegmund, D. (1985). A convergence theorem for non negative
almost supermartingales and some applications. In Herbert Robbins Selected
Papers, pages 111–135. Springer.

Ruppert, D. (1988). Efficient estimations from a slowly convergent Robbins-Monro
process. Technical report, Cornell University Operations Research and Industrial
Engineering.

Schmidt, M., Le Roux, N., and Bach, F. (2013). Minimizing finite sums with the
stochastic average gradient. Mathematical Programming, 162(1-2):83–112.

Tsybakov, A. B. (2003). Optimal rates of aggregation. In Proceedings of the
Annual Conference on Computational Learning Theory.

34

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	anm1:

