Communication trade-offs for synchronized
distributed SGD with large step size

Aymeric DIEULEVEUT
EPLF, MLO

17 november 2017

Joint work with Kumar Kshitij Patel.



QOutline

1. Stochastic gradient descent - supervised machine
learning - setting, assumptions and proof techniques

2. Synchronized distributed SGD - from mini-batch
averaging to model averaging

3. Optimality of Local-SGD.
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Supervised Machine Learning

» We define the risk (generalization error) as
R(0) :=E, [€(Y, (6, ®(X)))] -

» Empirical risk (or training error):
1 n
RO) = > Llyi, (6, 9(x))).
i=1

» For example, least-squares regression:

n

. 1 2
9'2]'1{!1 n ; (.Yi — (9, ‘D(X,'))) + p(0),

» and logistic regression:

min }1;|og(1+exp(_y,.<o,¢(x,.)>)) T uRo).
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Polyak Ruppert averaging

Introduced by Polyak and Juditsky
(1992) and Ruppert (1988):

_ 1 n
0, = O.
" n+1kZ:0k

» off line averaging reduces the noise effect.

» on line computing: 0,1 = %_HH,,_H + "LHB_,,.
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Assumptions

Goal: mgin F(6) | Recursion: ‘Ok =01 — Mk gk(Bk_l)‘

Al [Strong convexity] The function F is strongly-convex
with convexity constant p > 0.

A2 [Smoothness and regularity] The function F is three
times continuously differentiable with second and third
uniformly bounded derivatives: supgcpa H\F@)(e)m <L
and supycga H|F(3)(0)m < M. Especially F is L-smooth.
Or:

Q1 [Quadratic function] There exists a positive definite
matrix ¥ € R9%9, such that the function F is the
quadratic function 8 — ||X1/2(6 — 6%)|2/2,



Which step size would you use?

Smooth functions.

=m0 m=1/Vk n=1/(pk)

Convex
Strongly Convex
Quadratic



Classical bound: Lyapunov approach
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+ 1l gk (81|
<E (|16« — 6*117] — 2mc(1 — meL) (F'(0x), 0k — 6%)

+ il gk (67)11*
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Classical bound: Lyapunov approach

E (11661 — 6°1°1F] < E [[166 — 01| — 2mc (F'(84), 64 — 6%)

+ 12l g0 |
<E 116k — 0*II°] — 2m(1 — meL) (F'(84), 61 — 6%)

+ kllge(6")1
(F(8x) — F(6%)) < (1 — mei)E [116x — 6°11°] — E [1161s1 — 6%1217i]

+ nikllge(6™)11*

Conclusion: with 7, = ﬁ, telescopic sum + Jensen:

E [F(6«) — F(8*)] < O(1/ k).
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Trivial case: decaying step sizes are not that great !

. ii.d.
Consider least squares: y; = 0* "x; + ¢, g K N(0, o2).

Start with 6y = 6*:
Then:

_ 1&
O — 0" = > Mfnte;.
i=1

Even with large step size n,-z = 1}, CLT is enough to control
that !

Tight control is much easier on the stochastic process
0 — 6* than through the “Lyapunov approach”.
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Other proof: introduce decomposition
Original proof of averaging in Polyak and Juditsky (1992).
F"(0*)(0k—1 — ") = 0,1 — 6
— Nk [8k(Ok—1) — F'(Ok—1)]
+ 1k [F'(Ok—1) — F"(8")(0k—1 — 67)] .
Thus, for ny = n
K

Z [8k(Ok—1) — F'(6k—1)]

i} Ok — 0
F"(6*) (6kx — 6*) = ok ST

+ LS P (Br) — (8Ost — 0%,
k=1

Initial condition - Noise - Non quadrati(i residual

% tight control of ||F”(6*) (6kx — 6*) ||
Correct control of the noise for smooth and strongly convex
All step sizes 17, = Cn—* with a € (1/2,1) lead to O(n~1).
LMS algorithm: constant step-size — statistical optimality.
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Problem: dependence in u

Possible to recover convergence in function values:
0 * L * 12 L "(o*\ (D * 2
F(0k) — F(07) < Sllox — 07| < 272”,: (6%) (6 —67) ||

However:
» Ok for least squares regression (with some more work
(Défossez and Bach, 2015; Dieuleveut et al., 2016; Jain
et al., 2016))
» Possible to recover tight convergence with self
concordance (Bach 2013).
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Synchronized distributed optimization

1. P machines

2. C the number of communication steps ( C phases)

3. for t € [C], worker p € [P] performs N* local steps
For any p € [P], t € [C], k € [N']:

> 0;’,( the model proposed by worker p, at phase t, after k
local iterations.

> 0p0 —00.

>

Gtk_epk 1 ﬁkgpk( Jk— 1)
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Link with classical algorithms.

Algo. Work. Com. Phases T
Local P cC (N'...NC) P Nt
Serial 1 - ) N
P-MBA P C (1,...,1) PC

OSA P | (NY) NP

One Shot Averaging — Mini-Batch Averaging —Local SGD



Aggregation steps: 8" = P Zp_l 0p Nt
At phase t + 1, every worker p € [P] restarts from the
averaged model: 9;‘51 =0.
Goal: Risk of the Polyak-Ruppert averaged iterate:
P Nt

e D ML

PZ: 1N Do

:C



Assumptions

A3 [Oracle on the gradient] Filtration (H}) ¢ k)e[c]x[N]
such that for any (t, k) € [C] x [N!] and 6 € RY,
g;’k+1(0) is a M} ;-measurable random variable and

E | g 41(0)[Hi| = F'(6).

A4 [Uniformly bounded variance]
Elllgs i (0p,4) — F'(0,)11°1 < o2

A5 [Cocoercivity of the random gradients] For any t € [C],
k € [Nf], p € [P]. g} is almost surely L-co-coercive

A6 [Finite variance at the optimal point] There exists
o > 0, such that for any t € [C], k € [N'],p € [P].
E[|lg; (6%)]1*] < o*.

We assume A4 OR A5 + A6



Error decomposition

nkF,/(a*)(gpk 1 9*) = 0p k—1 et,k
— Mk |:gp,k(0p,k—1) el C k—l)]
+ 11k [ F(05 1) = F/(6*)(0h 4y — 67)] -
Thus:
Cc t 0t _ Ot
F//(B*) (9 _0 ) ( p,k—1
srem i (M

— [gpk(Opk—1) — F (0;,/(—1)}

+ [F/(8sr) — F"(67)(65 k1 — o*)}).



Error decomposition

nF"(0*)(0; 41 —0%) =60, 1 — 0,
— Mk [gp,k(ef;,k—ﬂ — F'(6; k—l)]
+ g [F/(05 41) — F"(0")(85 4y — 6%)] -
Thus:
- < N0t 1 — 0,
P (5= 0) = gt o2 (B
— [8pk(6pk—1) — F (Gﬁ,k_1)}
+ [F(Bact) = F/(0") Bt = 07)])-

Noise: Additive + (Multiplicative o ||0}, , — 0*|1%)
Residual: o ||0% , — 6*|?



Results MBA - OSA
Assume Al1,2,3,5,6, and n} = 7 for any (t, k) € [C] x [N'].

Proposition (Mini-batch Averaging)
For any t € [C],

d

—c
He —o

t

o —o*

2 N 201 — (1 —nu)t
| < —mayion - oy 4 2= G

E

~ n?c? T P p2

2 9% _ p* 2 2
:| = ” || Qbias+$(1+ Ql,var(C) + 02,var(c))'

F’’(6%)



Results MBA - OSA
Assume Al1,2,3,5,6, and n} = 7 for any (t, k) € [C] x [N'].

Proposition (Mini-batch Averaging)
For any t € [C],

d

—c
He —o

t

o —o*

2 N 20’n1 — (1 — nu)*
| < —mayion - oy 4 2= G

E

2 9% _ p* 2 2
:| = ” || Qbias+$(1+ Ql,var(C) + 02,var(c))'

F'7 (%) ~ n%C? T P P2

Proposition (One-shot Averaging)
For any p € [P],t =1,k € [N],

* 2 * 1—(1- k
i [Johu = 0° ] < @ — 0w — 071" 4 2022 = m )
— P |6° — 6%|? o
E H(O —0 ) ,‘5 27,\1201,;‘-.5 + T(l + Ql,var(N) + Q2,var(N))
F"(G*) 7’




With
L277

2
leas =1 + - Heo 0* ﬁv

LG P M2 XPn?o?

Ql,var(x) =— 4+ _— Qz,Var(X) = 2
v Xnp Iz



With

2 2
leas—]-'i'iHeo 0* + TI’
uP
L2y P M2 XPn?o?
Ql,var(x) =— 4+ _— Qz,Var(X) = 2 .
v Xnp Iz

» Asymptotically equivalent for P constant.

» Non asymptotic result (vs Godichon and Saadane
(2017))

» Proposition 1 corrects Bach 2011, with Needel 2014
remark (see also Dieuleveut Durmus 2017).

» “the noise is the noise and SGD doesn’t care” (for
asynchronous SGD, (Duchi et al., 2015))

» Extension to the on-line setting possible



Bridging the gap: convergence of Local-SGD:
simple case

Assume Q1, A3, A4. For p € [P],t € [C],k € [N1],

d

& [[06 — 0[] < (1 — mia) " 100 — 0°

At—1

0 -0

2 —1 2 01 (1= np)M
} <@ =)™ 60 — 0** + Uo;n ( MW)

t—1
totn 1-(—n)™ 1-(1—nu
*° Pu ©

long term reduced variance local iteration variance

Corollary: If for all t € [C], N* < ﬁ, then the second order moment of
: .. . ANST 4k
0:,,,( admits the same upper bound as the mini-batch iterate 6,5 up to

a factor of 2. As a consequence, Local-SGD performs optimally.
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Example

With constant number of local steps Nt = N, and learning
[5

— a?
rate 7 = o= in order to obtain an optimal O(%) parallel
convergence rate, local-SGD can communicate O( )

times less as compared to mini-batch averaging.



Quadratic + additive noise <> too simple and un-realistic

> Least square regression: quadratic + multiplicative noise
(Q1, A3, A5, A6)
> Logistic regression: non quadratic 4+ uniformly bounded
variance (Al, A2, A3, A4)
Key lemmas: control how the restart point of each phase
differs from its mini-batch equivalent.
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Quadratic + additive noise <> too simple and un-realistic

> Least square regression: quadratic + multiplicative noise
(Q1, A3, A5, A6)

> Logistic regression: non quadratic 4+ uniformly bounded
variance (Al, A2, A3, A4)

Key lemmas: control how the restart point of each phase
differs from its mini-batch equivalent.

Theorem
Under either of the following sets of assumptions, the

convergence of the Polyak Ruppert iterate ﬁc is as good as
in the mini-batch case, up to a constant:
1. Assume Q1, A3, A5, A6, and for any t € [C], Nt < WLP
and un’Nj = O(1).
2. Assume Al, A2, A3, A4, and for any t € [C],

t : 1 1
Nt (ma_e]w>
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» Non asymptotic analysis of Local-SGD
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With “large” step sizes.

v

better understanding of communication trade-offs —
lower bounds on communication frequency

v

Similar results for the on-line case (a bit faster, and
much more painful for the eyes).



Conclusion

Conclusion
» Non asymptotic analysis of Local-SGD

v

With “large” step sizes.

v

better understanding of communication trade-offs —
lower bounds on communication frequency

Similar results for the on-line case (a bit faster, and
much more painful for the eyes).

v

Directions:
> Improve to optimal rates in terms of u with self
concordance
> Proving that those bounds are tight (dangerous to
compare upper bounds!!)
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