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• Stochastic gradient descent: popular method, very important in ML.
• Large steps size and averaging achieve optimal performance for smooth and strongly convex function
• Distributed setting: very important and popular today.

Goal: minimize F smooth.
Setting:
• P machines, each of them running SGD.
• C the number of communication steps.
• between two communication rounds (phase) t ∈ [C], for any worker p ∈ [P ], we perform N t local steps of SGD.

Algorithm:
• Initialisation: All machines initially start from the same point: for any p ∈ [P ], w1

p,0 = w0.
•wt

p,k the model proposed by worker p, at phase t, after k local iteration
• Local-iterations: for any p ∈ [P ], t ∈ [C], k ∈ [N t]:

wt
p,k = wt

p,k−1 − ηtkgtp,k(wt
p,k−1). (1)

• Aggregation steps: averaging the final local iterates of a phase:t ∈ [C], ŵt = 1
P

∑P
p=1w

t
p,N t.

• Restart point: every worker p ∈ [P ] restarts from the averaged model: wt+1
p,0 := ŵt.

• Output: Polyak-Ruppert (PR) averaged iterate:
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Local SGD

Comparison setting: fixed total number of gradients T , with P workers.

• One-Shot Averaging (OSA): C = 1 communication, and (N 1) = T/P

• P -mini-batch averaging (MBA), C = T/P communication rounds, and (N t)t∈[C] = (1, . . . . , 1).

Local-SGD is seen as a compromise between OSA and MBA.

2 special “extreme” cases: MBA and OSA

A1: Strong convexity F is µ > 0-strongly-convex
A2: Smoothness and regularity F is F is L-smooth + C3, with uniformly bounded derivatives: supw∈Rd

∣∣∣∣∣∣F (3)(w)
∣∣∣∣∣∣ <

M .
Q1: Quadratic function F is the quadratic function.
A3: Oracle on the gradient For any (t, k) ∈ [C]× [N t] and w ∈ Rd, E[gtp,k+1(w

t
p,k)|wt

p,k] = F ′(wt
p,k).

For any fixed w the functions (gtp,k)(t,k)(w) are i.i.d. .
A4: Uniformly bounded variance (Additive noise) The variance of the error, E[

∥∥gtp,k(wt
p,k)− F ′(wt

p,k)
∥∥2] ≤ σ2∞.

A5: Cocoercivity of the random gradients For any p, t, k, gtp,k is almost surely L-co-coercive: for any w1,w2 ∈ Rd,
L〈gtp,k(w1)− gtp,k(w2)w1 −w2〉 ≥

∥∥gtp,k(w1)− gtp,k(w2)
∥∥2.

A6: Finite variance at w? ∃σ ≥ 0, s.t. for any t, k, p, E[
∥∥gtp,k(w?)

∥∥4] ≤ σ4.
Learning rate. 2ηtkL ≤ 1. 2 settings: finite horizon (FH) and on-line.

Assumptions

• Local SGD [7]: small learning rate (1/(µt)), µ un-known in practice.
• Experimental [8].
• Parallel SGD (non asymptotic) [2].
• Proof technique [5, 1, 4] (non distributed)

Related Work

“Decomposition”:

ηtkF
′′(w?)(wt

p,k−1 −w?) = wt
p,k−1 −wt

p,k − ηtk[gtp,k(wt
p,k−1)− F ′(wt

p,k−1)]− ηtk[F ′(wt
p,k−1)− F ′′(w?)(wt

p,k−1 −w?)].

(2)

Gives:
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3 terms: Initial Conditions, Noise, Residual
Noise and Residual depend on

∥∥wt
p,k−1 −w?

∥∥ ← control this quantity.

Sketch of the proof [6]

Define
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µ
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∥∥2 + L2η

µP
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L2η

µ
+

P

Xηµ
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µ2
.

Proposition 1.Mini-batch Averaging Assume A1,2,3,5,6 for any t ∈ [C],

E
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Proposition 2.One-shot Averaging Assume A1,2,3,5,6 for p ∈ [P ], t = 1, k ∈ [N ],
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Convergence: non asymptotic comparison of MBA and OSA

1. Identical asymptotic behavior fixed P : initial condition (“bias”) + variance decomposition.

• For the “local-process”: Eqs. (4),(6): bias remains the same, but that the variance of the local process is reduced by a
factor P .
• For the averaged process: Eqs. (5), (7) bias term is the same, and for η = X−α, 0.5 < α < 1, X ∈ {N,C}, the speed

at which the variance is forgotten is the same (σ2T−1 as T →∞).
“the noise is the noise and SGD doesn’t care”
2. Higher order terms matter
•With Qvar(N) = Qvar(C) the remaining terms are respectively P or P 2 times smaller for mini-batch.
• explanation of why mini-batch SGD outperforms one shot averaging in practice.
• Necessity of non asymptotic analysis

3. Interpretation, P, T →∞. Remaining terms are not always negligible. MBA could outperform OSA by a factor as
large as P .
4. Convergence in function values? with F (w C)− F (w?) ≤ Lµ−2||F ′′(w?)(w C −w?)||2

• sub-optimal dependence in µ
• but classical-proofs (ηt ∝ 1/(µt)) do not get optimal asymptotic behavior of OSA → if the extreme are not tight,

meaningless comparison.
4. Comparing upper bounds: caution !
5. Rate in online setting better but tradeoffs are the same.

Comments

Proposition 3 (Local-SGD: Quadratic Functions with Bounded Noise). Under Assumptions Q1, A3, A4, we have
the following bound for Local-SGD: for any p ∈ [P ], t ∈ [C], k ∈ [N t],
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Comments:
• proof: introduce a ghost sequence [3].
• “just after” communication, ŵt → same bound as mini-batch case

• Local iterates wt
p,k → variance composed of a “long term” reduced variance, → σ2∞η

Pµ and extra variance ησ2∞
1−(1−ηµ)k

µ ,
increasing within the phase, and is upper bounded by σ2∞η2k.

Local SGD - “simple” assumptions - intuition

Corollary 1. If for all t ∈ [C], N t ≤ (µηP )−1, then

• the second order moment of wt
p,k admits the same upper bound as the mini-batch iterate ŵ

N t−1
1 +k

MB (Equation (4))
up to a constant factor of 2.

• As a consequence, Equation (5) is still valid, and Local-SGD performs “optimally”.

Interpretation
• if the algorithm communicates often enough, the convergence of the Polyak Ruppert iterate w C is as good as in the

mini-batch case, thus it is “optimal”.
• more communication steps are necessary when more machines are used.
• Example With constant number of local steps N t = N , and learning rate η = c(NC)−1/2 in order to obtain an opti-

mal O(σ2T−1) parallel variancea rate, local-SGD communicates O(
√
NC/(Pµ)) times less as compared to mini-batch

averaging.
ain online setting, the same example would hold, resulting in a O(σ

2

T ) convergence rate (not only variance).

Optimality of Local-SGD, “simple” assumptions

Proposition 4. Under either of the following sets of assumptions, the convergence of the Polyak Ruppert iterate
w C is as good as in the mini-batch case, up to a constant:

• Assume Q1, A3, A5, A6, and for any t ∈ [C], N t ≤ (µηP )−1 and µη2N t
1 = O(1).

• Assume A1,A2, A3, A4, and for any t ∈ [C], N t ≤ inf
(
(ηPME[

∥∥ŵt −w?
∥∥])−1, (µηP )−1).

Interpretation.
• Optimal rates if the communications happen often enough.
• Corresponds to practice [8]. But hard to use in practice.
• The first set of assumption is valid for LSR, the second for LR.
• In the second case, the maximal number of local steps is smaller than before, by a factor µ−1, but the allowed maximal

number of local steps can increase along with the epochs, as E[
∥∥ŵt −w?

∥∥] is typically decaying.

Optimality of Local-SGD, general assumptions
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