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Local SGD

e Stochastic gradient descent: popular method, very important in ML.
e Large steps size and averaging achieve optimal performance for smooth and strongly convex function

o . very important and popular today.

Goal: minimize F' smooth.
Setting:

e P machines, each of them running SGD.
e (' the number of communication steps.

e between two communication rounds (phase) t € [C], for any worker p € [P], we perform N' local steps of SGD.

Algorithm:
e Initialisation: All machines initially start from the same point: for any p € [P], ’w]lj,o = wy.

o the model proposed by worker p, at phase ¢, after k local iteration

e Local-iterations: for any p € [P],t € [C], k € [N']:

Wy = Wy — ey (W) 1) 1)

o Aggregation steps: averaging the final local iterates of a phase:t € [C], w' = 5 Zp 1pr -

e Restart point: every worker p € |P] restarts from the averaged model: thgl = W'

e Output: Polyak-Ruppert (PR) averaged iterate:
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2 special “extreme” cases: MBA and OSA

Comparison setting: tixed total number ot gradients ', with & workers.

e One-Shot Averaging (OSA): C' =1 communication, and (N') =T/P

e P-mini-batch averaging (MBA), C = T/ P communication rounds, and (N*);cic1 = (1,....,1).
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Local-SGD is seen as a compromise between OSA and MBA.
Assumptions

Al: Strong convexity [ is ;1 > 0-strongly-convex

A2: Smoothness and regularity F' is I is L-smooth + C?, with uniformly bounded derivatives: sup,, g H‘F(?’)(fw)m <
M.

Q1: Quadratic function F' is the quadratic function.

A3: Oracle on the gradient For any (t,k) € [C] x [N'] and w € RY, E[g} , . (w! )|w! ] = F'(w! ).

For any fixed w the functions (g/ ;)¢ ) (w) are i.i.d.

A4: Uniformly bounded variance (Additive n0|se) The variance of the error, E| ngk ) — Fl(w), H | <o%

Ab: Cocoercivity of the random gradients For any p, ¢, £, gpk is almost surely L-co- coercwe for any wq, woy € ]Rd,

2
L{g} o(w1) — ¢! (wa)wy — wa) > ||g! (w1) — g} (w))]| ™

AG6: Finite variance at w* Jo > 0, s.t. for any ¢, k, p, E[Hg]t)?k(w*)Hll] <ot
Learning rate. 2, L < 1. 2 settings: finite horizon (FH) and on-line.
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Related Work

e Local SGD [7]: small learning rate (1/(ut)), p un-known in practice.
e Experimental [8].

e Parallel SGD (non asymptotic) [2].

e Proof technique [5, 1, 4] (non distributed)

Sketch of the proof [6]

“Decomposition”:

UIZF”("U*)@U;/«A —w’) = w;,k—l - ’wfg,k - 772[9;,/{<w;,k—1) F'(w, wy, ;1)) — N[ F'(w, Wy, 1) — F”<w*)<w;f),k—1 —w’)].
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3 terms: Initial Conditions, Noise,
Noise and depend on wa;’k_l — ’w*H < control this quantity.

Convergence: non asymptotic comparison of MBA and OSA
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Proposition 1. Mini-batch Averaging Assume A1,2,3,5,6 for anyt € |C],

e 2 ; a2 20°n1 — (1 —nu)
E || }gu—nm Jwo = |+ = (4)
T var var C
D HF// H Hw 20’2" H Qv + T( Ql (C >+Q2, ( )). (5)

Proposition 2. One-shot Averaging Assume A1,2,3,5,6 for p € [P|,t =1k € [N],

, 1 —(1—nu)*
E _!w;,k—w*\ﬂ < (1= ) — w4 20— 6)
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Comments

1. Identical asymptotic behavior fixed P: initial condition (“bias”) + variance decomposition.

e For the “local-process”: Egs. (4),(6): bias remains the same, but that the variance of the local process is reduced by a
factor P.

e For the averaged process: Eqgs. (5), (7) bias term is the same, and forn = X%, 0.5 < a < 1, X € {N,C}, the speed
at which the variance is forgotten is the same (o*T! as T' — o).

“the noise is the noise and SGD doesn’t care”
2. Higher order terms matter

e With Q0 (N) = Quar(C) the remaining terms are respectively /” or /7 times smaller for mini-batch.
e explanation of why mini-batch SGD outperforms one shot averaging in practice.
e Necessity of non asymptotic analysis

3. Interpretation, P, T — oo. Remaining terms are not always negligible. MBA could outperform OSA by a factor as
large as P.
4. Convergence in function values? with F(w®) — F(w*) < Lp 2||F"(w*)(w ¢ — w*)||?

e sub-optimal dependence in u

e but classical-proofs (7; oc 1/(ut)) do not get optimal asymptotic behavior of OSA — if the extreme are not tight,
meaningless comparison.

4. Comparing upper bounds: caution !
5. Rate in online setting better but tradeoffs are the same.

Local SGD -

Proposition 3 (Local-SGD: Quadratic Functions with Bounded Noise). Under Assumptions Q1, A3, A4, we have
the following bound for Local-SGD: for any p € [P],t € [C], k € [NY],

“simple” assumptions - intuition
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Comments:

e proof: introduce a ghost sequence [3].

e “just after” communication, @' — same bound as mini-batch case

1—(1—nu)*

e Local iterates w ;. — variance composed of a “long term” reduced variance, — OOM” and extra variance no? p

increasing Within the phase, and is upper bounded by o2 n?k.

Optimality of Local-SGD, “simple” assumptions

Corollary 1. If for allt € [C], N' < (unP)™!, then
t—1
o the second order moment of w), , admits the same upper bound as the mini-batch iterate fwﬁB k (Equation (4))
up to a constant factor of 2.
o As a consequence, Equation (5) is still valid, and Local-SGD performs “optimally”.
Interpretation

o if the algorithm communicates often enough, the convergence of the Polyak Ruppert iterate w ¢ is as good as in the
mini-batch case, thus it is “optimal”.

e more communication steps are necessary when more machines are used.

o Example With constant number of local steps N* = N, and learning rate = ¢(NC)~/? in order to obtain an opti-
mal O(o*T ) parallel variance® rate, local-SGD communicates O(v/ NC/(Pp)) times less as compared to mini-batch
averaging.

“in online setting, the same example would hold, resulting in a O(%Q) convergence rate (not only variance).

Optimality of Local-SGD, general assumptions

Proposition 4. Under either of the following sets of assumptions, the convergence of the Polyak Ruppert ilerate
w © is as good as in the mini-batch case, up to a constant:

o Assume Q1, A3, A5, A6, and for anyt € [C], N' < (unP)~! and un* N = O(1).

o Assume A1,A2, A3, A/, and for any t € [C], N' < inf ((nPME[

Interpretation.

C— w7 (unP) 7).

e Optimal rates if the communications happen often enough.
e Corresponds to practice [8]. But hard to use in practice.
e The first set of assumption is valid for LSR, the second for LR.

e In the second case, the maximal number of local steps is smaller than before, by a factor ,1[1, but the allowed maximal
number of local steps can increase along with the epochs, as ]E[Hﬁ)t — fw*H] is typically decaying.
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