Debiasing Averaged Stochastic Gradient Descent to handle missing values
Séminaire Parisien de Statistiques

Aymeric Dieuleveut3

with Aude Sportisse1 Claire Boyer1,2 Julie Josse4,5

1Laboratoire de Probabilités Statistique et Modélisation, Sorbonne Université
2Département de Mathématiques et applications, Ecole Normale Supérieure
3Centre de Mathématiques Appliquées, Ecole Polytechnique
4INRIA

8th February 2021
Motivation: Large-scale incomplete data

- **Large-scaling**: large n (number of observations), large d (dimension of the observations).
 - ⇒ **Stochastic / online learning algorithms**
- **Incompleteness** for many reasons **Delete observations with NA → keep only 5% of the rows.:(**
 - ⇒ **Simpler algorithmic solutions?**

Traumabase: 15,000 patients/ 250 var/ 15 hospitals

<table>
<thead>
<tr>
<th>Center</th>
<th>Age</th>
<th>Sex</th>
<th>Weight</th>
<th>Height</th>
<th>Heart rate</th>
<th>Lactates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaujon</td>
<td>54</td>
<td>m</td>
<td>85</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Lille</td>
<td>33</td>
<td>m</td>
<td>80</td>
<td>1.8</td>
<td>180</td>
<td>4.8</td>
</tr>
<tr>
<td>Pitie</td>
<td>26</td>
<td>m</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3.9</td>
</tr>
</tbody>
</table>

NA: Not Available.
Outline

1. SGD with missing data

2. Convergence results
 - Without missing values: rates and proofs
 - Convergence of Algorithm 1
 - Rates for empirical risk? Beyond one pass?
 - Adaptation to estimated missing probabilities

3. Experiments
Setting

• \((X_i, y_i)_{i \geq 1} \in \mathbb{R}^d \times \mathbb{R}\) i.i.d. observations

• Linear regression model

\[y_i = X_i^T \beta^* + \epsilon_i, \]

parametrized by \(\beta^* \in \mathbb{R}^d\), with a noise term \(\epsilon_i \in \mathbb{R}\).

• Loss function: \(f_i(\beta) = (\langle X_i, \beta \rangle - y_i)^2 / 2\).

• **True risk minimization:**

\[
\beta^* = \arg \min_{\beta \in \mathbb{R}^d} \left\{ R(\beta) := \mathbb{E}_{(X_i, y_i)} [f_i(\beta)] \right\}
\]

• **Stochastic gradient method.**

 . At the heart of Machine Learning.

 . Very well suited for large \(d\) and \(n\).
Objective - missing data

- Problem: \((X_i, y_i)\)’s partially known
 1. What should we estimate?

- True risk minimization:

\[
\beta^* = \underset{\beta \in \mathbb{R}^d}{\arg \min} \left\{ R(\beta) := \mathbb{E}(X_i, y_i) [f_i(\beta)] \right\}
\]

2. How to adapt algorithms to the missing data case?
Optimization without missing values

Stochastic gradient descent

- **Stochastic gradient descent (SGD):** using unbiased estimates of $\nabla F(\beta_{k-1})$.

\[
\beta_k = \beta_{k-1} - \alpha g_k(\beta_{k-1})
\]

where α is the step-size and $\mathbb{E}[g_k(\beta_{k-1})|\mathcal{F}_{k-1}] = \nabla F(\beta_{k-1})$, $\mathcal{F}_{k-1} = \sigma(X_1, y_1, \ldots, X_{k-1}, y_{k-1})$ the filtration.

- **Averaged SGD:** using the Polyak-Ruppert averaged iterates.

\[
\beta_k = \beta_{k-1} - \alpha g_k(\beta_{k-1})
\]

\[
\bar{\beta}_k = \frac{1}{k+1} \sum_{i=0}^{k} \beta_i
\]

✓ It scales with large data.
Optimization without missing values

Stochastic gradient descent

- **Stochastic gradient descent (SGD):** using unbiased estimates of $\nabla F(\beta_{k-1})$.

 $$\beta_k = \beta_{k-1} - \alpha g_k(\beta_{k-1})$$

 where α is the step-size and $E[g_k(\beta_{k-1})|\mathcal{F}_{k-1}] = \nabla F(\beta_{k-1})$, $\mathcal{F}_{k-1} = \sigma(X_1:, y_1, \ldots, X_{k-1}:, y_{k-1})$ the filtration.

- **Averaged SGD:** using the Polyak-Ruppert averaged iterates.

 $$\beta_k = \beta_{k-1} - \alpha g_k(\beta_{k-1})$$

 $$\bar{\beta}_k = \frac{1}{k+1} \sum_{i=0}^{k} \beta_i$$

✓ It scales with large data.

2 questions

- Obtaining unbiased stochastic gradients with missing data?
- Deriving rates of convergence.
Missing values setting

Formalism

• \(D_i : \in \{0, 1\}^d \) binary mask, such that

\[
D_{ij} = \begin{cases} 0 & \text{if the } (i, j)\text{-entry is missing} \\ 1 & \text{otherwise.} \end{cases}
\]

• Access to \(X_i^{NA} :\in (\mathbb{R} \cup \{NA\})^d \) instead of \(X_i :\)

\[
X_i^{NA} := X_i : \odot D_i : + NA(1_d - D_i :),
\]

\(\odot \) element-wise product, \(1_d = (1 \ldots 1)^T \in \mathbb{R}^d \), \(NA \times 0 = 0 \), \(NA \times 1 = NA \).
Missing values setting

Mechanism assumption

- **Heterogeneous** Missing Completely At Random setting (MCAR) \rightarrow Bernoulli mask

$$D = (\delta_{ij})_{1 \leq i \leq n, 1 \leq j \leq d} \quad \text{with} \quad \delta_{ij} \sim B(p_j),$$

with $1 - p_j$ the probability that the j-th covariate is missing.

✓ **different missing probability** for each covariate

Heterogeneous case: $p_1 = 0.5, p_2 = 0.67, p_3 = 0.83, p_4 = 0.33, p_5 = 0.92$.

Homogeneous case: $p = 0.65$.
Dealing with missing values

Existing work

- Expectation Maximization algorithm\(^1\) (maximization of the observed likelihood)\(^\text{X}\) parametric assumptions: Gaussian assumption for the covariates, no solution available for large dimension \(p\).\(^\text{X}\)
- Matrix completion (predicting NA before applying usual algorithms)\(^\text{X}\) it can lead to bias and underestimation of the variance of the estimate\(^2\).
- Imputing naively by 0 and modifying the usual algorithms to account for the imputation error: in particular, a modified SGD\(^3\).

Dealing with missing values

Our strategy inspired by Ma et Needell

Online-streaming: for a new observation \((X_{i;NA}^{i}, y_i)\)

- **Imputing the missing values by 0:**
 \[
 \tilde{X}_i = X_{i;NA}^{i} \odot D_i = X_i \odot D_i: \text{imputed covariates}
 \]

- Using a **debiased gradient** for the averaged SGD:
 Find \(\tilde{g}_k(\beta_k)\) such that
 \[
 \mathbb{E} [\tilde{g}_k(\beta_{k-1}) | \mathcal{F}_{k-1}] = \nabla R(\beta_{k-1})
 \]
Dealing with missing values

Our strategy inspired by Ma et Needell

Online-streaming: for a new observation \((X_{i:}^{\text{NA}}, y_i)\)

- **Imputing the missing values by 0.**
 \[
 \tilde{X}_{i:} = X_{i:}^{\text{NA}} \odot D_{i:} = X_{i:} \odot D_{i:} \text{ imputed covariates}
 \]

- Using a **debiased gradient** for the **averaged SGD**:
 Find \(\tilde{g}_k(\beta_{k-1})\) such that
 \[
 \mathbb{E}[\tilde{g}_k(\beta_{k-1}) | \mathcal{F}_{k-1}] = \nabla R(\beta_{k-1})
 \]
 - \(\mathcal{F}_{k-1} = \sigma(X_{1:}, y_1, D_{1:}, \ldots, X_{k-1:}, y_{k-1}, D_{k-1:})\)
 - \(\nabla R(\beta_{k-1}) = \mathbb{E}_{(x_k:y_k)}[X_k:(X_k^T\beta_{k-1} - y_k)]\)

- No access to \(X_{k:}\), only to \(\tilde{X}_{k:}\).

- Another source of randomness: \(\mathbb{E} = \mathbb{E}(x_k:y_k), D_k: \overset{\text{indep}}{=} \mathbb{E}(x_k:y_k)\mathbb{E}_{D_k:}\)

- \(\mathbb{E}_{D_k:} |\mathcal{F}_{k-1} \sim \mathbb{E}_{D_k:}\)

 ✓ **Mask at step** \(k\) **independent from the previous constructed iterate.**
Dealing with missing values

Our strategy inspired by Ma et Needell

Online-streaming: for a new observation \((X_{i:}^{NA}, y_i)\)

- **Imputing the missing values by 0.**
 \[
 \tilde{X}_{i:} = X_{i:}^{NA} \odot D_{i:} = X_{i:} \odot D_{i:} \text{ imputed covariates}
 \]

- **Using a debiased gradient for the averaged SGD:**
 Find \(\tilde{g}_k(\beta_k)\) such that
 \[
 \mathbb{E}[\tilde{g}_k(\beta_{k-1}) | \mathcal{F}_{k-1}] = \nabla R(\beta_{k-1})
 \]

Thus

\[
\mathbb{E}_{D_k}: [\tilde{X}_k:] = \mathbb{E}_{D_k}: \begin{bmatrix}
(\delta_{k1}X_{k1}) \\
\vdots \\
(\delta_{kd}X_{kd})
\end{bmatrix} = \begin{bmatrix}
p_{1}X_{k1} \\
\vdots \\
p_{d}X_{kd}
\end{bmatrix}
\]

Thus

\[
\mathbb{E}_{D_k}: [P^{-1}\tilde{X}_k:] := \begin{bmatrix}
p_{1}^{-1} & \cdots & \\
\vdots & \ddots & \\
p_{d}^{-1} & \cdots & p_{d}
\end{bmatrix} \begin{bmatrix}
p_{1}X_{k1} \\
\vdots \\
p_{d}X_{kd}
\end{bmatrix} = X_k:
\]
Dealing with missing values

Our strategy inspired by Ma et Needell

Online-streaming: for a new observation \((X^\text{NA}_i, y_i)\)

- **Imputing the missing values by 0.**
 \[
 \tilde{X}_i = X^\text{NA}_i \odot D_i = X_i \odot D_i \quad \text{imputed covariates}
 \]

- **Using a debiased gradient for the averaged SGD:**
 Find \(\tilde{g}_k(\beta_{k-1})\) such that \(\mathbb{E}[\tilde{g}_k(\beta_{k-1}) \mid \mathcal{F}_{k-1}] = \nabla R(\beta_{k-1})\)

One obtains

\[
\tilde{g}_k(\beta_{k-1}) = P^{-1}\tilde{X}_k: \left(\tilde{X}_k^T P^{-1} \beta_{k-1} - y_k\right) - (I - P)P^{-2}\\text{diag}\left(\tilde{X}_k: \tilde{X}_k^T\right) \beta_{k-1}.
\]

\[
\nabla F(\beta) = \begin{pmatrix} x^T \beta - y \end{pmatrix} x
\]

\[
\mathbb{E}\left[y^T P \tilde{X} \right] = y^T X
\]
Algorithm 1 Averaged SGD for Heterogeneous Missing Data

Input: data \tilde{X}, y, α (step size)

Initialize $\beta_0 = 0_d$.

Set $P = \text{diag} ((p_j)_{j \in \{1, \ldots, d\}}) \in \mathbb{R}^{d \times d}$.

for $k = 1$ **to** n **do**

$$\tilde{g}_k(\beta_{k-1}) = P^{-1} \tilde{X}_k: (\tilde{X}_k^T P^{-1} \beta_{k-1} - y_k) - (I - P)P^{-2} \text{diag} (\tilde{X}_k: \tilde{X}_k^T) \beta_{k-1}$$

$$\beta_k = \beta_{k-1} - \alpha \tilde{g}_k(\beta_{k-1})$$

$$\bar{\beta}_k = \frac{1}{k+1} \sum_{i=0}^{k} \beta_i = \frac{k}{k+1} \beta_{k-1} + \frac{1}{k+1} \beta_k$$

end for

- $p = 1 \Rightarrow P^{-1} = I_d$ standard least squares stochastic algorithm.
- Computation cost for the gradient still weak.
- Trivially extended to ridge regularization (no change for the gradient): $\min_{\beta \in \mathbb{R}^d} R(\beta) + \lambda \|\beta\|^2, \lambda > 0$
SGD with NA: Take home message

- We aim to estimate β_* with missing data.
- We consider a heterogeneous MCAR framework.
- We provide an unbiased gradient oracle of the true risk.
- Only for Least Squares Regression.
- Requires independent points at each iteration: only for the first pass.
- Requires the knowledge of P.

? Convergence.
1. **SGD with missing data**

2. **Convergence results**
 - Without missing values: rates and proofs
 - Convergence of Algorithm 1
 - Rates for empirical risk? Beyond one pass?
 - Adaptation to estimated missing probabilities

3. **Experiments**
Optimization **without** missing values

convergence rates and proof techniques

If F is convex and L-smooth.\(^5\)

\[\times \quad \text{Convergence rate: } \mathcal{O}(k^{-1/2}) \]

If F is convex and L-smooth, μ-strongly convex.

\[\times \quad \text{Convergence rate: } \mathcal{O}((\mu k)^{-1}), \text{ with } \mu \text{ known.} \]

If F is convex and quadratic, e.g., for least-squares regression\(^6\).

\[\checkmark \quad \text{Convergence rate: } \mathcal{O}(k^{-1}) \]

? Why do we get a faster rate for quadratic functions?

? What does it require?

Faster rates for Least Squares regression

- Typical proof for convex:

\[\mathbb{E} \left[\frac{\| \beta_k - \beta_* \|^2}{\| \beta_{k-1} - \beta_* \|^2} \right] \]

\[- 2 \gamma \left\langle \nabla F(\beta_{k-1}), \beta_{k-1} - \beta_* \right\rangle \]

\[- \frac{\gamma^2}{\beta} \| g_n(\beta_{n-1}) \|^2 \]

\[\nabla f + \Sigma_n \]

\[\beta_n \to \beta_* = \beta_{\star} \quad \text{linearly fast} \]

\[\beta_{\pi_0}^* \left(\nabla f(\beta) \right) = 0 \]

\[\Rightarrow \text{I can lose a factor of } N \text{ and raise cut-off!} \]
Faster rates for Least Squares regression

• Typical proof for quadratic:

\[P \hat{\beta}_k = \beta_{n+1} - \alpha \nabla F(\beta_{k+1}) + \alpha \varepsilon. \]

\[\alpha H (\hat{\beta}_d - \hat{\beta}_x) = \beta_{n+1} - \beta_n + \alpha \varepsilon \]

\[\left(\overline{\beta_m} - \beta_x \right) = H^{-1} \frac{\overline{B_0} - \overline{B}_x}{\alpha n} + \frac{1}{n} \hat{\varepsilon} \left(H^{-1} \varepsilon \right) \]

\[\| \tilde{\varepsilon} \| \leq \| H^\top \tilde{\varepsilon} \|^2 = \text{tr} \left(H^\top \tilde{\varepsilon} \tilde{\varepsilon}^\top \right) \] is bounded
Summary

SGD

Least squares \rightarrow unbiased gradient oracle with NA

Fast rate of convergence
Theoretical results

Technical lemmas

- Goal: establish a convergence rate.
- Assumptions on the data: \((X_k, y_k) \in \mathbb{R}^d \times \mathbb{R}\) i.i.d., \(\mathbb{E}[\|X_k\|^2]\) and \(\mathbb{E}[y_k^2]\) finite, \(H := \mathbb{E}(x_k,y_k)\mathbb{E}(x_k:X_k^T)\) invertible.

Lemma: noise induced by the imputation by 0 is structured

\((\tilde{g}_k(\beta^*))_k\) with \(\beta^*\) is \(\mathcal{F}_k\)-measurable and \(\forall k \geq 0\),
- \(\mathbb{E}[\tilde{g}_k(\beta^*) | \mathcal{F}_{k-1}] = 0\) a.s.
- \(\mathbb{E}[\|\tilde{g}_k(\beta^*)\|^2 | \mathcal{F}_{k-1}]\) is a.s. finite.
- \(\mathbb{E}[\tilde{g}_k(\beta^*)\tilde{g}_k(\beta^*)^T] \leq C(\beta^*) = c(\beta^*)H\).

Lemma: \((\tilde{g}_k(\beta^*))_k\) are a.s. co-coercive

For any \(k\),
- \(\tilde{g}_k\) is \(L_k,D\)-Lipschitz
- there exists a random primitive function \(\tilde{f}_k\) which is a.s. convex
Theoretical results
Convergence results

Theorem: convergence rate of $O(k^{-1})$, streaming setting

Assume that for any i, $\|X_i\| \leq \gamma$ almost surely for some $\gamma > 0$. For any constant step-size $\alpha \leq \frac{1}{2L}$, ensures that, for any $k \geq 0$:

$$E[R(\bar{\beta}_k) - R(\beta^*)] \leq \frac{1}{2k} \left(\frac{\sqrt{c(\beta^*)d}}{1 - \sqrt{\alpha}L} + \frac{||\beta_0 - \beta^*||}{\sqrt{\alpha}} \right)^2,$$

- $L := \sup_{k,D}$ Lipschitz constants of \tilde{g}_k
- $p_m = \min_{j=1,...,d} p_j$ minimal probability to be observed
- $c(\beta^*) = \frac{\text{Var}(\epsilon_k)}{p_m^2} + \left(\frac{2 + 5p_m(1 - p_m)}{p_m^3} \right)^2 \gamma^2 \|\beta^*\|^2$
 \[\text{increasing with the missing values rate}\]
Theoretical results

Comments

• Optimal rate for least-squares regression.

• In the complete case: same bound as Bach and Moulines.

• Bound on the iterates for the ridge regression ($\beta \rightarrow R(\beta) + \lambda \|\beta\|^2$ is 2λ-strongly convex).

$$
\mathbb{E} \left[\left\| \bar{\beta}_k - \beta^* \right\|^2 \right] \leq \frac{1}{2\lambda k} \left(\frac{\sqrt{c(\beta^*)d}}{1 - \sqrt{\alpha L}} + \frac{\|\beta_0 - \beta^*\|}{\sqrt{\alpha}} \right)^2.
$$
Fewer complete observations is better than more incomplete ones: is it better to access 200 incomplete observations (with a probability 50% of observing) or to have 100 complete observations?
Theoretical results
What impact of missing values?

Fewer complete observations is better than more incomplete ones: is it better to access 200 incomplete observations (with a probability 50% of observing) or to have 100 complete observations?

The variance bound for 200 incomplete observations (with a probability 50% of observing) is twice as large as for 100 complete observations.

Open Questions: Lower bound!

Possible Approach Gaussian assumptions on the data distribution: use the distribution of the full data knowing observed data.
Theoretical results

What impact of missing values?

We do better than discarding all observations which contain missing values:

\[
X = \begin{pmatrix}
X_1 & X_2 & X_3 \\
12 & 28 & 31 \\
\text{NA} & 23 & 89 \\
32 & 6 & 24 \\
\vdots & \vdots & \vdots \\
\text{NA} & 3 & 7 \\
\end{pmatrix}
\]

\[
X = \begin{pmatrix}
X_1 & X_2 & X_3 \\
12 & 28 & 31 \\
\text{NA} & 23 & 89 \\
32 & 6 & 24 \\
\vdots & \vdots & \vdots \\
\text{NA} & 3 & 7 \\
\end{pmatrix}
\]
Theoretical results

What impact of missing values?

We do better than discarding all observations which contain missing values:

Example in the homogeneous case with p the proportion of being observed.

- keeping only the complete observations, any algorithm:
 - number of complete observations: $k_{co} \sim \mathcal{B}(k, p^d)$.
 - statistical lower bound: $\frac{\text{Var}(\epsilon_k)d}{k_{co}}$.
 - in expectation, lower bound on the risk larger than $\frac{\text{Var}(\epsilon_k)d}{kp^d}$.

- keeping all the observations, averaged SGD: upper bound $O\left(\frac{\text{Var}(\epsilon_k)d}{kp^2} + \frac{C(X, \beta^*)}{kp^3}\right)$.

Our strategy has an upper-bound p^{d-3} smaller than the lower bound of any algorithm relying only on the complete observations.
Outline

1. SGD with missing data

2. Convergence results
 - Without missing values: rates and proofs
 - Convergence of Algorithm 1
 - Rates for empirical risk? Beyond one pass?
 - Adaptation to estimated missing probabilities

3. Experiments
Open Question: rates for ERM?

- **Empirical risk**: \(\beta^n_\star = \arg \min_{\beta \in \mathbb{R}^d} \{ R_n(\beta) := \frac{1}{n} \sum_{i=1}^{n} f_i(\beta) \} \)

 How to choose the \(k \)-th observation?

 - \(\times \) \(k \) uniformly at random \(\Rightarrow \) we use a data several times.
 - \(\times \) \(k \) not chosen uniformly at random \(\Rightarrow \) sampling not uniform and bias in the gradient.

Open Question: rates for ERM?

- **Empirical risk:** \(\beta^n_* = \arg \min_{\beta \in \mathbb{R}^d} \{ R_n(\beta) := \frac{1}{n} \sum_{i=1}^{n} f_i(\beta) \} \)

 How to choose the \(k \)-th observation?

 - \(\times \) \(k \) uniformly at random ⇒ we use a data several times.
 - \(\times \) \(k \) not chosen uniformly at random ⇒ sampling not uniform and bias in the gradient.

Implications:

- No unbiased gradients for the empirical risk so far.
- Keep in mind: empirical risk is in any case not observed.

Possible Approach: similar to wo replacement sampling for ERM.\(^7\)

\(^7\)Shamir, “Without-Replacement Sampling for Stochastic Gradient Methods”.

Theoretical results
Comparison with related work

Comparison with Ma et Needell8:

- μ-strongly convex problem
- no averaged iterates

\Rightarrow convergence rate of $\mathcal{O}\left(\frac{\log n}{\mu n}\right)$.

\times μ generally out of reach.

\times only homogeneous MCAR data.

\times main theorem mathematically invalid (empirical risk).

8Ma and Needell, “Stochastic Gradient Descent for Linear Systems with Missing Data”.
Outline

1 SGD with missing data

2 Convergence results
 - Without missing values: rates and proofs
 - Convergence of Algorithm 1
 - Rates for empirical risk? Beyond one pass?
 - Adaptation to estimated missing probabilities

3 Experiments
Finite-sample setting: n is fixed

- Algorithm and main result: requirement of $(p_j)_{j=1,...,d}$.
 \Rightarrow estimator $\tilde{\beta}_k$

- In practice: estimated missing probabilities $(\hat{p}_j)_{j=1,...,d}$
 \Rightarrow estimator $\hat{\beta}_k$. (finite-sample setting: first half of the data to evaluate (\hat{p}_j), second half to build $\hat{\beta}_k$).

Result with estimated missing probabilities (simplified version)

Under additional assumptions of bounded iterates and strong convexity of the risk, Algorithm 1 ensures that, for any $k \geq 0$:

$$\mathbb{E} \left[R(\hat{\beta}_k) - R(\tilde{\beta}_k) \right] = O(1/kp_m^6),$$

with $p_m = \min_{j \in \{1,...,d\}} p_j$.

$$e^{-np_m}$$
Proof Sketch
Open questions

OQ: Tighter convergence rate with estimated probabilities:
 • Without strong convexity
 • Better dependence w.r.t. p.

Approach: Proof related to stability approaches.
Open questions

OQ: Tighter convergence rate with estimated probabilities:
- Without strong convexity
- Better dependence w.r.t. p.

Approach: Proof related to stability approaches.

OQ: working in a distributed or federated framework
- Each participant has its own missing value probability
- Each participant has its own objective function.

Convergence rates: Take home message

New results:

- ✔ Fast convergence rate because the noise is structured. Optimal w.r.t. k.
- ✔ Dependence with p: much better than erasing incomplete data, but not as good as pk complete observations.
- ✔ Convergence with strong-convexity and estimated probabilities (preserved k^{-1}, degraded dependence in p)

Partial answers & open questions:

- ✔ Matching lower bound?
- ✔ ERM, Beyond one pass? impossible to minimize ER to arbitrary precision, but a guarantee for the first pass seems possible.
- ✔ Better dependence in p for estimated probabilities case?
- ✔ Distributed & multi-agent frameworks are crucial.
- ❓ In practice?
Outline

1. SGD with missing data

2. Convergence results
 - Without missing values: rates and proofs
 - Convergence of Algorithm 1
 - Rates for empirical risk? Beyond one pass?
 - Adaptation to estimated missing probabilities

3. Experiments
Experiments

Synthetic data: convergence rate

Figure: Empirical excess risk \((R_n(\beta_k) - R_n(\beta^*)) \).

• Multiple passes (left): saturation.

• One pass (right): saturation for SGD\textsubscript{cst}, \(O(n^{-1/2}) \) for SGD, \(O(n^{-1}) \) for AvSGD.
Experiments

Real dataset: Superconductivity, prediction task

Figure: Prediction error $\|\hat{y} - y\|^2 / \|y\|^2$ boxplots.

- EM out of range (due to large number of covariates).
- **AvSGD** performs well, very close to the one obtained from the complete dataset (**AvSGD complete**) with or without regularization.
Conclusion

✓ A new algorithm with a fast rate to perform SGD with missing data.
✓ Python implementation of regularized regression with missing values for large scale data.
✓ More details in the paper\(^9\!\)

Many perspectives:

- Dealing with more general loss function.
- More complex missing-data patterns such as MAR and MNAR.
- Lower bounds
- Distributed case
- Bounds on the empirical risk, tighter bound for estimated p.