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Today's Roadmap

@ Motivation: why is Optimization important and why it is useful?

e From GD to SGD.

@ Advanced algorithms: Variance Reduction, Deep Learning

o Statistical point of view on Optimization.
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Outline

© Motivation: what is Optimization and why study it?
@ What makes optimization difficult?
@ Detailed Examples



Optimization

finding the minimal (maximal) value of a function over a set

minwe@cRd f(W)



Optimization is everywhere

Many problems are formalized as finding the optimum of a function: min,, 7 (w)
In various domains:

Economics GPS

Aeronautics
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In Machine learning related applications
Supervised Learning  Unsupervised

Optimal transport

Is it difficult ? Why study it?
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Is Optimization a (hard) problem? Why study it

%It depends !

The problem can be easily solved numerically

Yet, important to understand the methods

Last 20 years?

@ More computational
power

@ More data

© New algorithms, new
models

< Large scale framework

< Deep Learning




Example 1: Logistic regression on Scikit-Learn

solver : {"newton-cg’, ‘Ibfgs’, ‘liblinear’, ‘sag’, ‘saga’}, default="Ibfgs’
Algorithm to use in the optimization problem.

* For small datasets, 'liblinear’ is a good choice, whereas ‘sag’ and ‘saga’ are faster for
large ones.

For multiclass problems, only ‘newton-cg’, ‘sag’ ‘saga’ and ‘Ibfgs' handle multinomial
loss; ‘liblinear’ is limited to one-versus-rest schemes.

‘newton-cg, 'Ibfgs) ‘sag’ and ‘saga’ handle L2 or no penalty

‘liblinear’ and ‘saga’ also handle L1 penalty

‘'saga’ also supports ‘elasticnet’ penalty

‘liblinear’ does not support setting penalty="none"'

Note that ‘sag’ and ‘saga’ fast convergence is only guaranteed on features with
approximately the same scale. You can preprocess the data with a scaler from
sklearn.preprocessing.

New in version 0.17: Stochastic Average Gradient descent solver.

New in version 0.19: SAGA solver.

Changed in version 0.22: The default solver changed from ‘liblinear’ to ‘Ibfgs’ in 0.22.

Figure: Scikit-Learn documentation, logistic regression.



Example 2: Neural Network Playground

Neural Network playground (try it!)

o P

(=] =1

= @
E e

|
CLELLTE

Figure: Model learned after 500 epochs depending on the learning rate, deep Learning



http://playground.tensorflow.org/

Example 3: Federated Learning

SCAFFOLD: CORRECTING LOCAL UPDATES

Algorithm Scaffold (server-side) Algorithm ClientUpdate(k, 6, c)
Parameters: client sampling rate p, global Parameters: batch size B, # of local steps L,
learning rate 7y local learning rate
initialize 0, ¢ = ¢ C 0 Initialize O < 0
for each round t =0,1,... do for each local step 1,.. ., Ldo
St + random set of m = [pK] clients B <« mini-batch of B examples from Dy
for each client k € S; in parallel do O = O, — m(% Y gep VAO: d) — ¢ c)
(Abg, Acy) « ClientUpdate (k, 6,c) Ch + ( ( (60— 0)
660+ B> s Al send (0, — 0, ¢ Cr,) to server
— Spes, A Cr+Cf
+ Correction terms ¢y, ..., ck are a form of variance reduction (cf Aymeric’s tutorial)

- Can show convergence rates which beat parallel SGD

Figure: In Federated Learning, crucial to adapt the algorithm!



Today's Approach

Part 1: Introduction
@ Understand what can make optimization hard
@ Briefly review some classical learning situations from this perspective

Part 2: From GD to SGD
o First order Optimization, Stochastic Optimization
o Tradeoffs
@ What influences the convergence of SGD

Part 3: Advanced Stochastic Optimization methods*
@ Variance Reduction
@ Methods for Deep Learning

Part 4: Insights from Statistical Learning theory*
@ How precisely should | optimize?
@ Rademacher complexities



What makes optimization hard:

min
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f(w)
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Challenges: Non-convexity, ...
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complexity of f
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What makes optimizing min f(w) hard: 2. Dimension of w, set ©,
weOcRd

complexity of f

a. Dimension d: © c RY, d might be very large (typically millions)

b. Set ©: (if © is a convex set.)
o May be described implicitly (via equations):
O ={weRYst.|w|, <R and{(w,1)=r}.
%> Use dual formulation of the problem.

@ Projection might be difficult or impossible.
% use only first order methods

c. Structure of £ If f(w) = 237 | Fi(w), is the average of n functions, computing a

gradient has a cost proportional to n.

Challenges: Non-convexity of f, large d, large n, implicit set ©, ...



What makes optimizing min
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a. Smoothness

f(w) hard: 3. Irregularity of the function

e A function f is L-smooth iif it is twice differentiable and Yw € R?, eig.[f"(w)] < L



What makes optimizing min f(w) hard: 3. lrregularity of the function
weOcRd

a. Smoothness
o A function f is L-smooth iif it is twice differentiable and Yw € R, eig.[f”(w)] <L

smooth non—smooth




What makes optimizing min f(w) hard: 3. lrregularity of the function
weOcRd

a. Smoothness
o A function f is L-smooth iif it is twice differentiable and Yw € R, eig.[f”(w)] <L

smooth non—smooth

b. Strong Convexity
e A twice differentiable f is u-strongly convex iif. Yw € R?, eig[f"(w)]| = p.



What makes optimizing min f(w) hard: 3. lrregularity of the function
weOcRd

a. Smoothness
o A function f is L-smooth iif it is twice differentiable and Yw € R, eig.[f”(w)] <L

smooth non—smooth

b. Strong Convexity
e A twice differentiable f is u-strongly convex iif. Yw € R?, eig[f"(w)]| = p.

strongly
convex convex

J /

Challenges: Non-convexity of f, large d, large n, implicit set ©, non-smoothness,
non-strongly-convex.
Conclusion: Those are the most frequent challenges. What happens for the examples?



Focus on the 4 Machine learning examples given before

Supervised Learning 7 Unspervised

Gans Optimal transport

faptom 7 | [[Qe=- /5\

a



Examples and Challenges 1/4 , Supervised Machine Learning
Consider an input/output pair (X,Y)e X x Y, (X, Y) ~ p.

Function w : X —» R, s.t. w(X) good prediction for Y.
Model w parametrized in RY




Examples and Challenges 1/4 , Supervised Machine Learning
Consider an input/output pair (X,Y)e X x Y, (X, Y) ~ p.

Function w : X — R, s.t. w(X) good prediction for Y.
Model w parametrized in RY

Consider a loss function £: )Y xR — R

Define the Generalization risk:
R(w) :=E, [£(Y,w(X)))].

Empirical Risk minimization
Data: n observations (xj,y;) e X x Y, i=1,...,n, ii.d.
Find W solution of

min %Zé(yi,w(x,-)) +  puQ(w).

we@cRd

convex data fitting term +  regularizer

Challenges: n potentially large (very often!)




Examples and Challenges 1/4 , Supervised Machine Learning

ERM:

Encompasses many methods:

Model w(X) Linear Models (w, ®(X))" Non-linear
Name Least Squares Lasso Logistic Reg. SVM Binary  Neural Nets
Loss ¢ Square loss Logistic loss ~ Hinge loss 01 (Sq. loss)

Regul. Q(w) (Ridge) [l



Examples and Challenges 1/4 , Supervised Machine Learning

ERM:

Encompasses many methods:

Model w(X) Linear Models (w, ®(X))" Non-linear
Name Least Squares Lasso Logistic Reg. SVM Binary  Neural Nets

Loss ¢ Square loss Logistic loss ~ Hinge loss 01 (Sq. loss)
Regul. Q(w) (Ridge) |- lx

Large d,n
Convex
Smooth

Strongly convex

*for features ®(X) € R9.



Reminder: Different losses for classification

Logistic loss, £(y,y’) = log(1 + e™")

Hinge loss, £(y,y") = (1 — yy')+

Quadratic hinge loss, £(y,y’) = 3(1 — yy')3

Huber loss £(y,y') = —4yy' 1, 1+ (1 —yy' )1, 4

— logistic
— hinge
6l — Huber i
quadratic hinge

(I

. L L s n " N
-2.0 =15 -1.0 -0.5 0.0 0.5 1.0 15 2.0
/!

vy

@ These losses can be understood as a convex approximation of the 0/1 loss
Uy,y") =1,y<0



Examples and Challenges 2/4 Unspervised

PCA (k=1):
Q maxy|jw|<1 w' Aw.
@ Set © = B(0,1) = R? is convex
© Convex function w — w' Aw

@ we look for the max:

this is thus equivalent to minimizing a concave function and not a “convex problem”.

Challenges:
@ Non convex

o Large d

20



Examples and Challenges 3/4: Optimal transport

Objective function:

el

min f c(x,y)dn(x,y)

@ [1 set of probability distributions

@ c(x,y) “distance” from x to y.

+ regularization

Kantorovic formulation of OT.

% alternating directions algorithms, ....

Challenges:
@ Non convex

@ Optimization over a complex set (measures), etc.

21



Examples and Challenges 4/4: Generative Adversarial Networks

Objective function:

it s (E, -, (108 D(x)] + Ez-p, [log(1 ~ D(G(2))]} @E@l
ma

Random

L . . Rand:

@ D discriminator: tries to discriminate between '
real and fake images e

Fake image

@ G generator: tries to fool the discriminator.

22



Examples and Challenges 4/4: Generative Adversarial Networks

Objective function:

min max (v, [l0g D(x)] + Exvp [log(1 — D(G(2))]} @@

L . L naneo™ | LFake
@ D discriminator: tries to discriminate between
real and fake images — ok image

@ G generator: tries to fool the discriminator.

Challenges:
@ minimax optimization —non convex optimization
@ Deep networks for generator and discriminator: non convex functions, extremely
high dimension d
@ Trained with extremely large quantities of data (large n)...

Overall Summary
@ We express problems as minimizing a function over a set
@ We have listed the main challenges and given examples in classical frameworks esp.
Supervised Learning.
o We have to propose algorithms that can be efficient :

> In large dimension
» With a high number of observations n

22



Examples and Challenges 4/4: Generative Adversarial Networks

Objective function:

min max (v, [l0g D(x)] + Exvp [log(1 — D(G(2))]} @@

L . L r’.‘&’;‘?’“ LFake
o D discriminator: tries to discriminate between )
real and fake images — ok image

@ G generator: tries to fool the discriminator.
Challenges:
@ minimax optimization —non convex optimization
@ Deep networks for generator and discriminator: non convex functions, extremely
high dimension d
@ Trained with extremely large quantities of data (large n)...

Overall Summary
@ We express problems as minimizing a function over a set
@ We have listed the main challenges and given examples in classical frameworks esp.
Supervised Learning.
o We have to propose algorithms that can be efficient :

> In large dimension
» With a high number of observations n

Let’s now dive into the optimization algorithms themselves ! I



Outline

© Gradient descent procedures
@ Visualization and intuition
o Gradient Descent
@ Convergence rates for GD and interpretation
@ Stochastic Gradient Descent

23



Minimization problems

Aim: minimizing a function f : RY - R

d: dimension of the search space.

local maximum

e

<. _—

global minimum local minimum

24



Level sets

level-sets of functions

One-dimensional (1-D) representations are often misleading, we therefore often represent

Cc={weR’ f(w) = c}.
Example of level sets in dimension two
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Gradient - Definition

The gradient of a function f : R — R in w denoted as V£ (w) is the vector of
partial derivatives

Vi(w) =

Exercise
o If f:R—R, Vf(w) = f'(w)
o f(w) ={(a,w): Vf(w) =a
o f(w)=wTAw: Vf(w) = (A+A)w

e Particular case: f(w) = |w|?, VFf(w) = 2w.

26



Optimality conditions with convexity

Convexity - Three characterizations
© We say that f : RY — R is convex if (R? is convex and if)
fFOAXx 4+ (1= N)y) < M(x) + (1 = N)f(y), forall x,y e R? Xe[0,1].
@ A differentiable function f : RY — R is convex if and only if
f(x) = f(y) +(Vf(y),x —y), forall x,yeR"
@ A twice differentiable function f : RY — R is convex if and only if
V?f(x) =0, for all x,
that is h" V2f(x)h = 0, for all h e R,

i ) 1)+ (10 -9) n<a = @) < )

27



Optimality conditions with convexity

Convexity - Three characterizations

© We say that f : RY — R is convex if (R? is convex and if)
fFOAXx 4+ (1= N)y) < M(x) + (1 = N)f(y), forall x,y e R? Xe[0,1].
@ A differentiable function f : RY — R is convex if and only if
f(x) = f(y) +(Vf(y),x —y), forall x,yeR"
@ A twice differentiable function f : RY — R is convex if and only if
V?f(x) =0, for all x,
that is h" V2f(x)h = 0, for all h e R,

F) + (Vi) —y) z <@ > fi(@1) < flwa)

For a convex function, any local minimum is a global minimum.
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Optimality conditions with convexity

Convexity - Three characterizations
© We say that f : RY — R is convex if (R? is convex and if)
fFOAXx 4+ (1= N)y) < M(x) + (1 = N)f(y), forall x,y e R? Xe[0,1].
@ A differentiable function f : RY — R is convex if and only if
f(x) = f(y) +(Vf(y),x —y), forall x,yeR"
@ A twice differentiable function f : RY — R is convex if and only if
V?f(x) =0, for all x,
that is h" V2f(x)h = 0, for all h e R,

M F)+(Vf @)z~ ) <z = o) < L)

For a convex function, any local minimum is a global minimum.
= Algorithmically, how to can we find the optimal point

27



First attempt: Exhaustive search

Consider the problem

w* € argmin f(w).
we[0,1]9

One can optimize this problem on a grid of [0,1]¢. For example, if the function f is

regular enough, in dimension 1, to achieve a precision of ¢ we need |1/¢| evaluation of f.

In dimension d, we need |1/¢] evaluations.
For example, evaluating the expression
P 2
(w) = [lwl,
to obtain a precision of ¢ = 1072 requires:
@ 1,75.1072 seconds in dimension 1

@ 1,75.10" seconds in dimension 10, i.e., nearly 32 millions years.

— Prohibitive in high dimensions (curse of dimensionality, term introduced by
bellman1961adaptive)

— Solution Use local information.

28



Use local information: two Classes of algorithms

Key idea: At any point wy we can compute the value of the function f(wyp), but
also the direction in which the function increases the most V£ (wp) and the
curvature V2f(wyp).

First-order algorithms that use f and V. Standard algorithms when f is
differentiable and convex.
Second-order algorithms that use f, Vf and V2f. They are useful when

computing the Hessian matrix is not too costly.

First fundamental characteristic of algorithms.

29



Gradient - Level sets

The gradient is orthogonal to level sets.

o

ONNE©

W
= Y

\\\\¥ \JS
P
Reminder: Taylor expansion around a point

Fw) = F(W®) + (VFW ), w — w®y + O(|w — w®?).

/




Gradient descent algorithm

Gradient descent

Input: Function f to minimize.
Initialization: initial weight vector w(®
Parameters: step size n > 0.

While not converge do
o wkth W _ puf(wh)
o k<« k+1.

Output: w(.

31



Gradient Descent on a convex function

For a function f : RY — R, define the level sets:

Cc={weR? f(w)

Figure: Gradient descent for function f : (x,y) — x? 4 2y?



Gradient Descent on a Bad objective functions

o o

Figure: Gradient descent for f : (x,y) = sinks(1/(2x?) — 1/(4y?) + 3) cos(2x + 1 — exp(y))

http://yulijia.net/vistat/2013/03/gradient-descent-algorithm-with-r

[m]

=)

A2 N e


http://yulijia.net/vistat/2013/03/gradient-descent-algorithm-with-r

When does gradient descent converge?

Informal statement: GD converges, for a correct choice of steps, for most convex
functions.

Why do we want convergence rates and proofs:
@ Proofs help us choose hyperparameters (the learning rate sequence)

o Rates allow us to compare algorithms.

Today, we will see convergence results (without proofs) for :
@ GD and SGD

@ For convex and smooth functions, and smooth and strongly convex functions.

Thanks to those rates, we will be able to say in which situation GD or SGD should be
preferred.

34



Formal definition: smoothness

L-smooth function

IVE(x) = VF(y)l <L
Equivalently,

Ix =yl
f(w) <

A function f is said to be L-smooth if f is differentiable and if, for all x,y € R

< f(w') +

(VFW),w —w'y+ =

2
\W —w
Smooth-convex: the function above the tangent and belovv the tangent line + quadratic
L

(1)
f ‘ )

Co-coercivity:|Vf'(w) — V' (w')|? <

LKV (w Vfg,fv w— wl)

= PN G

35



Interpretation of GD in the smooth case

Assuming the descent Lemma holds, remark that

argmin {f(wk) (VWS w — w) + éHW - Wng}

weRd

= argmin HW — (W - fo )H

weRd

Hence, it is natural to choose

wht = wh — %Vf(
This is the basic gradient descent algorithm

Wk)

36



Interpretation of GD in the smooth case

. ’ ’ 112
f(w)+<{VFfw),w—w +5 w—w

\




Convergence of GD

Theorem

Let f : RY — R be a L-smooth convex function. Let w* be the minimum of f on RY.
Then, Gradient Descent with step size n < 1/L satisfies
0) _ *HZ
Fw®)y — Fw) < W=l
(W) = F(w") < P

In particular, for n = 1/L,
Llw® —w*|3/2

iterations are sufficient to get an e-approximation of the minimal value of f.

38



Faster rate for strongly convex function

Strong convexity: function above the tangent line + px quadratic.
A function f : RY — R is p-strongly convex if
w s F(w) = Elwl3

is convex.

F(W) + (VF(W).w—w' -’Z‘W w2

If f is differentiable it is equivalent to writing, for p
all weRY,
)\m;,,(VQf(W)) = .
This is also equivalent to, for all w, w’ € R?:
f(w)2f(w’)-§-<Vf(w'),w—wl>-i-%HW—W’H2 — /

Useful inequality in the proofs:
(V' (W) =V (w),w —w) > p|w —w|? )

39



Convergence of GD with strong convexity

Theorem

Let f : R? — R be a L-smooth, j strongly convex function. Let w* be the minimum of f
on R?. Then, Gradient Descent with step size 7 < 1/L satisfies

N L ks *
F(w®) = F(w*) < 5 (1—nu) |w® — w3




Condition number

Gradient descent uses iterations
w0 nvf(w(k))
@ For L smooth convex function and n = 1/L,

LW —wE

fFw™) — F(w") T

o For L smooth, u strongly convex function and n = 1/L,
K
Fw®) = F(w) < (1= 2) 1w @) — Fwh) 3.

Condition number x = L/p > 1 stands for the difficulty of the learning problem.

41



Convergence vs condition number

Why?

Rates typically depend on the condition number xk = ﬁ:

4

42



Convergence vs condition number

Why?
Rates typically depend on the condition number xk = ﬁ:

4

Large x Small x
harder to optimize easier to optimize

42



Full gradients...

We say that these methods are based on full gradients, since at each iteration we need
to compute

Vi(w) = 3 Y Vi(w)

which depends on the whole dataset

Question. If n is large, computing Vf(w) is long: need to pass on the whole data before
doing a step towards the minimum!

Idea. Large datasets make your modern computer look old

Go back to “old"” algorithms.

43



Stochastic Gradient Descent (SGD)

Stochastic gradients

If | choose uniformly at random / € {1,..., n}, then

E[Vfi(w Ew (w)

Vfi(w) is an unbiased but very noisy estimate of the full gradient Vf(w)

Computation of Vfi(w) only requires the I-th line of data

— O(d) and smaller for sparse data

Crucial Balance:
@ Noise
@ Initial Condition

Impact of the learning rate?

44



Stochastic Gradient Descent (SGD)

[robbins1985stochastic robbins1985stochastic]

Stochastic gradient descent algorithm
Initialization: initial weight vector w®,

Parameter: step size/learning rate 7

For k = 1,2, ... until convergence do
o Pick at random (uniformly) ix in {1,..., n}
o Compute

W = k=D _ e (D)

Output: Return last w®

Remarks
@ Each iteration has complexity O(d) instead of O(nd) for full gradient methods

@ Possible to reduce this to O(s) when features are s-sparse using lazy-updates.

45



Convergence rate of SGD

Consider the stochastic gradient descent algorithm introduced previously but where each
iteration is projected into the ball B(0, R) with R > 0 fixed.

Let

= %Zﬁ(x)

Theorem
Assume that f is convex and that there exists b > 0 satisfying, for all x € B(0, R),

IVEGI < b.
Besides, assume that all minima of f belong to B(0, R). Then, setting 7« = 2R/(bV'k),

5]
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Convergence rate of SGD

Consider the stochastic gradient descent algorithm introduced previously but where each
iteration is projected into the ball B(0, R) with R > 0 fixed.

Let

Flx) = % > ).

Theorem

Assume that f is p strongly convex and that there exists b > 0 satisfying, for all
x € B(0, R),
IV < b.
Besides, assume that all minima of f belong to B(0, R). Then, setting nx = 2/(u(k + 1)),

k

E[f(ﬁ tz tw )| = Fw) < u(lf—bﬂ)'

=1

47



Comparison of GD and SGD

Full gradient descent

n

w0 (% Z Vﬁ(w(k>))

i=1
e O(nd) iterations
e Upper bound O((1 — (12/L))")

. . L 1
© Numerical complexity O(n:; log(3)))

Stochastic gradient descent
WD e (w0,

o O(d) iterations
o Upper bound O(1/(uk))

o Numerical complexity O(;;-)

It does not depend on n for SGD !

48



Comparison GD versus SGD

Under strong convexity, GD versus SGD is
nL 1 1
O(Ilog (g)> versus O(—)

E
GD leads to a more accurate solution, but what if n is very large?

Recipe
@ SGD is extremely fast in the early iterations (first two passes on the data)

@ But it fails to converge accurately to the minimum

Beyond SGD

Bottou and LeCun (2005),
Shalev-Shwartz et al (2007, 2009),
Nesterov et al. (2008, 2009),

Bach et al. (2011, 2012, 2014, 2015),
T. Zhang et al. (2014, 2015).
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Summary of the first part

Convergence rates for GD and SGD: no universal algorithm !

Convergence rates for smooth functions (see previous slides for model and learning rate):

min R
SGD GD
Comvex  0() O()

Stgly-Cvx O (ﬁ) O(e k)

o Batch gradient descent: w; = wy_1 — mf’(wt_1) = Wi_1 — i3 Zﬁ/(wt—l)
n
i=1

o Stochastic gradient descent: wr = we—1 — nefy( (We—1)

@ 50



Comparison of convergence : SGD vs GD

Which one to choose?

@ Depends on the precision we want.

stochastic

deterministic

log(excess cost)

time
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Comparison of convergence : SGD vs GD
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@ Depends on the precision we want.
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Comparison of convergence : SGD vs GD

Which one to choose?

@ Depends on the precision we want.

stochastic

deterministic

log(excess cost)

time

Example: non strongly convex case.
@ If our goal is to get a convergence of 1/4/n, then
» Complexity of GD: n32d
» Complexity of SGD: nd.
@ If our goal is to get a convergence of 1/n?, then
» Complexity of GD: n3d (n? iterations)
» Complexity of SGD: n*d (n* iterations).

Cplxty/step  Best Cplxty, low precision  Best Cplxty, high precision

GD nd
SGD d v

v



SGD vs GD

Recipe
@ SGD is extremely fast in the early iterations (first two passes on the data)

@ But it fails to converge accurately to the minimum

Machine Learning = Low complexity is often enough !

Indeed,

@ the minimization of the empirical risk is mostly a surrogate for the unknown
generalization risk.

@ no need to optimize below statistical error



Outline

© Advanced Stochastic Optimization Algorithms
@ Variance reduced methods
@ Gradient descent for neural networks



Improving stochastic gradient descent

Goal: best of both worlds
The problem

o Let X = Vfi(w) with / uniformly chosen at random in {1,..., n}
@ In SGD we use X = Vfi(w) as an approximation of EX = Vf(w)

@ How to reduce VX ?
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Improving stochastic gradient descent

An idea

@ Reduce it by finding C s.t. EC is “easy” to compute and such that C is highly
correlated with X

@ Let Z, = a(X — C) + EC for a € [0,1]. We have

EZ, = aEX + (1 — a)EC
and

VZ, = (VX + VC —2C(X, C))

o Standard variance reduction: a = 1, so that EZ, = EX (unbiased)
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Improving stochastic gradient descent

Variance reduction of the gradient

In the iterations of SGD, replace V£, (w*~) by

a(VE, (W V) — Vf, (W) + V(W)
where W is an “old” value of the iterate.

Several cases
@ a = 1/n: SAG (Bach et al. 2013)
@ o= 1. SVRG (T. Zhang et al. 2015, 2015)
@ o = 1. SAGA (Bach et al., 2014)

Important remark
@ In these algorithms, the step-size 7 is kept constant

o Leads to linearly convergent algorithms, with a numerical complexity comparable
to SGD!
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Methods for finite sum minimization

o GD: at step k, use 2 37 Vfi(wx)

n
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Methods for finite sum minimization

o GD: at step k, use 2 37 Vfi(wx)

n

@ SGD: at step k, sample ix ~ U[1; n], use V, (w)
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Methods for finite sum minimization

o GD: at step k, use 1 3" ' Vfi(wi)
@ SGD: at step k, sample ix ~ U[1; n], use V, (w)
o SAG: at step k,

> keep a “full gradient” %27:0 Vii(wy,), with wy, € {w,...

wic}
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Methods for finite sum minimization

o GD: at step k, use 1 3" ' Vfi(wi)

@ SGD: at step k, sample ix ~ U[1; n], use V1 (wx)

o SAG: at step k,
> keep a “full gradient” %27:0 Vii(wy,), with wy, € {wi, ... wi}
» sample iy ~ U[1; n], use

1 n
- (Z Vii(wi) = Vi (wig, ) + Vfik(Wk)> :
i=0

In other words:
@ Keep in memory past gradients of all functions f;, i =1,..., n
o Random selection ix € {1,...,n} with replacement
{Vﬁ(wkl) if i = i

n
. n N .
o lteration: wy = wy_1 — — i) with i) =
g 1T ng( ) &x(i) gr—1(i) otherwise

i=1
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SAG

@ Keep in memory past gradients of all functions f;, i =1

@ Random selection ix € {1,...,n} with replacement

n
. n . .
o lIteration: wy = wy_1 — — th =
eration: wy = wg_1 N ng(l) with g (7)

Vﬂ'(kal) if i = ik
= gr—1(7)

otherwise




SAG

@ Keep in memory past gradients of all functions f;, i =1

@ Random selection ix € {1,...,n} with replacement

n
. n . .
o lIteration: wy = wy_1 — — th =
eration: wy = wg_1 N ng(l) with g (7)

i=1

functions g=2>ifi  h b

RN

Y

[

gradients € R? S Y y

{gk—l(f)
fs fa
Ys Ui

Vii(wi-1)

if i =i
otherwise
. fn—l fn



SAG

@ Keep in memory past gradients of all functions f;, i =1

@ Random selection ix € {1,...,n} with replacement

n
. n . .
o lIteration: wy = wy_1 — — th =
eration: wy = wg_1 N ng(l) with g (7)

i=1

functions g=2>ifi  h b

RS

Y

[

gradients € R? 21 U Y

{gk—l(f)
fs  fa
Ys Ui

Vii(wi-1)

if i =i
otherwise
. fn—l fn
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SAG

@ Keep in memory past gradients of all functions f;, i =1

@ Random selection ix € {1,...,n} with replacement

n
. n . .
o lIteration: wy = wy_1 — — th =
eration: wy = wg_1 N ng(l) with g (7)

i=1

functions g=2> i h b

RS

Y

—_

gradients € R? 21 U Yy

{gk—l(f)
fs fa
Ys Ui

Vii(wi-1)

if i =i
otherwise
. fn—l fn
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SAG

@ Keep in memory past gradients of all functions f;, i =1

@ Random selection ix € {1,...,n} with replacement

n
. n N . i
Iteration: = Wk—1 — — th =
@ lteration: wy Wk—1 N ng(l) Wi gk(l) {

i=1

functions g=+>" fi i o i fa

gradients € R? w1 Y yiooYs o Y5 Y

% @ update costs the same as SGD

Vii(wi-1)
gr—1(7)

n
if i =i
otherwise

eee fn—l fn

eee y;—l yf],

E

% © needs to store all gradients Vfi(wy,) at “points in the past”
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Improving stochastic gradient descent

Stochastic Average Gradient
Initialization: initial weight vector w(®

Parameter: learning rate n > 0

For k = 1,2,... until convergence do
@ Pick uniformly at random ik in {1,..., n}
o Put

- (k=D)
gk(i) = {Vﬁ( )

gk—1(i)
o Compute

if i =ik

otherwise

n
(k) _ (k=) _ (1 )
w w n n;gk(l)

Output: Return last w(*)
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Improving stochastic gradient descent

Stochastic Variance Reduced Gradient (SVRG)

Initialization: initial weight vector W

Parameters: learning rate > 0, phase size (typically m = n or m = 2n).

For k = 1,2,... until convergence do

o Compute V£ (W)
o Put w©® — W
@ Fort=1,...,m

Pick uniformly at random /¢ in {1,...,n}

Apply the step

WD o Wl — (T, (WD) = Vi (%) + VF(W))

@ Set

s

E\H

Output: Return w.
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Improving stochastic gradient descent

SAGA

Initialization: initial weight vector w(®
Parameter: learning rate n > 0
Forall i = 1,...,n, compute go(i) — Vi(w®)

For k = 1,2,... until convergence do
@ Pick uniformly at random iy in {1,...,n}
e Compute Vf, (wk=1)
e Apply

wik) k=D —U(Vﬁk(w(k_l)) gi—1(ix)
e Store gi(ix) — V£, (wkD)

Output: Return last w(*)

ngl)
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Variance reduced methods

Some references:
@ SAG Sch_LeR_Bac_2013 SAGA Def_Bac_Lac_2014
@ SVRG Joh_Zha_2013 (reduces memory cost but 2 epochs...)
o FINITO Def_Dom_Cae_2014
e S2GD Kon_Ric_2013..

And many others... See for example Niao He's lecture notes for a nice overview.
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http://niaohe.ise.illinois.edu/IE598_2016/pdf/IE598-lecture23-incremental%20gradient%20algorithms.pdf

Convergence rate for f (W) — f(6,), smooth objective f.

min R
SGD GD SAG
Convex O (ﬁ) O (1)
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Convergence rate for f (W) — f(6,), smooth objective f.

min R
SGD GD SAG
Convex O (ﬁ) O (1)
Stgly-Cvx O (%) O ™) 01— (und)

2

1)

S

Q

2

3 stochastic

3

Eo deterministic

time

GD, SGD, SAG (Fig. from Sch_LeR_Bac_2013)
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Convergence rate for f (W) — f(6,), smooth objective f.

min R
SGD GD SAG
Convex O (ﬁ) O (1)
Stgly-Cvx O (ﬁ) O(e™™) 01— (un L)

stochastic

deterministic

log(excess cost)

time
GD, SGD, SAG (Fig. from Sch_LeR_Bac_2013)

Remarks:
@ Proof technique

@ Related to control variates in Federated Learning (Scaffold, DIANA, etc.)!
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Summary

@ Variance reduced algorithms can have both:
> low iteration cost

» fast asymptotic convergence
However:

@ High precision is not always useful
@ Typically not used in deep learning:
» Memory constraints for SAG

» Convergence to “bad” (?) minima = bad generalization...
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Bad generalization in Deep Learning

Reasoning:
© There are 2 types of local minima: flat and sharp.

@ Algorithm that converge tp “high precision” may converge to sharper minima.
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Bad generalization in Deep Learning

Reasoning:
@ There are 2 types of local minima: flat and sharp.
@ Algorithm that converge tp “high precision” may converge to sharper minima.

© Sharp minima have poorer generalization performance.



Challenges in Deep Learning

Challenges

Non convex = Local minima
Extremely large dimension

Extremely large number of
parameters (4 different scales)

Bad conditioning + flat areas +
saddle points

Ingredients of popular algorithms:
@ First order

@ Stochastic

©@ Momentum

@ Different steps per coordinates :
adaptive methods
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Challenges in Deep Learning

hall . .
Challenges Ingredients of popular algorithms:

@ Non convex = Local minima .
@ First order

Extremely large dimension .
° y larg @ Stochastic

© Extremely large number of

. Momentum
parameters (4 different scales) °

@ Bad conditioning + flat areas +

saddle points adaptive methods

Generalization and overfitting problems are poorly understood but:
© Noise helps

@ "Too precise” methods (e.g. variance reduction, second order) are not used.
e.g.. SVRG is great for convex, but not even implemented in Keras.

@ Different steps per coordinates :
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Adaptation: notations

@ Same learning rate for all coordinates. Could we use a different learning rate for all
coordinates ?
e, forl <j<d:
k k—1 k—1
(W5)j = (W )j = M (VW)

Equivalently:
Mk,1 (Vhi(w* ")
k—1
wh—wh i | 2 | g (VAW ™))
Nk,d (VW ))q
@ Indexes:

(We)j = (Wk—1)j — Mk (Vi (Wi—1));

@ gk = Vi (wk_1) stochastic gradient at time t
(wi)j = (Wk—1)j — nk,j(8k)j
@ Avoiding double subscript:
(wh); = (W 1)) = mf(e");
k k—1

— _ kot
Wi =V 1 &
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ADAGRAD

Most following algos are in the following framework: First order method.
k k—1 k_k
wj =w;  —mn;g + (momentum)
Special choice for step-sizes:
k k—1 n k

i i T T8
 Cejte
[duchi2011adaptive duchi2011adaptive]

ADAptive GRADient algorithm
Initialization: initial weight vector w©

Parameter: learning rate n > 0

For k = 1,2, ... until convergence do, component-wise.
o Forallj=1,...,d,
Wk wk1 n k
% B &j

o Equivalently

Output: Return last w®




ADAGRAD

Update equation for ADAGRAD

k ~ (k—1) Ui k

e N
thl(ng)Z +e€

Pros:

o Different dynamic rates on each coordinate
@ Dynamic rates grow as the inverse of the gradient magnitude:

@ Large/small gradients have small/large learning rates
@ The dynamic over each dimension tends to be of the same order

© Interesting for neural networks in which gradient at different layers can be of different
order of magnitude.

@ Accumulation of gradients in the denominator act as a decreasing learning rate.

Cons:
@ Very sensitive to initial condition: large initial gradients lead to small learning rates.

@ Can be fought by increasing the learning rate thus making the algorithm sensitive to
the choice of the learning rate.
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ADAGRAD - Summary of parameters

ADAGRAD:

ij =w - nfgjk + f(momentum)

Special choice for step-sizes:
k k—1 Ui k

j j /Cos 1 e )
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ADAGRAD - Summary of parameters

ADAGRAD:
ij - Wj"*1 — nfgjk + B(momentum)
Special choice for step-sizes:
k k—1 Ui k

= TG, 8
ADAptive GRADient algorithm
@ starting point w?,

@ learning rate ) > 0, (default value of 0.01)
© momentum [3, constant e.

For t = 1,2, ... until convergence do for 1 < j < d
k k—1 n k
Wy <w, ——F—§

Zl-;:1(gf)2 te€
Return last w*
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Improving upon AdaGrad: RMS-prop

Idea : restricts the window of accumulated past gradients to some limited size through
moving average.

@ starting point w°, constant ¢,

@ new params : decay rate p >0

Update:
ij+1 _ ij . nijkgjk
VGkte
Adagrad:
© Cu=2r,)
Q=1
RMS prop:

@ Cu=pG* T+ (1-p)(gf)
Q 7]}( = 7 constant.
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RMSprop
Unpublished method, from the course of Geoff Hinton

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

RMSprop algorithm
Initialization: initial weight vector w®
Parameters: learning rate > 0 (default = 0.001), decay rate p (default p = 0.9)

For k = 1,2,... until convergence do

o First, compute the accumulated gradient

~ o (k) ~ o (k—1)

(V)2 = p(VF)? +(1-p)(g")?
o Compute

W D) " og"

~ve® 4 e

Output: Return last w®
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Improving upon AdaGrad & RMS prop: AdaDelta

Idea :RMS-prop + Second order style approach.
Less sensitivity to initial parameters.

Update:
k+1 k 77{< K
+ )i
w; wi —
j j Cr + sgj
Adagrad:
Q@ G= Zi:l(gj‘r)z
Q=1
RMS prop:

© Gu=pG " +(1-p)(gf)
@ 7 =7 constant.

Adadelta:
© Cu=pG" "+ (1-p)g)
Q n}‘ variable.
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ADADELTA

Determining a good learning rate becomes more of an art than science for many
problems.

M.D. Zeiler

Update equation for adadelta

(1)
Aw)? +e
S _ o V(AW) 2

Og
vr® 1 e

Interpretation:
@ The numerator keeps the size of the previous step in memory and enforce larger
steps along directions in which large steps were made.
@ The denominator keeps the size of the previous gradients in memory and acts as a
decreasing learning rate. Weights are lower than in Adagrad due to the decay rate p.
Inspired by second order methods (unit invariance + Hessian approximation)
Aw ~ (V*F) 'V,

Roughly,
of
_ ow 1 Aw
Aw = o2f 2f of
ow? ow? ow

See also zeiler2012adadelta; schaul2013no
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ADADELTA

AdaDelta algorithm

Initialization: initial weight vector w®, (V£)2° = 0, (Ax)2° =

0

Parameters: decay rate p > 0, constant ¢,

For k = 1,2, ... until convergence do
@ Forallj=1,...,d,
@ Compute the accumulated gradient

(VA = oV 4 (1 - p)(gh)?
@ Compute the update
Awp 4
Wk -y V@OWE T te o
~ve® ¢
© Compute the aggregated update

@w)2® = p(awp 7 4 (1 - p) (kD — w02

Output: Return last w(*)
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ADAM: ADAptive Moment estimation

[kingma2014adam kingma2014adam]
General idea: store the estimated first and second moment of the gradient and use them
to update the parameters.

Equations - first and second moment
Let mi be an exponentially decaying average over the past gradients
k
my = Bimy—1 + (1 — B1)g
Similarly, let v+ be an exponentially decaying average over the past square gradients

Vi = Bavie1 + (1 — B2) (8¥)%.
Initialization: mp = vo = 0.

With this initialization, estimates m; and v; are biased towards zero in the early steps of
the gradient descent.

Final equations

M LS Yk

k — Kk = .
1— Bk 1-— Bk

w = k= _ - M.

Vi + €
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Adam algorithm

Initialization: mo = 0 (Initialization of the first moment vector), vo = 0 (Initialization of
the second moment vector), wo (initial vector of parameters).

Parameters: stepsize ) (default 7 = 0.001), exponential decay rates for the moment
estimates (31, 82 € [0,1) (default: 1 = 0.9, B2 = 0.999), numeric constant ¢ (default

e=107%).
For k = 1,2, ... until convergence do
o Compute first and second moment estimate
m® = gim" 7V + (1 - B1)g" v = Baviy + (1 - B2)(8")%
o Compute their respective correction

S MYy W
1-Bf 1- 55
o Update the parameters accordingly
ORI B By )

VR g

Output: Return last w®

Convergence results: [kingma2014adam kingma2014adam], [reddi2018convergence reddi2018convergence].
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Adamax algorithm

Initialization: mo = 0 (Initialization of the first moment vector), up = 0 (Initialization of

the exponentially weighted infinity norm), wo (initial vector of parameters).

Parameters: stepsize 1) (default » = 0.001), exponential decay rates for the moment
estimates (31, 82 € [0,1) (default: 81 = 0.9, B> = 0.999)

For k = 1,2, ... until convergence do

o Compute first moment estimate and its correction
(k)
. m
m® = Bimgq) + (1 - p1)g", ml = ——
1— B¢
o Compute the quantity
u® = max(Bou P, [g¥)).

o Update the parameters accordingly
kD _

Output: Return last w®

[kingma2014adam kingma2014adam]
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Animation of Stochastic Gradient algorithms

https://imgur.com/a/Hqolp Credits to Alec Radford for the animations.


https://imgur.com/a/Hqolp

The Notebook

Goal: Code

gradient descent (GD)

@ accelerated gradient descent (AGD)
@ coordinate gradient descent (CD)
(%]
(5]

stochastic gradient descent (SGD)
stochastic variance reduced gradient descent (SAG)
Q Adagrad

for the linear regression and logistic regression models, with the ridge penalization.

10°

10

2 10
g
I
< 100
2
w
102 GD
—— AGD
- GD
1 | = SGD
10 — G
SIRG Lliiun
0 10 20 30 40 50

Number of passes on the data



Summary

What we have seen so far !
@ Why optimization is important, what makes it difficult
@ Simple first order methods, from GD to SGD

@ Advanced first order methods, variance reduction and coordinate adaptive step-sizes

What we have missed and won't cover
@ Acceleration techniques (momentum, Nesterov)
@ Second order methods

o Federated Learning algorithms.

What's next

@ Statistical approach.
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Outline

e Insights from Statistical Learning Theory
@ Set-up
@ Convex functions: basic ideas
@ Empirical risk minimization: convergence rates

)
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Supervised machine learning

e Data: n observations (X, Yi)e X' x )V, i =1,..., n, i.i.d.
@ Prediction as a linear function (0, ®(x)) of features ®(x) ¢ &7

o (regularized) empirical risk minimization: find ¢ solution of
1¢ ;
in =Y (Y, 0,0(X)) Q(0
(r)mrj/ n /til ( b ( /)> + pf0)
convex data fitting term + regularizer
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Usual losses

» quadratic loss ((y, 0, P(x))) =

\

o Regression: y < I?, prediction ¢y (x) = (0, ®(x)

N
/
1
2

(y — €0, ®(x)))?




Usual losses

@ Regression: y < I?, prediction ¢y (x) = {0, d(x))
» quadratic loss /(y, (0. ®(x))) = S (y — (0. ®(x)))?
o Classification : y ¢ {1, 1}, prediction ¢g(x) = sign({0, ®(x)))
» 0—1loss: £(y,<0,P(x))) = Liy.00,0(x))<0}-
> convex losses




Convex loss

5 . .
— 0-1

4 — hinge
square

3 —— logistic

2,

1

0

@ Support vector machine (hinge loss)
(Y,0,9(x))) = max{1l — Y{0,P(x)),0}

1 @ Logistic regression:

0(Y,{0,9(x))) = log(1 + exp(— Y0, ®(x))))

| @ Least-squares regression

L(Y,0,P(x))) = %(Y — {0, d(x)))?
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Usual regularizers

@ Main goal: avoid overfitting
o (squared) Euclidean norm: 0[5 = ¢, |6,
@ Sparsity-inducing norms
» LASSO : fy-norm 0] = 335, |6)]
» Perform model selection as well as regularization

» Non-smooth optimization and structured sparsity
> See, e.g., Bach, Jenatton, Mairal and Obozinski (2012a,b)



Supervised machine learning

o Data: n observations (X, Yi)e X' x YV, i =1,..., n, i.i.d.
@ Prediction as a linear function (0, ®(x)) of features ®(x) ¢ &7

o (regularized) empirical risk minimization: find ¢/ solution of

min =N 0(Y,.0. (X)) such that 2(0) < D
pers n

convex data fitting term 4+  constraint
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Supervised machine learning

Data: 1 observations (X;, Vi) e X' x V, i =1,..., n, i.i.d.
Prediction as a linear function (0, ®(x)) of features ®(x) ¢ R?

(regularized) empirical risk minimization: find ¢ solution of
1y DR

min = Y (Y, {0, 9(X))) such that Q(f) < D
n ~d

)eRd
e p

convex data fitting term 4+  constraint
Empirical risk: /(0) = n "> /(Y (0, D(X)))
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Supervised machine learning

Data: 1 observations (X;, Vi) e X' x V, i =1,..., n, i.i.d.

Prediction as a linear function (0, ®(x)) of features ®(x) e R?

(regularized) empirical risk minimization: find ¢ solution of

min le(y,-. (0. ®(X;))) such that Q(0) < D

convex data fitting term 4+  constraint
Empirical risk: /(0) = n "> /(Y (0, D(X)))

Expected risk: 7(0) — E[((V. (0. D(X)))] .
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General assumptions

Data: 1 observations (X, Vi) e X' x )V, i =1,..., n, i.i.d.

Bounded features ®(x) ¢ RY: |&(x)]» < R

Empirical risk /(0) = n "3 /(Y. (0. (X))

Expected risk 1 (0) = E[((Y .0, D (X)))]

Loss for a single observation: (0) = ((Y;, (0, P(X;))). Forall i, f(0)=TE[f(0)]
Properties of 1, 1, 3

» Convex on RY
» Additional regularity assumptions: Lipschitz-continuity, smoothness and strong
convexity
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Lipschitz continuity

o Bounded gradients of g ( < Lipschitz-continuity): the function g if convex,
differentiable and has gradients uniformly bounded by B on the ball of center 0 and
radius D: for all # € RY

8] < D= |Vg(®)]: < B

S d

lg(0) —g(8')| < B[O — 6’|

o Machine learning

» g(0) = n—t X1 £(Yi,<0, (X))
» G-Lipschitz loss and R-bounded data: B = GR
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Smoothness and strong convexity

@ A function g : R? — R is L-smooth if and only if it is differentiable and its gradient
is L-Lipschitz: for all 6,6’ € RY;
Vg(01) —Vg(0)]2 < L]0 — 0|2

o If g is twice differentiable, for all § € RY, V®?g(8) < L-Id

smooth non—smootl
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Smoothness and strong convexity

@ A function g : R? — R is L-smooth if and only if it is differentiable and its gradient
is L-Lipschitz: for all 0,6’ € RY;
Ve(0h) — Vg(®')| < L[0 0]

o If g is twice differentiable, for all § € RY, V®?g(4) < L -1d

Machine learning

° g(0) = n~' X1, £(Y;, (0, (X))

@ Hessian ~ covariance matrix

nt Z (X)) DT (XY, (0, (X))

@ Ljoss-smooth loss and R-bounded data: L = LjossR?
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Smoothness and strong convexity

@ A function g : RY — R is p-strongly convex if and only if, for all 6,6 € R?,

o If g is twice differentiable: for all § € RY, V?g(#) > p-1d
A A

strongly
convex convex




Smoothness and strong convexity

@ A function g : RY — R is p-strongly convex if and only if, for all 6,6 € R?,
g(0) = g(0) + (Vg(0),0— 6>+ 50— 0|3
o If g is twice differentiable: for all § € R?, V2g(0) > 1 Id

Machine learning

o g(0) ="t X, U(Yi, 0, 0(X)))
@ Hessian ~ covariance matrix

=t Y e(X)@(X) TE(Y: 0, @ (X))

e Data with invertible covariafcé matrix
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Smoothness and strong convexity

o A function g : R — R is p-strongly convex if and only if, for all 0,60’ € R?,
g(0) = g(0) +(Vg(0),0 — 0+ ’E’w — 0|3
o If g is twice differentiable: for all 6 € RY, V2g(9) >p-ld

Machine learning

° g(0) = n~' X, £(Y;, (0, (X))

@ Hessian ~ covariance matrix

Nty O(X)(X) TE( Y, 0, 9(X0)))

e Data with invertible covariafcé matrix

Adding regularization by £ 6| [! creates a bias (controlled by 1)]
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Smoothness/convexity assumptions: summary

o Bounded gradients of g (Lipschitz-continuity): the function g if convex,
differentiable and has gradients uniformly bounded by B on the ball of center 0 and
radius D:

forall 0 e R?, |0, < D= |Vg(®)|. < B

@ Smoothness of g: the function g is convex, differentiable with
L-Lipschitz-continuous gradient Vg:
for all 0,0’ e RY, |Vg(0) —Vg(®)|2 < L|0— 6|2

@ Strong convexity of g: The function f is strongly convex with respect to the norm
| - |2, with convexity constant p > 0: for all 6,8 € R,

g(0) = g(0) +(Vg(0),0 — 0+ % 0— 03
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Empirical risk minimization: rationale

The expected risk f(0) = E[£(Y, {0, X,))] is not tractable.
Only the empirical risk f(0) = n~* D [e(Yi, <0, Xi, )] is.

Minimizing f instead of f?

A simple observation:
£(0) — min f(6) < sup{f(0) — £(0)} + sup{f(9) — F(0)}
€ 6ecO

6c©

Can we have a bound on sup,_g |F(6) — (6)|?
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Motivation from least-squares

@ For least-squares, we have £(y, {0, ®(x))) = L(y — (8, d(x)>)?, and
F0) 70 = 307§ X 00)000)T ~ 2000007

sup

=1
|F(6) = F(0)| <
l6l2<D

< Zch(X)—EYd) )

( 2 Y? — EY2>,

Z): Z O(X)0(X)T

O(X)d(X) "
op
p|t Zn: (X)) —EYS(X)| + = % i
sup |F(0) — F(0)] <
[012<D

O(l/\/ﬁ) with high probability




Slow rate for supervised learning

Assumptions (f is the expected risk, 7 the empirical risk)
e Q(0) = 0> (Euclidean norm)
e “Linear” predictors: ¢y(x) = (0, ®(x)), with [|®(x)[» < R
o G-Lipschitz loss: f(0) = £(Y,{0,®(X))) is GR-Lipschitz on © = {[0]. < D}

@ No convexity assumption
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Slow rate for supervised learning

Assumptions (f is the expected risk, / the empirical risk)
e Q(#) = 0]> (Euclidean norm)
@ “Linear” predictors: ¢(x) = (0, ®(x)), with [|®(x)[, < R
@ G-Lipschitz loss: f(0) = £(Y,{0,®(X))) is GR-Lipschitz on © = {[0]. < D}
o No convexity assumption
High-probability bounds: With probability greater than 1 — §,

. sup [¢(Y,0) +GRD{ 2}
sup [F(0) — £(0)] < 2+ 4/2log =
{)l;g\ 0) — £(0)] NG \/2log 5
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Slow rate for supervised learning

Assumptions (f is the expected risk, 7 the empirical risk)

Q(0) = 0] (Euclidean norm)
@ “Linear” predictors: ¢ (x) = (0, ®(x)), with [®(x)]» < R
@ G-Lipschitz loss: f(0) = £(Y,{0,d(X))) is GR-Lipschitz on © = {||f]. < D}
o No convexity assumption

Risk bounds

: 4sup|e(Y,0)| + 4GRD
Efsup [F(8) — £(0)]] < 2Pl AY-0)l
0O val




Slow rate for supervised learning

Assumptions (/ is the expected risk, ? the empirical risk)
Q(0) = |0]- (Euclidean norm)
e “Linear” predictors: ¢y (x) = (0, ®(x)), with [®(x)], < R
o G-Lipschitz loss: f(0) = £(Y,{0,®(X))) is GR-Lipschitz on © = {||0]. < D}
o No convexity assumption
Method

@ Tools: Symmetrization, Rademacher complexity (see Boucheron et al., 2012),
McDiarmid inequality.

o Lipschitz functions = slow rate



Symmetrization with Rademacher variables

o Let D' = {X{, Y/ ... .X], Y} an independent copy of the data
D = {X1,Y1,..., X,, Y.}, with corresponding loss functions #/(0),
E{sup {f(H) — ?(9)}} = E{sup
0O

1 n
m{f«)) - nl_zlf,-w)H

A2 N e



Symmetrization with Rademacher variables

o Let D' = { X[, Y/,
D= (X, Vi

.....

X!, Y} an independent copy of the data
X, Yy}, with corresponding loss functions 7/ (0),

= sup {110 70} | - [ g {10 - 31500}

i=1
14, :
E{Zgg;g{ﬁw)fﬁ(@}]

(6) — f,(())}J with ¢; uniform in {—1,1}
i=1
1 n
< QE{sup —
n

J = Rademacher complexity

A2 N e



Rademacher complexity

o Define the Rademacher complexity of the class of functions
(x,y) = Ly, {0, ®(x))) as

1’7
R, =E| sup — s,f,HJ, fi(6
{62 ®|. o

@ Main property:

| sup {£0) 70} | = E| o

(Y5, 0, 9(X)))

oA
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From Rademacher complexity to uniform bound

Z = sup{f(0) — F(0)}
6O

{f<9> — 07t Y (Y0, ¢<x,->>>}
i=1

@ By changing one pair (X, Y;), Z may only change by

2

2 sup (Y, (0, &(x)))

with sup [£(Y,0)| = 4o

<

<

SN

(sup [¢(Y,0)| + GRD)
@ MacDiarmid inequality: W|th probablllty greater than 1-—

Z < ]EZ+\7C\|og

SN

(ﬁo + GRD)
4,
< 2R, +

([o + GRD) \Iog 5

A2 N e
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Bounding the Rademacher average

o Empirical Rademacher averages

n

;ﬂ + E[sgp LS 60 - (0] xw

peo N,

{

0B sup is,w,«e @]

e N .7

1 n
<O+E[supf € ) — £;(0)
He@”§ (© ]

@ Using Ledoux-Talagrand concentration results for Rademacher averages (since ¢; is

G-Lipschitz), we get:
1 n
R, <2G- E[ sup — Z 5i<07¢(xi)>‘X:|

[6]2<D M2y
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Bounding the Rademacher average - |l

1 n
Rn < ZGE{ sup = ! g,-<<9,¢(x,-)>]
[6l2<D M 2y
1 n
= 2GDE| = " £;®(X))
n = 2
i=1
[ 1 n 2
<2GD, |E|= ) &d(X))
w miz 2
2GRD
<
\/n
With probability 1 — §
~ 1
sup |F(0) — f(0)] < —
ee@‘ ‘ Vn
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Empirical Risk vs Fluctuation

@ We have, with probab|I|ty 1—4, forall § € ©:

f(()) - mm f(0) <

2
\//E
@ Only need to optimize with precision

sup{f(()) — f(0)} + sup{f(0)

6c©

(lo + GRD)( 4\\2|og -)

~1/yn

—F(9)}

oA
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Slow rate for supervised learning

Assumptions (f is the expected risk, # the empirical risk)

Q(0) = |0]2 (Euclidean norm)
“Linear” predictors: ¢g(x) = (0, ®(x)), with |[®(x)[» < R as.
G-Lipschitz loss: f and F are GR-Lipschitz on © = {||0|. < D}

No assumptions regarding convexity

With probability greater than 1 — §

. , ¢o + GRD 2
FO) — F(O)] <« 22222 -
igg\() 0] NG { +\2log()}

Expected estimation error: E[sup |F(6) — £(0)]] < 46y +4GRD
0e© ﬁ

Under other conditions on the model, can we improve the rate 1/./n?



Motivation from mean estimation

Estimator
where

Slow rate

>
Il
3\'—‘

Z = argmm £(0)

A2 N e
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Motivation from mean estimation

Estimator
A1 & o
0= . ; Z; = arg min (0)
where
B i n 5 L B )
FO) =5 ;(z, 0)° £(0) 73[(2 0) }
Fast rate )
f(0) — F(E[Z]) = §(é - E[Z])°
N 1 1 n 2 1
E[f(0) — f(E[Z])] = §E<E ;z,- — E[Z]> = 5 var(2)
Bound only at 0+ strong convexity
Sy

A2 N e
106



Fast rate for supervised learning

Assumptions (f is the expected risk, f the empirical risk)
@ Same as before (bounded features, Lipschitz loss) 4 strong convexity
For any a > 0, with probability greater than 1 — ¢, for all 9 € R9,
A 8(1+ a ')G*R*(32 + log(67 1))

f(0) — min f(n) <
nerd mn

o Results from (Sridharan et al., 2008), (Boucheron et al., 2012).

@ Strongly convex functions = fast rate
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Minimization of the expected and empirical risk

Conclusion: |6 € arg r(;nig ?(9) is a good proxy as a minimizer of f as n is large.
€

Question: How to find §7?
Answer: gradient descent algorithms!
Recall f is assumed to be convex.

Very efficient methods from convex optimization are available: see part 2 and 3!
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Conclusion

SLT insights
@ Statistical approach sheds light on optimization techniques

@ High precision is not (always) very relevant in ML

Directions:
o Faster Rates (Least squares regression)
@ Markov chain interpretations

@ Beyond Convex, beyond gradients (EM algorithm)

References
@ Sebastien Bubeck's book and blog on optimization.

@ Francis Bach's book on Learning.
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