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General Federated Learning framework

Learning from a set of N agents: min
w∈Rd

F (w) := 1

N

N∑
i=1

Ez∼Di [`(z, w)]︸ ︷︷ ︸
Fi (w)

 .
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Two Classical Examples

Collaboration between hospitals:

Map of the hospitals in 13-14th arrondissements

Building a collaborative and personalized text model:

4 / 30



Two Classical Examples

Collaboration between hospitals:

Map of the hospitals in 13-14th arrondissements

Building a collaborative and personalized text model:

4 / 30



Two Classical Examples

Collaboration between hospitals:

Map of the hospitals in 13-14th arrondissements

Building a collaborative and personalized text model:

4 / 30



Artemis: a framework for
bi-compression in
heterogeneous settings



Our framework

Goal: Learn a consensus w∗ = argminF (w).

Algorithm: Stochastic Gradient Descent (SGD):
• We iteratively build a sequence of models (wk )k≥0.
• Worker i can compute an unbiased estimate g i

k of the gradient of Fi

at the current point wk−1: e.g., g i
k :=∇w`(wk−1, zi

k ).
• The central server can update the model computing:

wk = wk−1 −γ 1
N

∑N
i=1 g i

k .

4 challenges / constraints:
0. potentially large group of N agents, with high dimensional data,
1. bandwidth constraints
2. potentially with inactive agents at certain iterations
3. distribution shift between agents
4. “weak” assumptions on the noise on the gradients estimates

In the following, we will enumerate 4 assumptions.
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Compression

Several papers considered unidirectional compression, only from
the workers to the server.

• Relies on the assumption that the communication cost is higher
from the workers to the central node than in the other direction.

Figure 1: Upload/download speed (in Mbps) for mobile and fixed broadband
on left axe. The dataset is gathered from Speedtest.net
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Bi-directional compression

To limit the number of bits exchanged, we compress each signal before
transmitting it.

We introduce compression operators Cdown and Cup.

Assumption 1

For dir ∈ {up,down}, there exists a constant ωdir
C

∈R∗ s.t. Cdir satisfies.
for all ∆ in Rd :

E[Cdir(∆)] =∆ and E
[‖Cdir(∆)−∆‖2]≤ωdir

C ‖∆‖2 .

Several well-known compression operator: quantization, sparsification,
top-k coordinates.

# Assumption on the compression operator & compression level

7 / 30



An example of compression operator

Definition 1 (s-quantization operator)

Given ∆ ∈Rd , the s-quantization operator Cs is defined by:

Cs (∆) := si g n(∆)×‖∆‖2 × ψ

s
.

ψ ∈Rd is a random vector with j -th element defined as:

ψ j :=
{

l +1 with probability s
|∆ j |
‖∆‖2

− l
l otherwise .

where the level l is such that ∆i‖∆‖2
∈

[
l
s , l +1

s

]
.

8 / 30



Bi-directional compression

Gradient B

STEP 1
Local

Update

STEP 2
Aggregation & 

Global Update

STEP 3
Local Model

Update

Device A

First 

Compression

Uplink

Central 

server

Global Model

Device B

Device C

Device A

Device B

Device C
Second 

Compression

Downlink

Update B

Figure 2: The mechanism of bi-directional compression. First we compress the
gradients sent from remote devices, secondly we compress the average of
compressed gradient that will be broadcast by the server.

⇒ The update equation becomes: wk = wk−1 −γCdown
( 1

N

∑N
i=1 Cup(g i

k )
)
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Non identically distributed agents

Motivation: The distribution of the observations on worker i and j are
often different.

Assumption 2
For all i ∈ [N ]:

‖∇Fi (w∗)‖2 ≤ B 2

Challenge: Compression of a quantity that goes to 0 !

Solution: Compute (on the server and the worker independently) a
“memory” hi

k s.t. hi
k →k→∞ ∇Fi (w∗).

⇒ The update equation becomes:

wk = wk−1 −γCdown

(
1

N

N∑
i=1

Cup(g i
k −hi

k )+hi
k

)
hi

k+1 = hi
k +αCup(g i

k −hi
k )
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Device sampling (new!)

Motivation: In practice, some workers may be unavailable / switched off.

wk model at iteration k.
Cdown, Cup compression operators.
hi

k memory term and g i
k gradient.

α learning rate for the memory,
γ step size for the training.

a

a

a oo.co

⇒ The update equation becomes:

wk = wk−1 −γCdown

(
1

pN

∑
i∈Sk

Cup(g i
k −hi

k )+hi
k

)
hi

k+1 = hi
k +αCup(g i

k −hi
k )

We maintain the same models on all active workers by broadcasting the
updates they have missed.
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Variance on the noise

Classical assumption: uniformly bounded variance:

∀k ≥ 1,∀i ∈ [N ], E

[∥∥∥g i
k (wk )−∇Fi (wk )

∥∥∥2
]
≤σ2.

Assumption 3
Bounded variance at the optimal point:

∀k ≥ 1,∀i ∈ [N ], E

[∥∥∥g i
k (w∗)−∇Fi (w∗)

∥∥∥2
]
≤σ2

∗.

Important in the interpolation regime and because the uniform one
is not valid for Least Squares regression !

12 / 30



Related work

Table 1: Relationship with other papers

QSGD
[1]

Diana
[4]

Dore
[2]

Double
Squeeze

[6]

Dist
EF-SGD
[7]

Artemis
(new)
[5]

Data i.i.d non i.i.d i.i.d i.i.d i.i.d non i.i.d

Bounded variance Uniformly Uniformly Uniformly Uniformly Uniformly At optimal
point

Compression One-way One-way Two-way Two-way Two-way Two-way
Error compensation 3 3 3
Memory 3 3 3
Device sampling 3
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Convergence for an L−smooth and µ−strongly convex F

Theorem 1 (Convergence of Artemis)

For a step size γ, for a learning rate α and for any k in N,

E
[‖wk −w∗‖2]≤ (1−γµ)k (‖w0 −w∗‖2 +2Cγ2B 2)+2γ

E

µN
,

with

Variant E C
α= 0 (ωdown

C
+1)

(
(ωup

C
+1)σ2∗+ (ωup

C
+1)B 2

)
0

α 6= 0 σ2∗
(
(2ωup

C
+1)(ωdown

C
+1)

) > 0

and α(ωup
C

+1) = 1/2 in the second line

• Linear rate up to a constant of the order of E
• Memory (α 6= 0) is needed to obtain linear convergence when σ2∗ = 0,

in the non i.i.d. case, B 2 6= 0.
• Recovers classical SGD rate in the absence of compression.
• The limit variance increases with the compression level.
• See paper for impact of p 14 / 30



Sketch of the proof

We define a Lyapunov function Vk [as in 4], with k in �1,K � and p in R∗:

Vk = ‖wk −w∗‖2 +2γ2C
1

N

N∑
i=1

∥∥∥hi
k −hi

∗
∥∥∥2

.

The second part of the Lyapunov corresponds to the memory term: it is
the distance between the next element prediction hi

k and the true
gradient hi∗ =∇Fi (w∗).

We want to prove that is is a (1−γµ) contraction, we need to:

1. Get a first bound on ‖wk −w∗‖2

2. Find a recurrence over the memory term
∥∥hi

k −hi∗
∥∥2

3. Combines the two equations using regularity assumptions:

EVk+1 ≤ (1−γµ)EVk +2γ2 E

N

15 / 30



Other theoretical results

More general convergence

Theorem 2
Sublinear convergence rate for non-strongly convex functions.

Matching lower bound

Theorem 3
Lower bound on the asymptotic variance. For a constant step size, the
distribution of the iterates converges (in W2 distance) to a limit
distribution which variance matches the upper bound.

Conclusions:

• Artemis provides provable reduction of the communication budget
for a low precision threshold, and comes with tight guarantees.

• The noise variance at the optimal point is the meaningful quantity.
• For high-precision regimes, Double compression can become less

efficient than vanilla SGD.
16 / 30



Experiments : 1 -Numerical validation of the results

(a) LSR: σ2∗ 6= 0 (b) X-axis in bits

Figure 3: Illustration of
Artemis compared to existing
algorithms on i.i.d. data.

(a) LSR (i.i.d.) (b) LR (non-i.i.d.)

Figure 4: Illustration of the memory
benefits when σ∗ = 0: i.i.d. vs
non-i.i.d.

Group heterogeneity:

(a) Distribution 1 (b) Distribution 2

Figure 5: Data distribution for logistic regression to simulate non-i.i.d. data.
Half of the device hold first dataset, and the other half the second one.
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Experiments : 2 -Real Datasets

Figure 6: Superconduct (LSR),
b = 200 (1000 iter.)

Figure 7: Quantum (LR), b = 800
(1000 iter.)

Group heterogeneity:

Figure 8: TSNE representation for quantum
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Reducing the impact of
downlink compression: MCM



Perturbed iterate point of view

Artemis:

wk = wk−1 −γCdown

(
1

N

N∑
i=1

Cup(g i
k (wk−1))

)

MCM: key idea - preserve the model on the central server.

wk = wk−1 −γ
(

1

N

N∑
i=1

Cup(g i
k (ŵk−1))

)

ŵk = wk−1 −γCdown

(
1

N

N∑
i=1

Cup(g i
k (ŵk−1))

)

1. Gradient is taken at a random point ŵk s.t. E[ŵk |wk ] = wk

2. Not realistic as it is: Ghost algorithm

19 / 30



Convergence for Ghost

1. Control the variance of the local iterate

Theorem 4 (Variance of the local iterates, Ghost)

E
[‖wk−1 − ŵk−1‖2 ∣∣ ŵk−2

]≤ γ2ωdown
C

(
(1+ωup

C
)σ2

N b
+

(
1+ ω

up
C

N

)
‖∇F (ŵk−2)‖2

)
.
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1. Control the variance of the local iterate

Theorem 4 (Variance of the local iterates, Ghost)

E
[‖wk−1 − ŵk−1‖2 ∣∣ ŵk−2

]≤ γ2ωdown
C

(
(1+ωup

C
)σ2

N b
+

(
1+ ω

up
C

N

)
‖∇F (ŵk−2)‖2

)
.

2. Deduce convergence of the iterate sequence
Proof technique: Perturbed iterate analysis [3]

E‖wk −w∗‖2 = E‖wk−1 −w∗‖2 −2γE〈∇F (ŵk−1) | wk−1 −w∗〉+γ2E
[∥∥ĝk (ŵk−1)

∥∥2
]

−2γE〈∇F (ŵk−1) | ŵk−1 −w∗〉+2γE〈∇F (ŵk−1)−∇F (wk−1) | wk−1 − ŵk−1〉 .
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Convergence for Ghost

1. Control the variance of the local iterate
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E
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]≤ γ2ωdown
C

(
(1+ωup

C
)σ2

N b
+

(
1+ ω

up
C

N

)
‖∇F (ŵk−2)‖2

)
.

2. Deduce convergence of the iterate sequence

Theorem 5 (Contraction for Ghost, convex case)

For smooth & convex objective, bounded variance (uniform), if
γL(1+ωup

C
/N ) ≤ 1

2 .

E‖wk −w∗‖2 ≤ E‖wk−1 −w∗‖2 −γE(F (wk−1)−F∗)− γ

2L
E
[‖∇F (ŵk−1)‖2]

+2γ3ωdown
C L

(
1+ ω

up
C

N

)
E‖∇F (ŵk−2)‖2 +γ2

(1+ωup
C

)σ2

N b

(
1+2γLωdown

C

)
.
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Convergence of Ghost 2/2

Corollary 6 (Convergence of Ghost, convex case)

For a given step size γ= 1/(L
p

K ), after running K in N iterations, we
have, for w̄K = K −1 ∑K

i=1 wi :

E[F (w̄K )−F∗] ≤ ‖w0 −w∗‖2 Lp
K

+ σ2Φ

N bL
p

K
,

with Φ= (1+ωup
C

)

(
1+2

ωdown
Cp

K

)
.
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Implementable algorithms ?

Simplest solution:{
wk+1 = wk −γ 1

N

∑N
i=1 Cup

(
gi

k+1(ŵk )
)

.
ŵk+1 =Cdown(wk+1)

Compress difference wk+1 − ŵk{
wk+1 = wk −γ 1

N

∑N
i=1 Cup

(
gi

k+1(ŵk )
)

.
ŵk+1 = ŵk +Cdown(wk+1 − ŵk )

# add a downlink memory term (Hk )k ,
Ωk+1 = wk+1 −Hk ,
ŵk+1 = Hk +Cdown(Ωk+1)
Hk+1 = Hk +αCdown(Ωk+1).

2. Deduce convergence of the iterate sequence
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k+1(ŵk )
)

.
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Comparison between the three variants

0 150 300 450
Number of passes on data

(non-iid)
(N=20, d=66)

−3
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−1

0

1
lo
g 1

0(
F(
w
k )
−
F(
w

* )
) Artemis-ND

MCM - α= 0
MCM - α= 1
MCM

(a) Quantum - b = 400.
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(b) Superconduct - b = 50.

Figure 9: Comparing MCM with three other algorithms using a non-degraded
update, γ= 1/L. Artemis-ND stands for Artemis with a non-degraded update.
Best seen in colors.
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Convergence rate MCM algorithm

1. Control the variance of the local iterate

Theorem 7

Consider the MCM update. If γ≤ 1/(8ωdown
C

L) and α≤ 1/(4ωdown
C

), for k ∈N:

E[
∥∥wk − ŵk

∥∥2] ≤ γ2ωdown
C

(
4σ2(1+ωup

C
)

N bα
+2

(
1

α
+
ω

up
C

N

)
k∑

t=1

(
1− α

2

)k−t
E‖∇F (ŵt−1)‖2

)
.

2. Deduce convergence of the iterate sequence

Theorem 8 (Convergence of MCM)

For a given K in N large enough, a step size γ= 1/(L
p

K ), a given learning rate
α= 1/(8ωdown

C
), after running K iterations, we have:

E[F (w̄K )−F∗] ≤ ‖w0 −w∗‖2 Lp
K

+ σ2Φ

N bL
p

K
,

with Φ= (1+ωup
C

)

(
1+ 64(ωdown

C
)2

p
K

)
.
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), after running K iterations, we have:

E[F (w̄K )−F∗] ≤ ‖w0 −w∗‖2 Lp
K

+ σ2Φ

N bL
p

K
,

with Φ= (1+ωup
C

)

(
1+ 64(ωdown

C
)2

p
K

)
.
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Conclusion

Extensions:

1. Convergence in the strongly-convex, non convex cases.
2. Worker dependent compression: Rand-MCM

ŵ i
k+1 = H i

k +C i
down(wk+1 −H i

k )

• Useful with partial participation
• Memory limitation
• Improves the convergence rate (on quadratics)
• Business applications
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Experiments i

104 105 106
Communicated bits (non-iid)

(N=20, d=20)

−4

−3

−2

−1

0

1

lo
g 1

0(
F(
w
k )
−
F(
w

* )
)

SGD
Diana
Artemis
Dore
MCM
R-MCM

(a) LSR: σ2 6= 0, γ= (L
p

k)−1

105 107

Communicated bits (non-iid)
(N=20, d=20)

−10.0

−7.5

−5.0

−2.5

0.0

lo
g 1

0(
F(
w
k )

−
F(
w

* )
)

SGD
Diana
Artemis
Dore
MCM
R-MCM

(b) LSR: σ2 = 0, γ= 1/L

Figure 10: Toy dataset, X axis in # bits.
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Experiments ii
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Figure 11: Quantum with b = 400, γ= 1/L (LSR).
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Experiments iii
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Figure 12: Superconduct with b = 50, γ= 1/L (LR).
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Conclusion

Take home message

1. New algorithm for bi-directional compression:
• preserved central model.
• relying on memory trick on the downlink communication

2. Reduces (nearly cancels) impact of downlink compression
3. Achieves the same rate of convergence as unidirectional compression.
4. Rand-MCM framework enables multiple possible extensions.

Open questions

1. Even faster ? no dependence in ωdown?
2. Variance reduced modification.
3. Proofs with partial participation.
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Thank you for your attention :)

Bi-directional compression for Federated
Learning: Artemis & MCM

Aymeric Dieuleveut
CMAP, École Polytechnique, Institut Polytechnique de Paris

Joint work with Constantin Philippenko

References:

• Artemis paper
• MCM paper
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