
Scalable Non-Parametric Statistical Estimation

Aymeric DIEULEVEUT

ENS Paris, INRIA

February 6, 2017



Statistics
Statistical model

Performance measure
Estimator

Convergence: F (#obs)

Optimization
Minimize a given function

Algorithm focused
Scales with dimension and

observations
Convergence: F (#iter)

Accurate & Efficient
Scalable estimators with

optimal statistical properties

Non-parametric
Regression
Square loss

Tikhonov regularization

Stochastic
algorithms

First order methods
Few passes on the data

Non-parametric
Stochastic

Approximation,
AOS, 2015



Statistics
Statistical model

Performance measure
Estimator

Convergence: F (#obs)

Optimization
Minimize a given function

Algorithm focused
Scales with dimension and

observations
Convergence: F (#iter)

Accurate & Efficient
Scalable estimators with

optimal statistical properties

Non-parametric
Regression
Square loss

Tikhonov regularization

Stochastic
algorithms

First order methods
Few passes on the data

Non-parametric
Stochastic

Approximation,
AOS, 2015



Statistics
Statistical model

Performance measure
Estimator

Convergence: F (#obs)

Optimization
Minimize a given function

Algorithm focused
Scales with dimension and

observations
Convergence: F (#iter)

Accurate & Efficient
Scalable estimators with

optimal statistical properties

Non-parametric
Regression
Square loss

Tikhonov regularization

Stochastic
algorithms

First order methods
Few passes on the data

Non-parametric
Stochastic

Approximation,
AOS, 2015



Statistics
Statistical model

Performance measure
Estimator

Convergence: F (#obs)

Optimization
Minimize a given function

Algorithm focused
Scales with dimension and

observations
Convergence: F (#iter)

Accurate & Efficient
Scalable estimators with

optimal statistical properties

Non-parametric
Regression
Square loss

Tikhonov regularization

Stochastic
algorithms

First order methods
Few passes on the data

Non-parametric
Stochastic

Approximation,
AOS, 2015



Statistics
Statistical model

Performance measure
Estimator

Convergence: F (#obs)

Optimization
Minimize a given function

Algorithm focused
Scales with dimension and

observations
Convergence: F (#iter)

Accurate & Efficient
Scalable estimators with

optimal statistical properties

Non-parametric
Regression
Square loss

Tikhonov regularization

Stochastic
algorithms

First order methods
Few passes on the data

Non-parametric
Stochastic

Approximation,
AOS, 2015



Statistics
Statistical model

Performance measure
Estimator

Convergence: F (#obs)

Optimization
Minimize a given function

Algorithm focused
Scales with dimension and

observations
Convergence: F (#iter)

Accurate & Efficient
Scalable estimators with

optimal statistical properties

Non-parametric
Regression
Square loss

Tikhonov regularization

Stochastic
algorithms

First order methods
Few passes on the data

Non-parametric
Stochastic

Approximation,
AOS, 2015



Non-parametric Stochastic Approximation with large step sizes 1/2.

Aymeric Dieuleveut & Francis Bach, in the Annals of Statistics, 2015.

Random design least-squares regression.

ε(f ) := E(X ,Y )

[
(f (X )− Y )2

]
.

Within a reproducing kernel Hilbert
space H:

min
f ∈H

ε(f ).

(xi , yi ) i.i.d. observations.

Sequence of estimators ft ∈ H.
Update after each observation.
Using unbiased gradients of the
loss function:

ft+1 = ft − γt(ft(xt)− yt)Kxt ,

where: K is the kernel,
. Kx = K (x , ·).
# Stochastic Approximation.

Depending on assumptions on:

I the Gaussian complexity of the unit ball of the kernel space,

I the smoothness in H of the optimal predictor f∗(X ) = E [Y |X ].
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Theorem: Averaged, unregularized, least mean squares algorithm,
with large step sizes, gets Statistical optimal rate of convergence.

# Recovers the finite dimension situation with rate O
(
σ2d
n

)
.

# Optimal rates in both the well-specified regime and some situations of
the mis-specified.
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Harder, Better, Faster, Stronger Convergence Rates for Least Squares
Regression

Aymeric Dieuleveut, Nicolas Flammarion & Francis Bach, Technical report, 2016.

Classical tradeoff: a Bias term and a Variance term appear.

I The bias is the hardness of forgetting the initial condition.

I The variance is linked with the statistical hardness of the problem.

Lower bounds:

I Optimal first order algorithm forgets initial conditions as Ω
(
‖θ0−θ∗‖2

t2

)
I Optimal statistical estimation is Ω

(
σ2d
n

)
,

I Single pass over the data: t = n.

New algorithm, based on Nesterov acceleration:

# Both optimal terms: E
[
ε(θ̄n)− ε(θ̄∗)

]
≤ L‖θ0−θ∗‖2

n2
+ σ2d

n .

# Improves convergence rate for mis-specified non-parametric regression.
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