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Random design least-squares regression.  Sequence of estimators f; € H.
e(f) == Ex.v) [(F(X) — y)2 ) Update after each observation.

Using unbiased gradients of the
Within a reproducing kernel Hilbert |oss function:
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fen where: K is the kernel,
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% Stochastic Approximation.
Depending on assumptions on:
» the Gaussian complexity of the unit ball of the kernel space,

» the smoothness in H of the optimal predictor £.(X) = E[Y|X].
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Harder, Better, Faster, Stronger Convergence Rates for Least Squares
Regression

Aymeric Dieuleveut, Nicolas Flammarion & Francis Bach, Technical report, 2016.

Classical tradeoff: a Bias term and a Variance term appear.

» The bias is the hardness of forgetting the initial condition.

» The variance is linked with the statistical hardness of the problem.
Lower bounds:

2
» Optimal first order algorithm forgets initial conditions as €2 <M)

n

) . ) . 2
» Optimal statistical estimation is Q2 ("—d)

» Single pass over the data: t = n.

New algorithm, based on Nesterov acceleration:

% Both optimal terms: E [(0,) — £(0.)] < LHQOH;W 4 od

<.
% Improves convergence rate for mis-specified non-parametric regression.



AQS, 2015

Tech. report, 2016




AQS, 2015

Tech. report, 2016



















Statistics Optimization
Statistical model Minimize a given function

Accurate & Efficient .
Performance measure Algorithm focused

Scalable estimators with

Estimator ) . " Scales with dimension and
optimal statistical properties

observations
Convergence: F(#iter)

Convergence: F(#obs)

Density estimation
Shape constraint
(log concave)
MLE

Non smooth
optimization



