We recall the following definitions :

- A function f is said to be convex if and only if

$$
\begin{equation*}
\forall(x, y), f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle . \tag{Convexity}
\end{equation*}
$$

- A function f is said to be L-smooth if and only if

$$
\begin{equation*}
\forall(x, z), f(x) \leq f(z)+\langle\nabla f(z), x-z\rangle+\frac{L}{2}\|x-z\|^{2} \tag{Smoothness}
\end{equation*}
$$

Exercice 1 (Simplest proof of GD). The Gradient descent method is defined by the update rule

$$
\begin{equation*}
x_{t+1}=x_{t}-\gamma \nabla f\left(x_{t}\right) \tag{GD}
\end{equation*}
$$

where γ is called step-size.
Let f a L-smooth convex function and $\left(x_{t}\right)_{t \in \mathbb{N}}$ following this dynamic.

1. Prove that $f\left(x_{t+1}\right) \leq f\left(x_{t}\right)-\gamma\left(1-\frac{L \gamma}{2}\right)\left\|\nabla f\left(x_{t}\right)\right\|^{2}$.
2. Given the previous inequality, provide the best choice for γ and prove the Descent Lemma

$$
f\left(x_{t+1}\right) \leq f\left(x_{t}\right)-\frac{1}{2 L}\left\|\nabla f\left(x_{t}\right)\right\|^{2} .
$$

(Descent Lemma)
3. Use Convexity to upper bound $f\left(x_{t}\right)-f_{\star}$.
4. Let $\left(C_{t}\right)_{t \in \mathbb{N}}$ a non decreasing sequence such that $C_{0}=0$, and for all $t \geq 0$, define V_{t} as

$$
\begin{equation*}
V_{t}=C_{t}\left(f\left(x_{t}\right)-f_{\star}\right)+\frac{L}{2}\left\|x_{t}-x_{\star}\right\|^{2} . \tag{1}
\end{equation*}
$$

Assuming V_{t} is non increasing, what convergence guarantee do we obtain? Do we want to maximize C_{t} or to minimize it ?
5. Using the previously obtained inequalities, provide the optimal C_{t} such that V_{t} is non increasing.
Note $C_{t+1}\left(f\left(x_{t+1}\right)-f_{\star}\right)-C_{t}\left(f\left(x_{t}\right)-f_{\star}\right)=C_{t+1}\left(f\left(x_{t+1}\right)-f\left(x_{t}\right)\right)+\left(C_{t+1}-C_{t}\right)\left(f\left(x_{t}\right)-f_{\star}\right)$.
bonus: Based on tightest obtained bound on $V_{t+1}-V_{t}$, modify slightly V_{t} to obtain a convergence guarantee on the smallest observed gradient norm.

Exercice 2 (Simplest proof of NAG). The Nesterov accelerated gradient method is defined by the update rule

$$
\begin{equation*}
y_{t}=x_{t}+\beta_{t}\left(x_{t}-x_{t-1}\right) x_{t+1}=y_{t}-\frac{1}{L} \nabla f\left(y_{t}\right) \tag{NAG}
\end{equation*}
$$

where $\left(\beta_{t}\right)_{t \in \mathbb{N}}$ is called momentum parameter.
Let f a L-smooth convex function and $\left(x_{t}, y_{t}\right)_{t \in \mathbb{N}}$ following this dynamic.
Let $\left(C_{t}\right)_{t \in \mathbb{N}}$ a non decreasing sequence such that $C_{0}=0$. We want to define V_{t} for all $t \geq 0$, as

$$
\begin{equation*}
V_{t}=C_{t}\left(f\left(x_{t}\right)-f_{\star}\right)+R_{t} \tag{2}
\end{equation*}
$$

where $R_{t} \geq 0, R_{0}=\frac{L}{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and such that V is non increasing. Therefore, we would have

$$
C_{t}\left(f\left(x_{t}\right)-f_{\star}\right) \leq V_{t} \leq V_{0}=R_{0}=\frac{L}{2}\left\|x_{0}-x_{\star}\right\|^{2},
$$

and finally $f\left(x_{t}\right)-f_{\star} \leq \frac{L}{2} \frac{\left\|x_{0}-x_{\star}\right\|^{2}}{C_{t}}$.

1. Using (Descent Lemma once and Convexity twice, upper bound $C_{t+1}\left(f\left(x_{t+1}\right)-f_{\star}\right)-$ $\left.C_{t}\left(f\left(x_{t}\right)-f_{\star}\right)=C_{t+1}\left(f\left(x_{t+1}\right)-f\left(y_{t}\right)\right)+C_{t}\left(f\left(y_{t}\right)-f\left(x_{t}\right)\right)+\left(C_{t+1}-C_{t}\right)\left(f\left(y_{t}\right)-f_{\star}\right)\right)$.
2. Find non negative R_{t} as mentioned above so that V_{t} is non increasing. To simplify the notation, we will define $\lambda_{t} \triangleq \sqrt{C_{t}}$. Propose an appropriate choice for the sequences λ and β, and prove that $f\left(x_{t}\right)-f_{\star} \leq \frac{L}{2} \frac{\left\|x_{0}-x_{\star}\right\|^{2}}{\lambda_{t}^{2}}$.
3. Conclude that $f\left(x_{t}\right)-f_{\star}=O\left(1 / t^{2}\right)$.

Exercice 3 (Cocoercivity). The goal of the exercise is to re-establish the cocoercivity inequality

$$
\begin{equation*}
\frac{1}{2 L}\|\nabla f(z)-\nabla f(y)\|^{2} \leq f(z)-f(y)+\langle\nabla f(y), y-z\rangle \tag{Coco}
\end{equation*}
$$

characterizing smooth convex functions.

1. Show that f is convex and L-smooth if and only if, $\forall(x, y, z)$

$$
\begin{equation*}
f(y)+\langle\nabla f(y), x-y\rangle \leq f(z)+\langle\nabla f(z), x-z\rangle+\frac{L}{2}\|x-z\|^{2} . \tag{3}
\end{equation*}
$$

2. Show that f is convex and L-smooth if and only if, $\forall(y, z)$

$$
\begin{equation*}
0 \leq f(z)-f(y)+\langle\nabla f(y), y-z\rangle-\frac{1}{2 L}\|\nabla f(z)-\nabla f(y)\|^{2} \tag{4}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\frac{1}{2 L}\|\nabla f(z)-\nabla f(y)\|^{2} \leq f(z)-f(y)+\langle\nabla f(y), y-z\rangle \tag{5}
\end{equation*}
$$

3. Show that f is convex and L-smooth if and only if, $\forall(y, z)$

$$
\begin{equation*}
\frac{1}{L}\|\nabla f(z)-\nabla f(y)\|^{2} \leq\langle\nabla f(y)-\nabla f(z), y-z\rangle \tag{6}
\end{equation*}
$$

Hint : for the reverse direction, show that f satisfies for any $\eta, \theta \in \mathbb{R}^{d},\langle\theta-\eta, \nabla f(\eta)-$ $\nabla f(\theta)\rangle \geq 0$, iif f is convex. Hint : consider $g(t)=f(\theta+t(\eta-\theta))$. Show that $t \geq 0$, $g^{\prime}(t) \geq g^{\prime}(0)$ and prove $f(\eta) \geq f(\theta)+\langle\nabla f(\theta), \eta-\theta\rangle$.
4. Find a similar inequality characterizing smooth strongly convex functions.

Exercice 4. In exercise 2 we showed that considering

$$
\begin{equation*}
V_{t} \triangleq \lambda_{t}^{2}\left(f\left(x_{t}\right)-f_{\star}\right)+\frac{L}{2}\left\|\lambda_{t}\left(x_{t}-x_{\star}\right)+\left(1-\lambda_{t}\right)\left(x_{t-1}-x_{\star}\right)\right\|^{2}, \tag{7}
\end{equation*}
$$

we have $V_{t+1} \leq V_{t}$ for any $t \geq 0$, with $\lambda_{t+1}^{2}-\lambda_{t+1}=\lambda_{t}^{2}\left(\lambda_{0}=0\right)$ and $\beta_{t}=\frac{\lambda_{t}-1}{\lambda_{t+1}}\left(x_{-1}=x_{0}\right)$.
To do so, we computed $V_{t+1}-V_{t}$ and used (Smoothness) and (Convexity) to upper bound $f\left(x_{t+1}-f\left(y_{t}\right)\right), f\left(y_{t}\right)-f\left(x_{t}\right)$ and $f\left(y_{t}\right)-f_{\star}$.

1. Rewrite the same proof by using (Coco instead of Smoothness) and Convexity.
2. Since Coco is stronger, you obtained $V_{t+1}-V_{t} \leq \Delta_{t}$ for a specific Δ. Prove that the sequence $V_{t}+\sum_{s=0}^{t-1} \Delta_{s}$ is non increasing.
3. Conclude on a convergence guarantee of the smallest observed gradient norm.
