We recall the following definitions:
— A function f is said to be convex if and only if
\[\forall (x,y), \; f(x) \geq f(y) + \langle \nabla f(y), x-y \rangle. \] (Convexity)
— A function f is said to be L-smooth if and only if
\[\forall (x,z), \; f(x) \leq f(z) + \langle \nabla f(z), x-z \rangle + \frac{L}{2} \| x-z \|^2. \] (Smoothness)

Exercise 1 (Simplest proof of GD). The Gradient descent method is defined by the update rule
\[x_{t+1} = x_t - \gamma \nabla f(x_t) \] (GD)
where γ is called step-size.
Let f a L-smooth convex function and $(x_t)_{t \in \mathbb{N}}$ following this dynamic.
1. Prove that $f(x_{t+1}) \leq f(x_t) - \gamma \left(1 - \frac{L^2}{2}\right) \| \nabla f(x_t) \|^2$.
2. Given the previous inequality, provide the best choice for γ and prove the Descent Lemma
\[f(x_{t+1}) \leq f(x_t) - \frac{1}{2L} \| \nabla f(x_t) \|^2. \] (Descent Lemma)
3. Use (Convexity) to upper bound $f(x_t) - f_*$.
4. Let $(C_t)_{t \in \mathbb{N}}$ a non decreasing sequence such that $C_0 = 0$, and for all $t \geq 0$, define V_t as
\[V_t = C_t(f(x_t) - f_*) + \frac{L}{2} \| x_t - x_* \|^2. \] (1)
Assuming V_t is non increasing, what convergence guarantee do we obtain? Do we want to maximize C_t or to minimize it?
5. Using the previously obtained inequalities, provide a natural choice for C_t such that V_t is non increasing.
Note $C_{t+1}(f(x_{t+1}) - f_*) - C_t(f(x_t) - f_*) = C_{t+1}(f(x_{t+1}) - f(x_t)) + (C_{t+1} - C_t)(f(x_t) - f_*)$.

Exercise 2 (Simplest proof of NAG). The Nesterov accelerated gradient method is defined by the update rule
\[
\begin{align*}
 y_t &= x_t + \beta_t (x_t - x_{t-1}) \\
 x_{t+1} &= y_t - \frac{1}{L} \nabla f(y_t)
\end{align*}
\] (NAG)
where $(\beta_t)_{t \in \mathbb{N}}$ is called momentum parameter.
Let f a L-smooth convex function and $(x_t, y_t)_{t \in \mathbb{N}}$ following this dynamic.
Let $(C_t)_{t \in \mathbb{N}}$ a non decreasing sequence such that $C_0 = 0$. We want to define V_t for all $t \geq 0$, as
\[V_t = C_t(f(x_t) - f_*) + R_t \] (2)
where $R_t \geq 0$, $R_0 = \frac{L}{2} \| x_0 - x_* \|^2$ and such that V is non increasing. Therefore, we would have
\[C_t(f(x_t) - f_*) \leq V_t \leq V_0 = R_0 = \frac{L}{2} \| x_0 - x_* \|^2, \]
and finally $f(x_t) - f_* \leq \frac{L}{2} \frac{\| x_0 - x_* \|^2}{C_t}$.

Page 1
Exercice 4. In exercise 2 we showed that considering

\[V_t \triangleq \lambda^2_t (f(x_t) - f_*) + \frac{L}{2} \| \lambda_t (x_t - x_*) + (1 - \lambda_t)(x_{t-1} - x_*) \|^2, \]

we have \(V_{t+1} \leq V_t \) for any \(t \geq 0 \), with \(\lambda^2_t - \lambda_{t+1} = \lambda^2_t (\lambda_0 = 0) \) and \(\beta_t = \frac{\lambda_t - 1}{x_{t+1}} \) (\(x_{-1} = x_0 \)).

To do so, we computed \(V_{t+1} - V_t \) and used (Smoothness) and (Convexity) to upper bound \(f(x_{t+1} - f(y_t)), f(y_t) - f(x_t) \) and \(f(y_t) - f_* \).

1. Rewrite the same proof by using (Coco) instead of (Smoothness) and (Convexity).
2. Since (Coco) is stronger, you obtained \(V_{t+1} - V_t \leq -\Delta_t \) for a specific non negative \(\Delta \).

Prove that the sequence \(V_t + \sum_{s=0}^{t-1} \Delta_s \) is non increasing.
3. Conclude on a convergence guarantee of the smallest observed gradient norm.

Exercice 3 (Cocoercivity). The goal of the exercise is to re-establish the cocoercivity inequality

\[\frac{1}{2L} \| \nabla f(z) - \nabla f(y) \|^2 \leq f(z) - f(y) + \langle \nabla f(y), y - z \rangle \]

characterizing smooth convex functions.

1. Show that \(f \) is convex and \(L \)-smooth if and only if, \(\forall (x, y, z) \)

\[f(y) + \langle \nabla f(y), x - y \rangle \leq f(z) + \langle \nabla f(z), x - z \rangle + \frac{L}{2} \| x - z \|^2. \]

(3)

2. Show that \(f \) is convex and \(L \)-smooth if and only if, \(\forall (y, z) \)

\[0 \leq f(z) - f(y) + \langle \nabla f(y), y - z \rangle - \frac{1}{2L} \| \nabla f(z) - \nabla f(y) \|^2. \]

(4)

i.e.

\[\frac{1}{2L} \| \nabla f(z) - \nabla f(y) \|^2 \leq f(z) - f(y) + \langle \nabla f(y), y - z \rangle \]

(5)

3. Show that \(f \) is convex and \(L \)-smooth if and only if, \(\forall (y, z) \)

\[\frac{1}{L} \| \nabla f(z) - \nabla f(y) \|^2 \leq \langle \nabla f(y) - \nabla f(z), y - z \rangle. \]

(6)

Hint: for the reverse direction, show that \(f \) satisfies for any \(\eta, \theta \in \mathbb{R}^d, \langle \theta - \eta, \nabla f(\eta) - \nabla f(\theta) \rangle \geq 0 \), if \(f \) is convex. Hint: consider \(g(t) = f(\theta + t(\eta - \theta)) \). Show that \(t \geq 0 \), \(g'(t) \geq g'(0) \) and prove \(f(\eta) \geq f(\theta) + \langle \nabla f(\theta), \eta - \theta \rangle \).

4. Find a similar inequality characterizing smooth strongly convex functions.
1 Solutions

Solution Exercice 1.:

1. Using Smoothness,
 \[f(x_{t+1}) \leq f(x_t) + \langle \nabla f(x_t), x_{t+1} - x_t \rangle + \frac{L}{2} \|x_{t+1} - x_t\|^2 \]
 \[= f(x_t) + \langle \nabla f(x_t), -\gamma \nabla f(x_t) \rangle + \frac{L}{2} \| - \gamma \nabla f(x_t) \|^2 \]
 \[= f(x_t) - \gamma \left(1 - \frac{L \gamma}{2}\right) \|\nabla f(x_t)\|^2 \]

2. Observing that \(\gamma \left(1 - \frac{L \gamma}{2}\right) = \frac{1}{2L} - \frac{L}{2} \left(\gamma - \frac{1}{L}\right)^2 \leq \frac{1}{2L} \), we have
 \[f(x_{t+1}) \leq f(x_t) - \frac{1}{2L} \|\nabla f(x_t)\|^2 + L \left(\gamma - \frac{1}{L}\right)^2 \|\nabla f(x_t)\|^2 \]
 \[\leq f(x_t) - \frac{1}{2L} \|\nabla f(x_t)\|^2, \]
 reached for \(\gamma = \frac{1}{L} \). Therefore this choice of step-size \(\gamma \) is optimal.

3. Using Convexity, we have
 \[f(x_t) - f_* \leq \langle \nabla f(x_t), x_t - x_* \rangle. \] (8)

4. Let \((C_t)_{t \in \mathbb{N}}\) a non decreasing sequence such that \(C_0 = 0\), and for all \(t \geq 0\), define \(V_t\) as
 \[V_t = C_t(f(x_t) - f_*) + \frac{L}{2} \|x_t - x_*\|^2. \] (9)
 Assuming \(V_t\) is non increasing,
 \[C_t(f(x_t) - f_*) \leq V_t \leq \cdots \leq V_t = \frac{L}{2} \|x_0 - x_*\|^2. \] (10)
 We conclude \(f(x_t) - f_* \leq \frac{L}{2} \frac{\|x_0 - x_*\|^2}{C_t}\). Therefore, we want to have \(V_t\) non increasing for the largest possible \(C_t\).

5. We want \(V_t\) non increasing. We then compute
 \[V_{t+1} - V_t = C_{t+1}(f(x_{t+1}) - f_*) - C_t(f(x_t) - f_*) + \frac{L}{2} \left(\|x_{t+1} - x_*\|^2 - \|x_t - x_*\|^2\right) \]
 \[= C_{t+1}(f(x_{t+1}) - f(x_t)) + (C_{t+1} - C_t)(f(x_t) - f_*) + \frac{L}{2} \left(\|x_{t+1} - x_*\|^2 - \|x_t - x_*\|^2\right) \]
 \[\leq - \frac{C_{t+1}}{2L} \|\nabla f(x_t)\|^2 + (C_{t+1} - C_t) \langle \nabla f(x_t), x_t - x_* \rangle - \langle \nabla f(x_t), x_t - x_* \rangle + \frac{1}{2L} \|\nabla f(x_t)\|^2 \]
 \[\leq 1 - \frac{C_{t+1}}{2L} \|\nabla f(x_t)\|^2 + (C_{t+1} - C_t - 1) \langle \nabla f(x_t), x_t - x_* \rangle \] (11)
 Therefore, we verify \(V_{t+1} - V_t \leq 0\) for sequences \((C_t)_{t \in \mathbb{N}}\) such that for all \(t \geq 0\), \(1 - C_{t+1} \leq 0\) and \(C_{t+1} - C_t - 1 \leq 0\). Note the first inequality is equivalent to \(\forall t \geq 1, C_t \geq 1\), while the second one leads to the growth constraint \(\forall t \geq 0, C_{t+1} \leq C_t + 1\). Therefore, the largest such sequence verifies \(\forall t \geq 0, C_t = t\).
 We conclude that \(V_t = t(f(x_t) - f_*) + \frac{L}{2} \|x_t - x_*\|^2\) is non increasing and finally \(\forall t \in \mathbb{N}, f(x_t) - f_* \leq \frac{L}{2} \frac{\|x_0 - x_*\|^2}{t}\).
bonus : Rewriting (11) with $C_t = t$ gives

$$V_{t+1} - V_t \leq - \frac{t}{2L} \| \nabla f(x_t) \|^2.$$

Let’s define $V'_t \triangleq V_t + \sum_{s=0}^{t-1} \frac{s}{2L} \| \nabla f(x_s) \|^2$.

We verify V' is non increasing since

$$V'_{t+1} - V'_t = V_{t+1} - V_t + \frac{t}{2L} \| \nabla f(x_t) \|^2 \leq 0.$$

And we conclude with

$$\min_{0 \leq s \leq t-1} \| \nabla f(x_s) \|^2 \leq \frac{t(t-1)}{4L} \min_{0 \leq s \leq t-1} \| \nabla f(x_s) \|^2 \leq \frac{t(t-1)}{4L} \| x_0 - x_* \|^2,$$

that

$$\min_{0 \leq s \leq t-1} \| \nabla f(x_s) \|^2 \leq \frac{2L^2}{t(t-1)} \| x_0 - x_* \|^2.$$

Solution Exercice 2.:

1.

$$C_{t+1}(f(x_{t+1}) - f_*) - C_t(f(x_t) - f_*)$$

$$= C_{t+1}(f(x_{t+1}) - f(y_t)) + C_t(f(y_t) - f(x_t)) + (C_{t+1} - C_t)(f(y_t) - f_*)$$

$$\leq - \frac{C_{t+1}}{2L} \| \nabla f(y_t) \|^2 + C_t \langle \nabla f(y_t), y_t - x_t \rangle + (C_{t+1} - C_t) \| \nabla f(y_t), y_t - x_* \rangle$$

$$\leq - \frac{C_{t+1}}{2L} \| \nabla f(y_t) \|^2 + \langle \nabla f(y_t), C_{t+1}(y_t - x_*) - C_t(x_t - x_*) \rangle.$$

(12)

2. Let’s write (12)’s RHS as a difference of 2 squares.

$$- \frac{C_{t+1}}{2L} \| \nabla f(y_t) \|^2 + \langle \nabla f(y_t), C_{t+1}(y_t - x_*) - C_t(x_t - x_*) \rangle$$

$$= - \frac{LC_{t+1}}{2} \left[\left\| \frac{1}{L} \nabla f(y_t) \right\|^2 - 2 \left\langle \frac{1}{L} \nabla f(y_t), (y_t - x_*) - \frac{C_t}{C_{t+1}}(x_t - x_*) \right\rangle \right]$$

$$= - \frac{LC_{t+1}}{2} \left[\left(y_t - x_* \right) - \frac{C_t}{C_{t+1}}(x_t - x_*) - \frac{1}{L} \nabla f(y_t) \right] \left\|^2 - \left(y_t - x_* \right) - \frac{C_t}{C_{t+1}}(x_t - x_*) \right\|^2. \right]$$

We now summarize writing everything in terms of the sequences x and λ.

$$C_{t+1}(f(x_{t+1}) - f_*) - C_t(f(x_t) - f_*)$$

$$\leq - \frac{L\lambda^2_{t+1}}{2} \left[\left\| (x_{t+1} - x_*) - \frac{\lambda^2_{t+1}}{\lambda^2_{t+1}}(x_t - x_*) \right\|^2 - \left(x_t - x_* \right) + \beta_t(x_t - x_{t-1}) - \frac{\lambda^2_{t+1}}{\lambda^2_{t+1}}(x_t - x_*) \right\|^2 \right]$$

$$= - \frac{L}{2} \left[\left(\lambda_{t+1}(x_{t+1} - x_*) - \frac{\lambda^2_{t+1}}{\lambda^2_{t+1}}(x_t - x_*) \right) \right]$$

$$= \frac{L}{2} \left[\left(\lambda_{t+1}(x_{t+1} - x_*) - \frac{\lambda^2_{t+1}}{\lambda^2_{t+1}}(x_t - x_*) \right) \right]$$

We can then conclude

$$C_{t+1}(f(x_{t+1}) - f_*) + R_{t+1} \leq C_t(f(x_t) - f_*) + R_t,$$

(13)
with

\[R_{t+1} = \frac{L}{2} \left\| \lambda_{t+1} (x_{t+1} - x_*) - \frac{\lambda_t^2}{\lambda_{t+1}} (x_t - x_*) \right\|^2, \]

\[R_t = \frac{L}{2} \left\| \left(\lambda_{t+1} - \frac{\lambda_t^2}{\lambda_{t+1}} \right) (x_t - x_*) + \beta_t \lambda_{t+1} (x_t - x_{t-1}) \right\|^2. \]

Therefore, we need to have for all \(t \geq 1 \):

\[\lambda_t (x_t - x_*) - \frac{\lambda_t^2}{\lambda_{t-1}} (x_{t-1} - x_*) = \left(\lambda_{t+1} - \frac{\lambda_t^2}{\lambda_{t+1}} + \beta_t \lambda_{t+1} \right) (x_t - x_*) - \beta_t \lambda_{t+1} (x_{t-1} - x_*), \]

i.e.

\[\lambda_t = \left(\lambda_{t+1} - \frac{\lambda_t^2}{\lambda_{t+1}} + \beta_t \lambda_{t+1} \right), \]

\[\frac{\lambda_t^2}{\lambda_{t-1}} = \beta_t \lambda_{t+1}. \]

From the first line we get \(\beta_t = \frac{\lambda_t}{\lambda_{t+1}} + \frac{\lambda_t^2}{\lambda_{t+1}} - 1 \) and injecting it in the second line we obtain the recursion

\[\frac{\lambda_t^2}{\lambda_{t-1}} = 1 + \frac{\lambda_t}{\lambda_{t+1}} - \frac{\lambda_t^2}{\lambda_t} \cdot \lambda_{t+1}. \]

The latter can be rearranged by substituting 1 on both sides, giving \(\frac{\lambda_t^2}{\lambda_{t-1}} - \frac{\lambda_t^2}{\lambda_{t+1}} = \frac{\lambda_t^2 - \lambda_{t+1}^2}{\lambda_t \lambda_{t+1}}. \)

We conclude that \(\frac{\lambda_t^2 - \lambda_{t+1}^2}{\lambda_{t+1}} = \frac{\lambda_t^2 - \lambda_{t+1}^2}{\lambda_t} = -\lambda_1 \) since \(\lambda_0 = 0. \)

This can also be written as \(\left(\frac{\lambda_{t+1}}{\lambda_1} \right)^2 - \frac{\lambda_{t+1}}{\lambda_1} = \left(\frac{\lambda_t}{\lambda_1} \right)^2 \) and \(\beta_t = \frac{\lambda_t / \lambda_{t-1} - 1}{\lambda_{t+1} / \lambda_1} \).

We want to maximize \(\lambda_1 \) such that \(V_t \leq \frac{L}{2} \| x_0 - x_* \|^2. \)

We have:

\[V_t \leq V_{t-1} \]
\[\leq V_1 \]
\[= \lambda_1^2 (f(x_1) - f_*) + \frac{L}{2} \| x_0 - x_* + \lambda_1 (x_1 - x_0) \|^2 \]
\[\leq \lambda_1^2 \left(f(x_0) - f_* - \frac{1}{2L} \| \nabla f(x_0) \|^2 \right) + \frac{L}{2} \| x_0 - x_* - \frac{\lambda_1}{L} \nabla f(x_0) \|^2 \]
\[= \lambda_1^2 (f(x_0) - f_*) + \frac{L}{2} \| x_0 - x_* \|^2 - \lambda_1 \langle \nabla f(x_0), x_0 - x_* \rangle \]
\[= (\lambda_1^2 - \lambda_1) \langle \nabla f(x_0), x_0 - x_* \rangle + \frac{L}{2} \| x_0 - x_* \|^2 \]
\[\leq \frac{L}{2} \| x_0 - x_* \|^2 \]

is valid for any \(\lambda_1 \leq 1. \)
We conclude that with $\lambda_{t+1}^2 - \lambda_{t+1} = \lambda_t^2$ and $\beta_t = \frac{\lambda_t - 1}{\lambda_{t+1}}$,
\[
f(x_t) - f^* \leq \frac{L}{2} \frac{\|x_0 - x_s\|^2}{\lambda_t^2}.
\] (14)

3. $\lambda_{t+1}^2 - \lambda_{t+1} = \lambda_t^2$ can also be written as $\lambda_{t+1} = \frac{1}{2} + \sqrt{\lambda_t^2 + \frac{1}{4}}$.

Then, $\lambda_{t+1} \geq \frac{1}{2} + \lambda_t$, hence $\lambda_t \geq \frac{1}{2}$.

This is sufficient to conclude that $f(x_t) - f^* \leq 2L \frac{\|x_0 - x_s\|^2}{t^2}$.

Moreover, since $\lambda_t \to 0$, we can show that $\lambda_{t+1} - \lambda_t \to \frac{1}{2}$, and then $\lambda_t \sim \frac{1}{2}$.

Solution Exercice 3.

1. If f is said convex and L-smooth, then using (Convexity) and (Smoothness), we get
\[
\forall(x, y, z) : f(y) + \langle \nabla f(y), x - y \rangle \leq f(x) \leq f(z) + \langle \nabla f(z), x - z \rangle + \frac{L}{2} \|x - z\|^2.
\] (15)

and thus [3]. Reciprocally, if $\forall(x, y, z)$
\[
f(y) + \langle \nabla f(y), x - y \rangle \leq f(x) \leq f(z) + \langle \nabla f(z), x - z \rangle + \frac{L}{2} \|x - z\|^2.
\] (16)

then with $x = y$, we get, $\forall(x, z)$:
\[
f(x) \leq f(z) + \langle \nabla f(z), x - z \rangle + \frac{L}{2} \|x - z\|^2.
\] (17)

which is (Smoothness) and with $x = z$, we get, $\forall(x, y)$:
\[
f(y) + \langle \nabla f(y), x - y \rangle \leq f(x).
\] (18)

which is (Convexity).

2. By [3], f is convex and L-smooth if and only if, $\forall(x, y, z)$
\[
0 \leq f(z) - f(y) + \langle \nabla f(y), y \rangle - \langle \nabla f(z), z \rangle + \langle \nabla f(z) - \nabla f(y), x \rangle + \frac{L}{2} \|x - z\|^2.
\] (19)

thus if and only if, $\forall(y, z)$
\[
0 \leq f(z) - f(y) + \langle \nabla f(y), y - z \rangle + \min_{x \in \mathbb{R}^d} \left(\langle \nabla f(z) - \nabla f(y), x - z \rangle + \frac{L}{2} \|x - z\|^2 \right) = -\frac{1}{2L} \|\nabla f(z) - \nabla f(y)\|^2
\]

which gives [4].

3. [5] summed with the same inequality with y, z permuted gives [6].

For the other direction :

(a) [6] implies that ∇f is Lipschitz by Cauchy Schwartz.

(b) $g'(t) = \langle \nabla f(\theta + t(\eta - \theta)), \theta - \eta \rangle$ and thus for all $t > 0$, we have $g'(t) - g'(0) = \frac{1}{t} (\langle \nabla f(\theta + t(\eta - \theta)), \theta - \eta \rangle - \langle \nabla f(\theta), \theta - \eta \rangle) \geq 0$. Writing $g(1) = g(0) + \int_0^1 g'(t)dt \geq g(0) + g'(0)$ we get (Convexity)
Remark : another solution, is too show that \(g(x) := \frac{L}{2} \|x\|^2 - f(x) \) is \(L \)-smooth and to conclude that \(f \) is thus convex.

To do so, we observe that:

\[
\frac{1}{L} \|\nabla g(y) - \nabla g(z)\|^2 \leq \langle \nabla g(y) - \nabla g(z), y - z \rangle
\]

(20)

\[
\Leftrightarrow \frac{1}{L} \|L(y - z) - (\nabla f(y) - \nabla f(z))\|^2 \leq \langle L(y - z) - (\nabla f(y) - \nabla f(z)), y - z \rangle.
\]

(21)

\[
\Leftrightarrow \frac{1}{L} \|\nabla f(y) - \nabla f(z)\|^2 \leq \langle \nabla f(y) - \nabla f(z), y - z \rangle.
\]

(22)

Thus (6) for \(f \) is equivalent to (6) for \(g \)! And as remarked above, (6) implies \(L \)-smoothness.

4. We can do the exact same derivation for strongly convex functions adding curvature to (Convexity). Another way it to notice that \(f \) is \(L \)-smooth and \(\mu \)-strongly convex if and only if \(f - \frac{\mu}{2} \|x - x_s\|^2 \) is \(L - \mu \)-smooth and convex. Applying (Coco) to \(f - \frac{\mu}{2} \|x - x_s\|^2 \) therefore answers the question. And the obtained inequality is of course the same using the 2 approaches.

Solution Exercice 4.

1. First we compute

\[
V_{t+1} - V_t \leq \lambda_{t+1}^2 (f(x_{t+1}) - f_*) - \lambda_t^2 (f(x_t) - f_*) \\
+ \frac{L}{2} \|\lambda_{t+1}(x_{t+1} - x_*) + (1 - \lambda_{t+1})(x_t - x_*)\|^2 - \frac{L}{2} \|\lambda_t(x_t - x_*) + (1 - \lambda_t)(x_{t-1} - x_*)\|^2 \\
= \lambda_{t+1}^2 (f(x_{t+1}) - f(y_t)) + \lambda_{t+1} (f(y_t) - f_*) + \lambda_t^2 (f(x_t) - f_*) \\
+ \frac{L}{2} \|\lambda_{t+1}(x_{t+1} - x_*) + (1 - \lambda_{t+1})(x_t - x_*)\|^2 - \frac{L}{2} \|\lambda_t(x_t - x_*) + (1 - \lambda_t)(x_{t-1} - x_*)\|^2 \\
\leq - \frac{\lambda_{t+1}^2}{2L} \|\nabla f(y_t)\|^2 + \lambda_{t+1} \langle \nabla f(y_t), y_t - x_* \rangle + \lambda_t^2 \langle \nabla f(x_t), x_t - x_* \rangle \\
+ \frac{L}{2} \|\lambda_{t+1}(x_{t+1} - x_*) + (1 - \lambda_{t+1})(x_t - x_*)\|^2 - \frac{L}{2} \|\lambda_t(x_t - x_*) + (1 - \lambda_t)(x_{t-1} - x_*)\|^2
\]

Then, by rearranging terms and using (NAG), we conclude

\[
V_{t+1} - V_t \leq - \frac{1}{2L} \left[\lambda_{t+1}^2 \|\nabla f(x_{t+1})\|^2 + \lambda_{t+1} \|\nabla f(y_t)\|^2 + \lambda_t^2 \|\nabla f(y_t) - \nabla f(x_t)\|^2 \right].
\]

Which is the wanted inequality \(V_{t+1} - V_t \leq -\Delta_t \), with

\[
\Delta_t = \frac{1}{2L} \left[\lambda_{t+1}^2 \|\nabla f(x_{t+1})\|^2 + \lambda_{t+1} \|\nabla f(y_t)\|^2 + \lambda_t^2 \|\nabla f(y_t) - \nabla f(x_t)\|^2 \right].
\]

(23)

2. We compute the difference

\[
\left(V_{t+1} + \sum_{s=0}^{t} \Delta_s \right) - \left(V_t + \sum_{s=0}^{t-1} \Delta_s \right) = V_{t+1} - V_t + \Delta_t \leq 0.
\]
3. We have that for any $t \geq 0$,

$$
\frac{1}{2L} \sum_{s=0}^{t-1} \lambda_{s+1}^2 \|\nabla f(x_{s+1})\|^2 \leq V_t + \sum_{s=0}^{t-1} \Delta_s \leq V_0 = \frac{L}{2} \|x_0 - x^\star\|^2. \quad (24)
$$

We conclude that

$$
\min_{0 \leq s \leq t-1} \|\nabla f(x_{s+1})\|^2 \leq \frac{L^2 \|x_0 - x^\star\|^2}{\sum_{s=0}^{t-1} \lambda_{s+1}^2} = O\left(\frac{1}{t^3}\right). \quad (25)
$$