We recall the following definitions:

— A function f is said to be convex if and only if

$$\forall (x,y), \ f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle.$$
 (Convexity)

— A function f is said to be L-smooth if and only if

$$\forall (x, z), \ f(x) \le f(z) + \langle \nabla f(z), x - z \rangle + \frac{L}{2} ||x - z||^2.$$
 (Smoothness)

Exercice 1 (Simplest proof of GD). The Gradient descent method is defined by the update rule

$$x_{t+1} = x_t - \gamma \nabla f(x_t) \tag{GD}$$

where γ is called step-size.

Let f a L-smooth convex function and $(x_t)_{t\in\mathbb{N}}$ following this dynamic.

- 1. Prove that $f(x_{t+1}) \leq f(x_t) \gamma \left(1 \frac{L\gamma}{2}\right) \|\nabla f(x_t)\|^2$.
- 2. Given the previous inequality, provide the best choice for γ and prove the Descent Lemma

$$f(x_{t+1}) \le f(x_t) - \frac{1}{2L} \|\nabla f(x_t)\|^2.$$
 (Descent Lemma)

- 3. Use (Convexity) to upper bound $f(x_t) f_{\star}$.
- 4. Let $(C_t)_{t\in\mathbb{N}}$ a non decreasing sequence such that $C_0=0$, and for all $t\geq 0$, define V_t as

$$V_t = C_t(f(x_t) - f_{\star}) + \frac{L}{2} ||x_t - x_{\star}||^2.$$
 (1)

Assuming V_t is non increasing, what convergence guarantee do we obtain? Do we want to maximize C_t or to minimize it?

5. Using the previously obtained inequalities, provide a natural choice for C_t such that V_t is non increasing.

Note
$$C_{t+1}(f(x_{t+1}) - f_{\star}) - C_t(f(x_t) - f_{\star}) = C_{t+1}(f(x_{t+1}) - f(x_t)) + (C_{t+1} - C_t)(f(x_t) - f_{\star}).$$

bonus: Based on tightest obtained bound on $V_{t+1}-V_t$, modify slightly V_t to obtain a convergence guarantee on the smallest observed gradient norm.

Exercice 2 (Simplest proof of NAG). The Nesterov accelerated gradient method is defined by the update rule

$$\begin{cases} y_t = x_t + \beta_t (x_t - x_{t-1}) \\ x_{t+1} = y_t - \frac{1}{L} \nabla f(y_t) \end{cases}$$
 (NAG)

where $(\beta_t)_{t\in\mathbb{N}}$ is called momentum parameter.

Let f a L-smooth convex function and $(x_t, y_t)_{t \in \mathbb{N}}$ following this dynamic.

Let $(C_t)_{t\in\mathbb{N}}$ a non decreasing sequence such that $C_0=0$. We want to define V_t for all $t\geq 0$, as

$$V_t = C_t(f(x_t) - f_\star) + R_t \tag{2}$$

where $R_t \geq 0$, $R_0 = \frac{L}{2} ||x_0 - x_\star||^2$ and such that V is non increasing. Therefore, we would have

$$C_t(f(x_t) - f_\star) \le V_t \le V_0 = R_0 = \frac{L}{2} ||x_0 - x_\star||^2,$$

and finally $f(x_t) - f_{\star} \leq \frac{L}{2} \frac{\|x_0 - x_{\star}\|^2}{C_t}$.

- 1. Using (Descent Lemma) once and (Convexity) twice, upper bound $C_{t+1}(f(x_{t+1}) f_{\star}) C_t(f(x_t) f_{\star}) = C_{t+1}(f(x_{t+1}) f(y_t)) + C_t(f(y_t) f(x_t)) + (C_{t+1} C_t)(f(y_t) f_{\star})$).
- 2. Find non negative R_t as mentioned above so that V_t is non increasing. To simplify the notation, we will define $\lambda_t \triangleq \sqrt{C_t}$. Propose an appropriate choice for the sequences λ and β , and prove that $f(x_t) f_{\star} \leq \frac{L}{2} \frac{\|x_0 x_{\star}\|^2}{\lambda_{\star}^2}$.
- 3. Conclude that $f(x_t) f_{\star} = O(1/t^2)$.

Exercise 3 (Cocoercivity). The goal of the exercise is to re-establish the cocoercivity inequality

$$\frac{1}{2L} \|\nabla f(z) - \nabla f(y)\|^2 \le f(z) - f(y) + \langle \nabla f(y), y - z \rangle \tag{Coco}$$

characterizing smooth convex functions.

1. Show that f is convex and L-smooth if and only if, $\forall (x,y,z)$

$$f(y) + \langle \nabla f(y), x - y \rangle \le f(z) + \langle \nabla f(z), x - z \rangle + \frac{L}{2} ||x - z||^2.$$
 (3)

2. Show that f is convex and L-smooth if and only if, $\forall (y,z)$

$$0 \le f(z) - f(y) + \langle \nabla f(y), y - z \rangle - \frac{1}{2L} \| \nabla f(z) - \nabla f(y) \|^2. \tag{4}$$

i.e.

$$\frac{1}{2L} \|\nabla f(z) - \nabla f(y)\|^2 \le f(z) - f(y) + \langle \nabla f(y), y - z \rangle \tag{5}$$

3. Show that f is convex and L-smooth if and only if, $\forall (y,z)$

$$\frac{1}{L} \|\nabla f(z) - \nabla f(y)\|^2 \le \langle \nabla f(y) - \nabla f(z), y - z \rangle. \tag{6}$$

Hint: for the reverse direction, show that f satisfies for any $\eta, \theta \in \mathbb{R}^d$, $\langle \theta - \eta, \nabla f(\eta) - \nabla f(\theta) \rangle \geq 0$, iif f is convex. Hint: consider $g(t) = f(\theta + t(\eta - \theta))$. Show that $t \geq 0$, $g'(t) \geq g'(0)$ and prove $f(\eta) \geq f(\theta) + \langle \nabla f(\theta), \eta - \theta \rangle$.

4. Find a similar inequality characterizing smooth strongly convex functions.

Exercice 4. In exercise 2 we showed that considering

$$V_t \triangleq \lambda_t^2 (f(x_t) - f_{\star}) + \frac{L}{2} \|\lambda_t (x_t - x_{\star}) + (1 - \lambda_t)(x_{t-1} - x_{\star})\|^2, \tag{7}$$

we have $V_{t+1} \leq V_t$ for any $t \geq 0$, with $\lambda_{t+1}^2 - \lambda_{t+1} = \lambda_t^2$ ($\lambda_0 = 0$) and $\beta_t = \frac{\lambda_t - 1}{\lambda_{t+1}}$ ($x_{-1} = x_0$). To do so, we computed $V_{t+1} - V_t$ and used (Smoothness) and (Convexity) to upper bound $f(x_{t+1} - f(y_t))$, $f(y_t) - f(x_t)$ and $f(y_t) - f_{\star}$.

- 1. Rewrite the same proof by using (Coco) instead of (Smoothness) and (Convexity).
- 2. Since (Coco) is stronger, you obtained $V_{t+1} V_t \le -\Delta_t$ for a specific non negative Δ . Prove that the sequence $V_t + \sum_{s=0}^{t-1} \Delta_s$ is non increasing.
- 3. Conclude on a convergence guarantee of the smallest observed gradient norm.

1 Solutions

Solution Exercice 1.:

1. Using (Smoothness),

$$f(x_{t+1}) \le f(x_t) + \langle \nabla f(x_t), x_{t+1} - x_t \rangle + \frac{L}{2} ||x_{t+1} - x_t||^2$$

$$= f(x_t) + \langle \nabla f(x_t), -\gamma \nabla f(x_t) \rangle + \frac{L}{2} ||-\gamma \nabla f(x_t)||^2$$

$$= f(x_t) - \gamma \left(1 - \frac{L\gamma}{2}\right) ||\nabla f(x_t)||^2$$

2. Observing that $\gamma\left(1-\frac{L\gamma}{2}\right)=\frac{1}{2L}-\frac{L}{2}(\gamma-\frac{1}{L})^2\leq \frac{1}{2L}$, we have

$$f(x_{t+1}) \le f(x_t) - \frac{1}{2L} \|\nabla f(x_t)\|^2 + \frac{L}{2} \left(\gamma - \frac{1}{L}\right)^2 \|\nabla f(x_t)\|^2$$

$$\le f(x_t) - \frac{1}{2L} \|\nabla f(x_t)\|^2,$$

reached for $\gamma = \frac{1}{L}$. Therefore this choice of step-size γ is optimal.

3. Using (Convexity), we have

$$f(x_t) - f_{\star} \le \langle \nabla f(x_t), x_t - x_{\star} \rangle. \tag{8}$$

4. Let $(C_t)_{t\in\mathbb{N}}$ a non decreasing sequence such that $C_0=0$, and for all $t\geq 0$, define V_t as

$$V_t = C_t(f(x_t) - f_{\star}) + \frac{L}{2} ||x_t - x_{\star}||^2.$$
(9)

Assuming V_t is non increasing,

$$C_t(f(x_t) - f_*) \le V_t \le \dots \le V_t = \frac{L}{2} ||x_0 - x_*||^2.$$
 (10)

We conclude $f(x_t) - f_{\star} \leq \frac{L}{2} \frac{\|x_0 - x_{\star}\|^2}{C_t}$. Therefore, we want to have V_t non increasing for the largest possible C_t .

5. We want V_t non increasing. We then compute

$$V_{t+1} - V_t = C_{t+1}(f(x_{t+1}) - f_{\star}) - C_t(f(x_t) - f_{\star}) + \frac{L}{2} \left(\|x_{t+1} - x_{\star}\|^2 - \|x_t - x_{\star}\|^2 \right)$$

$$= C_{t+1}(f(x_{t+1}) - f(x_t)) + (C_{t+1} - C_t)(f(x_t) - f_{\star}) + \frac{L}{2} \left(\|x_{t+1} - x_{\star}\|^2 - \|x_t - x_{\star}\|^2 \right)$$

$$\leq -\frac{C_{t+1}}{2L} \|\nabla f(x_t)\|^2 + (C_{t+1} - C_t) \left\langle \nabla f(x_t), x_t - x_{\star} \right\rangle - \left\langle \nabla f(x_t), x_t - x_{\star} \right\rangle + \frac{1}{2L} \|\nabla f(x_t)\|^2$$

$$\leq \frac{1 - C_{t+1}}{2L} \|\nabla f(x_t)\|^2 + (C_{t+1} - C_t - 1) \left\langle \nabla f(x_t), x_t - x_{\star} \right\rangle \tag{11}$$

Therefore, we verify $V_{t+1}-V_t \leq 0$ for sequences $(C_t)_{t\in\mathbb{N}}$ such that for all $t\geq 0, 1-C_{t+1}\leq 0$ and $C_{t+1}-C_t-1\leq 0$. Note the first inequality is equivalent to $\forall t\geq 1,\ C_t\geq 1$, while the second one leads to the growth constraint $\forall t\geq 0,\ C_{t+1}\leq C_t+1$. Therefore, the largest such sequence verifies $\forall t\geq 0,\ C_t=t$.

We conclude that $V_t = t(f(x_t) - f_{\star}) + \frac{L}{2} ||x_t - x_{\star}||^2$ is non increasing and finally $\forall t \in \mathbb{N}, \ f(x_t) - f_{\star} \leq \frac{L}{2} \frac{||x_0 - x_{\star}||^2}{t}$.

bonus: Rewriting (11) with $C_t = t$ gives

$$V_{t+1} - V_t \le -\frac{t}{2L} \|\nabla f(x_t)\|^2.$$

Let's define $V'_t \triangleq V_t + \sum_{s=0}^{t-1} \frac{s}{2L} \|\nabla f(x_s)\|^2$.

We verify V' is non increasing since

$$V'_{t+1} - V'_t = V_{t+1} - V_t + \frac{t}{2L} \|\nabla f(x_t)\|^2 \le 0.$$

And we conclude with

$$\frac{t(t-1)}{4L} \min_{0 \le s \le t-1} \|\nabla f(x_s)\|^2 \le \sum_{s=0}^{t-1} \frac{s}{2L} \|\nabla f(x_s)\|^2 \le V_t' \le V_0' = \frac{L}{2} \|x_0 - x_\star\|^2,$$

that
$$\min_{0 \le s \le t-1} \|\nabla f(x_s)\|^2 \le \frac{2L^2}{t(t-1)} \|x_0 - x_\star\|^2$$
.

Solution Exercice 2.:

1.

$$C_{t+1}(f(x_{t+1}) - f_{\star}) - C_{t}(f(x_{t}) - f_{\star})$$

$$= C_{t+1}(f(x_{t+1}) - f(y_{t})) + C_{t}(f(y_{t}) - f(x_{t})) + (C_{t+1} - C_{t})(f(y_{t}) - f_{\star}))$$

$$\leq -\frac{C_{t+1}}{2L} \|\nabla f(y_{t})\|^{2} + C_{t} \langle \nabla f(y_{t}), y_{t} - x_{t} \rangle + (C_{t+1} - C_{t}) \langle \nabla f(y_{t}), y_{t} - x_{\star} \rangle$$

$$\leq -\frac{C_{t+1}}{2L} \|\nabla f(y_{t})\|^{2} + \langle \nabla f(y_{t}), C_{t+1}(y_{t} - x_{\star}) - C_{t}(x_{t} - x_{\star}) \rangle. \tag{12}$$

2. Let's write (12)'s RHS as a difference of 2 squares.

$$\begin{split} & -\frac{C_{t+1}}{2L} \|\nabla f(y_t)\|^2 + \langle \nabla f(y_t), C_{t+1}(y_t - x_\star) - C_t(x_t - x_\star) \rangle \\ & = & -\frac{LC_{t+1}}{2} \left[\left\| \frac{1}{L} \nabla f(y_t) \right\|^2 - 2 \left\langle \frac{1}{L} \nabla f(y_t), (y_t - x_\star) - \frac{C_t}{C_{t+1}} (x_t - x_\star) \right\rangle \right] \\ & = & -\frac{LC_{t+1}}{2} \left[\left\| (y_t - x_\star) - \frac{C_t}{C_{t+1}} (x_t - x_\star) - \frac{1}{L} \nabla f(y_t) \right\|^2 - \left\| (y_t - x_\star) - \frac{C_t}{C_{t+1}} (x_t - x_\star) \right\|^2 \right]. \end{split}$$

We now summarize writing everything in terms of the sequences x and λ .

$$C_{t+1}(f(x_{t+1}) - f_{\star}) - C_{t}(f(x_{t}) - f_{\star})$$

$$\leq -\frac{L\lambda_{t+1}^{2}}{2} \left[\left\| (x_{t+1} - x_{\star}) - \frac{\lambda_{t}^{2}}{\lambda_{t+1}^{2}} (x_{t} - x_{\star}) \right\|^{2} - \left\| (x_{t} - x_{\star}) + \beta_{t}(x_{t} - x_{t-1}) - \frac{\lambda_{t}^{2}}{\lambda_{t+1}^{2}} (x_{t} - x_{\star}) \right\|^{2} \right]$$

$$= -\frac{L}{2} \left[\left\| \lambda_{t+1}(x_{t+1} - x_{\star}) - \frac{\lambda_{t}^{2}}{\lambda_{t+1}} (x_{t} - x_{\star}) \right\|^{2} - \left\| \left(\lambda_{t+1} - \frac{\lambda_{t}^{2}}{\lambda_{t+1}} \right) (x_{t} - x_{\star}) + \beta_{t}\lambda_{t+1}(x_{t} - x_{t-1}) \right\|^{2} \right].$$

We can then conclude

$$C_{t+1}(f(x_{t+1}) - f_{\star}) + R_{t+1} \le C_t(f(x_t) - f_{\star}) + R_t, \tag{13}$$

with

$$R_{t+1} = \frac{L}{2} \left\| \lambda_{t+1} (x_{t+1} - x_{\star}) - \frac{\lambda_t^2}{\lambda_{t+1}} (x_t - x_{\star}) \right\|^2,$$

$$R_t = \frac{L}{2} \left\| \left(\lambda_{t+1} - \frac{\lambda_t^2}{\lambda_{t+1}} \right) (x_t - x_{\star}) + \beta_t \lambda_{t+1} (x_t - x_{t-1}) \right\|^2.$$

Therefore, we need to have for all $t \ge 1$:

$$\lambda_t(x_t - x_{\star}) - \frac{\lambda_{t-1}^2}{\lambda_t}(x_{t-1} - x_{\star}) = \left(\lambda_{t+1} - \frac{\lambda_t^2}{\lambda_{t+1}} + \beta_t \lambda_{t+1}\right)(x_t - x_{\star}) - \beta_t \lambda_{t+1}(x_{t-1} - x_{\star}),$$

i.e.

$$\lambda_t = \left(\lambda_{t+1} - \frac{\lambda_t^2}{\lambda_{t+1}} + \beta_t \lambda_{t+1}\right),$$
$$\frac{\lambda_{t-1}^2}{\lambda_t} = \beta_t \lambda_{t+1}.$$

From the first line we get $\boxed{\beta_t = \frac{\lambda_t}{\lambda_{t+1}} + \frac{\lambda_t^2}{\lambda_{t+1}^2} - 1} \text{ and injecting it in the second line we}$ obtain the recursion $\boxed{\frac{\lambda_{t-1}^2}{\lambda_t^2} = 1 + \frac{\lambda_t}{\lambda_{t+1}} - \frac{\lambda_{t+1}}{\lambda_t}}.$

The latter can be rearranged by substituting 1 on both sides, giving $\frac{\lambda_{t-1}^2 - \lambda_t^2}{\lambda_t^2} = \frac{\lambda_t^2 - \lambda_{t+1}^2}{\lambda_t \lambda_{t+1}}$. We conclude that $\frac{\lambda_t^2 - \lambda_{t+1}^2}{\lambda_{t+1}} = \frac{\lambda_{t-1}^2 - \lambda_t^2}{\lambda_t} = \frac{\lambda_0^2 - \lambda_1^2}{\lambda_1} = -\lambda_1$ since $\lambda_0 = 0$.

This can also be written as $\left[\left(\frac{\lambda_{t+1}}{\lambda_1} \right)^2 - \frac{\lambda_{t+1}}{\lambda_1} = \left(\frac{\lambda_t}{\lambda_1} \right)^2 \right]$ and $\beta_t = \frac{\lambda_t/\lambda_1 - 1}{\lambda_{t+1}/\lambda_1}$

We want to maximize λ_1 such that $V_t \leq \frac{L}{2} ||x_0 - x_{\star}||^2$. We have:

$$V_{t} \leq V_{t-1}$$

$$\leq V_{1}$$

$$= \lambda_{1}^{2}(f(x_{1}) - f_{\star}) + \frac{L}{2} \|x_{0} - x_{\star} + \lambda_{1}(x_{1} - x_{0})\|^{2}$$

$$\leq \lambda_{1}^{2} \left(f(x_{0}) - f_{\star} - \frac{1}{2L} \|\nabla f(x_{0})\|^{2} \right) + \frac{L}{2} \|x_{0} - x_{\star} - \frac{\lambda_{1}}{L} \nabla f(x_{0})\|^{2}$$

$$= \lambda_{1}^{2}(f(x_{0}) - f_{\star}) + \frac{L}{2} \|x_{0} - x_{\star}\|^{2} - \lambda_{1} \left\langle \nabla f(x_{0}), x_{0} - x_{\star} \right\rangle$$

$$= (\lambda_{1}^{2} - \lambda_{1}) \left\langle \nabla f(x_{0}), x_{0} - x_{\star} \right\rangle + \frac{L}{2} \|x_{0} - x_{\star}\|^{2}$$

$$\leq \frac{L}{2} \|x_{0} - x_{\star}\|^{2}$$

is valid for any $\lambda_1 \leq 1$.

We conclude that with $\lambda_{t+1}^2 - \lambda_{t+1} = \lambda_t^2$ and $\beta_t = \frac{\lambda_t - 1}{\lambda_{t+1}}$,

$$f(x_t) - f_{\star} \le \frac{L}{2} \frac{\|x_0 - x_{\star}\|^2}{\lambda_t^2}.$$
 (14)

3. $\lambda_{t+1}^2 - \lambda_{t+1} = \lambda_t^2$ can also be written as $\lambda_{t+1} = \frac{1}{2} + \sqrt{\lambda_t^2 + \frac{1}{4}}$.

Then, $\lambda_{t+1} \geq \frac{1}{2} + \lambda_t$, hence $\lambda_t \geq \frac{t}{2}$.

This is sufficient to conclude that $f(x_t) - f_{\star} \leq 2L \frac{\|x_0 - x_{\star}\|^2}{t^2}$.

Moreover, since $\lambda_t \to 0$, we can show that $\lambda_{t+1} - \lambda_t \to \frac{1}{2}$, and then $\lambda_t \sim \frac{t}{2}$.

Solution Exercice 3.:

1. If f is said convex and L-smooth, then using (Convexity) and (Smoothness), we get $\forall (x, y, z)$:

$$f(y) + \langle \nabla f(y), x - y \rangle \le f(x) \le f(z) + \langle \nabla f(z), x - z \rangle + \frac{L}{2} ||x - z||^2.$$
 (15)

and thus (3). Reciprocally, if $\forall (x, y, z)$

$$f(y) + \langle \nabla f(y), x - y \rangle \le f(z) + \langle \nabla f(z), x - z \rangle + \frac{L}{2} ||x - z||^2.$$
 (16)

then with x = y, we get, $\forall (x, z)$:

$$f(x) \le f(z) + \langle \nabla f(z), x - z \rangle + \frac{L}{2} ||x - z||^2. \tag{17}$$

which is (Smoothness) and with x = z, we get, $\forall (x, y)$:

$$f(y) + \langle \nabla f(y), x - y \rangle \le f(x). \tag{18}$$

which is (Convexity).

2. By (3), f is convex and L-smooth if and only if, $\forall (x, y, z)$

$$0 \le f(z) - f(y) + \langle \nabla f(y), y \rangle - \langle \nabla f(z), z \rangle + \langle \nabla f(z) - \nabla f(y), x \rangle + \frac{L}{2} ||x - z||^2.$$
 (19)

thus if and only if, $\forall (y,z)$

$$0 \le f(z) - f(y) + \langle \nabla f(y), y - z \rangle + \underbrace{\min_{x \in \mathbb{R}^d} \left(\langle \nabla f(z) - \nabla f(y), x - z \rangle + \frac{L}{2} ||x - z||^2 \right)}_{= -\frac{1}{2L} ||\nabla f(z) - \nabla f(y)||^2}.$$

which gives (4).

- 3. (5) summed with the same inequality with y, z permuted gives (6). For the other direction:
 - (a) (6) implies that ∇f is Lipschitz by Cauchy Schwartz.
 - (b) $g'(t) = \langle \nabla f(\theta + t(\eta \theta)), \theta \eta \rangle$ and thus for all t > 0, we have $g'(t) g'(0) = \frac{1}{t} \langle \nabla f(\theta + t(\eta \theta)) \nabla f(\theta), t(\theta \eta) \rangle \ge 0$. Writing $g(1) = g(0) + \int_0^1 g'(t) dt \ge g(0) + g'(0)$ we get (Convexity)

Remark: another solution, is too show that $g(x) := \frac{L}{2}||x||^2 - f(x)$ is L-smooth and to conclude that f is thus convex.

To do so, we observe that:

$$\frac{1}{L} \|\nabla g(y) - \nabla g(z)\|^{2} \leq \langle \nabla g(y) - \nabla g(z), y - z \rangle \tag{20}$$

$$\Leftrightarrow \frac{1}{L} \|L(y - z) - (\nabla f(y) - \nabla f(z))\|^{2} \leq \langle L(y - z) - (\nabla f(y) - \nabla f(z)), y - z \rangle.$$

$$\Leftrightarrow \frac{1}{L} \|\nabla f(y) - \nabla f(z)\|^{2} \leq \langle \nabla f(y) - \nabla f(z), y - z \rangle.$$

$$(21)$$

Thus (6) for f is equivalent to (6) for g! And as remarked above, (6) implies L-smoothness.

4. We can do the exact same derivation for strongly convex functions adding curvature to (Convexity). Another way it to notice that f is L-smooth and μ -strongly convex if and only if $f - \frac{\mu}{2} ||x - x_{\star}||^2$ is $L - \mu$ -smooth and convex. Applying (Coco) to $f - \frac{\mu}{2} ||x - x_{\star}||^2$ therefore answers the question. And the obtained inequality is of course the same using the 2 approaches.

Solution Exercice 4.:

1. First we compute

$$\begin{aligned} V_{t+1} - V_t &\leq \lambda_{t+1}^2 (f(x_{t+1}) - f_\star) - \lambda_t^2 (f(x_t) - f_\star) \\ &+ \frac{L}{2} \|\lambda_{t+1} (x_{t+1} - x_\star) + (1 - \lambda_{t+1}) (x_t - x_\star) \|^2 - \frac{L}{2} \|\lambda_t (x_t - x_\star) + (1 - \lambda_t) (x_{t-1} - x_\star) \|^2 \\ &= \lambda_{t+1}^2 (f(x_{t+1}) - f(y_t)) + \lambda_{t+1} (f(y_t) - f_\star) + \lambda_t^2 (f(y_t) - f(x_t)) \\ &+ \frac{L}{2} \|\lambda_{t+1} (x_{t+1} - x_\star) + (1 - \lambda_{t+1}) (x_t - x_\star) \|^2 - \frac{L}{2} \|\lambda_t (x_t - x_\star) + (1 - \lambda_t) (x_{t-1} - x_\star) \|^2 \\ &\leq - \frac{\lambda_{t+1}^2}{2L} \|\nabla f(y_t)\|^2 + \lambda_{t+1} \left\langle \nabla f(y_t), y_t - x_\star \right\rangle + \lambda_t^2 \left\langle \nabla f(y_t), y_t - x_t \right\rangle \\ &+ \frac{L}{2} \|\lambda_{t+1} (x_{t+1} - x_\star) + (1 - \lambda_{t+1}) (x_t - x_\star) \|^2 - \frac{L}{2} \|\lambda_t (x_t - x_\star) + (1 - \lambda_t) (x_{t-1} - x_\star) \|^2 \end{aligned}$$

Then, by rearranging terms and using (NAG), we conclude

$$V_{t+1} - V_t \le -\frac{1}{2L} \left[\lambda_{t+1}^2 \|\nabla f(x_{t+1})\|^2 + \lambda_{t+1} \|\nabla f(y_t)\| + \lambda_t^2 \|\nabla f(y_t) - \nabla f(x_t)\|^2 \right].$$

Which is the wanted inequality $V_{t+1} - V_t \leq -\Delta_t$, with

$$\Delta_t = \frac{1}{2L} \left[\lambda_{t+1}^2 \|\nabla f(x_{t+1})\|^2 + \lambda_{t+1} \|\nabla f(y_t)\| + \lambda_t^2 \|\nabla f(y_t) - \nabla f(x_t)\|^2 \right]. \tag{23}$$

2. We compute the difference

$$\left(V_{t+1} + \sum_{s=0}^{t} \Delta_s\right) - \left(V_t + \sum_{s=0}^{t-1} \Delta_s\right) = V_{t+1} - V_t + \Delta_t \le 0.$$

3. We have that for any $t \geq 0$,

$$\frac{1}{2L} \sum_{s=0}^{t-1} \lambda_{s+1}^2 \|\nabla f(x_{s+1})\|^2 \le V_t + \sum_{s=0}^{t-1} \Delta_s \le V_0 = \frac{L}{2} \|x_0 - x_\star\|^2.$$
 (24)

We conclude that

$$\min_{0 \le s \le t-1} \|\nabla f(x_{s+1})\|^2 \le \frac{L^2 \|x_0 - x_\star\|^2}{\sum_{s=0}^{t-1} \lambda_{s+1}^2} = O\left(\frac{1}{t^3}\right).$$
(25)