Exercice 1 (GD/HB for quadratic function). Let x_{\star} be any vector, H a positive semidefinite symmetric matrix and f the convex quadratic function defined as

$$f(x) = \frac{1}{2}(x - x_{\star})^{T}H(x - x_{\star}) + f_{\star}.$$

The Gradient descent (GD) method is defined by the update rule

$$x_{t+1} = x_t - \gamma \nabla f(x_t) \tag{GD}$$

where γ is called step-size.

- 1. Prove (GD)'s iterates verify the relation $x_{t+1} x_{\star} = (I \gamma H)(x_t x_{\star})$.
- 2. Assuming H's eigenvalues λ verify $0 < \mu \leq \lambda \leq L$, provide the worst case rate of (GD). Propose a value for γ and provide the worst-case rate of (??) with this specific choice of step-size γ .
- 3. We now assume that $\mu = 0$ (i.e. *H*'s eigenvalues can be arbitrarily small). The previous worst-case rate becomes 1. We then bound the function value. Prove that $f(x_t) f_\star = \frac{1}{2}(x_0 x_\star)^T H(I \gamma H)^{2t}(x_0 x_\star)$ and propose a worst case bound of $f(x_t) f_\star$. Which γ would you consider? What is the worst case value of $f(x_t) f_\star$ with this specific step-size γ ?
- 4. We consider general first order methods of the form $x_{t+1} = x_0 \sum_{s=0}^t \gamma_{t,s} \nabla f(x_s)$ with $\gamma_{t,t} \neq 0$. Prove that for each of those methods, there exists a sequence of polynomials $(P_t)_{t\in\mathbb{N}}$ with $deg(P_t) = t$ and $P_t(0) = 1$ such that $\forall t, x_t x_\star = P_t(H)(x_0 x_\star)$.
- 5. Prove the reciproqua of the previous question.
- 6. Assuming $\mu \neq 0$, prove the best method can be designed by solving

$$\begin{cases} \max_{Q_t \in \mathbb{R}_t[X]} & Q_t \left(\frac{L+\mu}{L-\mu}\right) \\ \text{s.t.} & \sup_{X \in [-1,1]} (|Q_t(X)|) = 1 \end{cases}$$
(1)

Hint : First consider the polynomial P_t associated with the considered method. Find the problem it solves, and use some translation and rescale of P_t to define Q_t .

- 7. Prove the t^{th} Tchebychev polynomial T_t , defined as verifying $\forall \theta$, $T_t(\cos(\theta)) = \cos(t\theta)$, is solution of this problem.
- 8. Find the associated method and convergence guarantee. Provide an equivalent of this rate.

Hint : Tchebychev polynomials verify the recursion $T_{t+1} = 2XT_t - T_{t-1}$. Hint 2 : Tchebychev polynomials verify $\forall X > 1, T_t(X) \underset{t \to \infty}{\sim} \frac{1}{2}(X + \sqrt{X^2 - 1})^t$.

9. What is the stationary behavior of this method? (Provide limits of the parameters). This method is called Heavy-ball (HB) method.

bonus : Find a convergence guarantee of HB.

- 10. We now assume $\mu = 0$. Write the corresponding problem over polynomials.
- 11. Propose some good candidate based on the Tchebychev family of polynomials.
- 12. Provide the associated method and convergence guarantee.