Statistical machine learning and convex optimization

Francis Bach - Aymeric Dieuleveut

Mastère M2 - Paris-Sud - Spring 2022 Slides available: www.di.ens.fr/~fbach/fbach_orsay_2022.pdf

Statistical machine learning and convex optimization

- Six classes (lecture notes and slides online), Gotomeeting/live
 - 1. FB: Monday January 24, 2pm to 5pm
 - 2. FB: Monday January 31, 2pm to 5pm
 - 3. AD: Monday February 07, 2pm to 5pm
 - 4. AD: Monday February 14, 2pm to 5pm
 - 5. AD: Monday February 21, 2pm to 5pm
 - 6. FB: Monday March 07, 2pm to 5pm

• Evaluation

- 1. Basic implementations (Matlab / Python / R)
- 2. Attending 4 out of 6 classes is mandatory
- 3. Short exam (Monday March 28, 2pm to 4/5pm)
- Register online (https://www.di.ens.fr/~fbach/orsay2022.html)
- Book in preparation: https://www.di.ens.fr/~fbach/ltfp_book.pdf

"Big data" revolution? A new scientific context

- Data everywhere: size does not (always) matter
- Science and industry
- Size and variety
- Learning from examples
 - \boldsymbol{n} observations in dimension \boldsymbol{d}

Search engines - Advertising

e o o Sfete de la science - Recherch ×											
← → C 🔒 https://w	> C 🔒 https://www.google.fr/search?hl=fr&safe=active&q=fete+de+la+science&oq=fete+de+la+sci&gs_l=serp.3.0.0i 🏠										
🔟 Le Monde 🛛 🔏 Intranet IN	IRIA 左 Francis Bach 🛛 GMAIL 🥌 Liberation 🗜 L'EQ	UIPE 🛛 Google Scholar	PAMI <u>8</u> iGoogle	СР »							
+Francis Recherc	he Images Maps Play YouTube A	ctualités Gmail	Drive Agenda	Plus -							
Google	fete de la science										
U											
Deckershe											
Recherche	Environ 561 000 000 résultats (0,20 secondes)	000 000 résultats (0,20 secondes)									
Web	Accueil - Fête de la science (site internet) www.fetedelascience.fr/ Fête de la science 2012, du 10 au 14 octobre. La science vient à votre rencontre ! Manipulez, jouez, expérimentez, visitez des laboratoires, dialoguez avec des										
mages											
inages											
Maps		Fête de le sei	2012								
Vidéos	<u>Les programmes regionaux</u> imprimable. Quel que soit votre Villages des sciences, opérations										
Actualités	choix, toutes les animations	d'envergure, man	ifestations								
Shopping	Déposer un projet ? Le mode	20e édition en	2011								
Chopping	Déposer un projet ? Le mode d'emploi. Bienvenue aux futurs	20e édition en 20 science se dérout	11. La Fête de la								
Plus			0 00 12 00 10								
	Tout savoir sur la Fête de la	Les lauréats n	ationaux								

Search engines - Advertising

	tour de france - Bing ×							
← ⇒ C	https://www.bing.com/search?q=tou	r+de+france	e&go=Su	ıbmit&qs=r	n&form=QB	RE&filt=all&	&pq=tour+de-	+france≻=8
🚺 Apps 🛛 M	MAIL 🔀 Intranet 🧉 Francis Bach - INRIA	III Le Monde	СР	Scholar	🗾 Equipe	19 Agenda	Liberation	🗋 PAMI 🚽
	WEB IMAGES VIDEOS MAPS	S NEWS	MORI	E				Sign in
bing	tour de france				Q			
	121 000 000 RESULTS Narrow by langu	lage 🔻	Narrow	by region 👻				
	Tour de France 2014 Translate this page www.letour.fr ▼ tour de picardie 2014 ag2r la mondiale; astana pro team; bigmat - auber 93; bmc racing team; bretagne - seche environnement					Related searches Tracé Tour de France 2014 Regarder Tour de France Direct		
	Parcours Du samedi 29 juin au dimanche 21 juillet 2013, le 100 e Tour de …	Tour de France 2011 Tour de France 2014 - Site officiel de la célèbre course cycliste Le Tour Étape 14 - Saint-Pourçain-sur-Sioule > Lyon - Tour de Étape 18 Étape 18 - Gap > Alpe-d'Huez - Tour de France 2013			Classement General Tour de France Itinéraire Tour de France Etape Du Tour France 2 Tour de France Cyclisme Tour de France Online			
	Classements - Tour de France 2013. Tour de France 2013 - Site officiel							
	Nice 2013 Tour de France 2012 - Site officiel de la célèbre course cycliste Le Tour							
	Tour de France 2013 Translate this page www.letour.fr/le-tour/2013/fr ▼ Tour de France 2013 - Site officiel de la célèbre course cycliste Le Tour de France. Contient les itinéraires, coureurs, équipes et les infos des Tours passés.							
	Tour de France (cyclisme) — M fr.wikipedia.org/wiki/Tour_de_France_(cycli Le Tour de France est une compétition cyc Desgrange et Géo Lefèvre, chef de la rubriqu Histoire · Médiatisation du · Équipes et pa	<mark>Vikipédia</mark> ⊺ isme) - liste par étape ue cyclisme du articipation	Franslate les créée e u journal l	th is page n 1903 par He _'Auto.	enri			

Advertising

Marketing - Personalized recommendation

Visual object recognition

Bioinformatics

- Protein: Crucial elements of cell life
- Massive data: 2 millions for humans
- Complex data

Context Machine learning for "big data"

- Large-scale machine learning: large d, large n
 - -d: dimension of each observation (input)
 - -n: number of observations
- Examples: computer vision, bioinformatics, advertising

Context Machine learning for "big data"

- Large-scale machine learning: large d, large n
 - -d: dimension of each observation (input)
 - -n: number of observations
- Examples: computer vision, bioinformatics, advertising
- Ideal running-time complexity: O(dn)

Context Machine learning for "big data"

- Large-scale machine learning: large d, large n
 - -d: dimension of each observation (input)
 - -n: number of observations
- Examples: computer vision, bioinformatics, advertising
- Ideal running-time complexity: O(dn)
- Going back to simple methods
 - Stochastic gradient methods (Robbins and Monro, 1951b)
 - Mixing statistics and optimization

Scaling to large problems "Retour aux sources"

• 1950's: Computers not powerful enough

IBM "1620", 1959 CPU frequency: 50 KHz Price > 100 000 dollars

• 2010's: Data too massive

Scaling to large problems "Retour aux sources"

• 1950's: Computers not powerful enough

IBM "1620", 1959 CPU frequency: 50 KHz Price > 100 000 dollars

- 2010's: Data too massive
- Stochastic gradient methods (Robbins and Monro, 1951a)
 - Going back to simple methods

Outline - I

1. Introduction

- Large-scale machine learning and optimization
- Classes of functions (convex, smooth, etc.)
- Traditional statistical analysis through Rademacher complexity
- 2. Classical methods for convex optimization
 - Smooth optimization (gradient descent, Newton method)
 - Non-smooth optimization (subgradient descent)
 - Proximal methods
- 3. Non-smooth stochastic approximation
 - Stochastic (sub)gradient and averaging
 - Non-asymptotic results and lower bounds
 - Strongly convex vs. non-strongly convex

Outline - II

- 4. Classical stochastic approximation
 - Asymptotic analysis
 - Robbins-Monro algorithm
 - Polyak-Rupert averaging
- 5. Smooth stochastic approximation algorithms
 - Non-asymptotic analysis for smooth functions
 - Logistic regression
 - Least-squares regression without decaying step-sizes

6. Finite data sets

- Gradient methods with exponential convergence rates
- Convex duality
- (Dual) stochastic coordinate descent Frank-Wolfe

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top} \Phi(x)$ of features $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^\top \Phi(x_i)) + \mu \Omega(\theta)$$

convex data fitting term + regularizer

Usual losses

• **Regression**: $y \in \mathbb{R}$, prediction $\hat{y} = \theta^{\top} \Phi(x)$

– quadratic loss $\frac{1}{2}(y-\hat{y})^2 = \frac{1}{2}(y-\theta^{\top}\Phi(x))^2$

Usual losses

- Regression: $y \in \mathbb{R}$, prediction $\hat{y} = \theta^{\top} \Phi(x)$ - quadratic loss $\frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(y - \theta^{\top} \Phi(x))^2$
- Classification : $y \in \{-1, 1\}$, prediction $\hat{y} = \operatorname{sign}(\theta^{\top} \Phi(x))$
 - loss of the form $\ell(y\,\theta^{\top}\Phi(x))$
 - "True" 0-1 loss: $\ell(y \theta^{\top} \Phi(x)) = 1_{y \theta^{\top} \Phi(x) < 0}$

- Usual convex losses:

Main motivating examples

• Support vector machine (hinge loss): non-smooth

$$\ell(Y,\theta^{\top}\Phi(X)) = \max\{1 - Y\theta^{\top}\Phi(X), 0\}$$

• Logistic regression: smooth

$$\ell(Y, \theta^{\top} \Phi(X)) = \log(1 + \exp(-Y\theta^{\top} \Phi(X)))$$

• Least-squares regression

$$\ell(Y, \theta^{\top} \Phi(X)) = \frac{1}{2} (Y - \theta^{\top} \Phi(X))^2$$

- Structured output regression
 - See Tsochantaridis et al. (2005); Lacoste-Julien et al. (2013)

Usual regularizers

- Main goal: avoid overfitting
- (squared) Euclidean norm: $\|\theta\|_2^2 = \sum_{j=1}^d |\theta_j|^2$
 - Numerically well-behaved
 - Representer theorem and kernel methods : $\theta = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$
 - See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004)

Usual regularizers

- Main goal: avoid overfitting
- (squared) Euclidean norm: $\|\theta\|_2^2 = \sum_{j=1}^d |\theta_j|^2$
 - Numerically well-behaved
 - Representer theorem and kernel methods : $\theta = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$
 - See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004)
- Sparsity-inducing norms
 - Main example: ℓ_1 -norm $\|\theta\|_1 = \sum_{j=1}^d |\theta_j|$
 - Perform model selection as well as regularization
 - Non-smooth optimization and structured sparsity
 - See, e.g., Bach, Jenatton, Mairal, and Obozinski (2012b,a)

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top} \Phi(x)$ of features $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^\top \Phi(x_i)) + \mu \Omega(\theta)$$

convex data fitting term + regularizer

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top} \Phi(x)$ of features $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^\top \Phi(x_i)) + \mu \Omega(\theta)$$

convex data fitting term + regularizer

• Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$ training cost

• Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \theta^{\top} \Phi(x))$ testing cost

• Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top} \Phi(x)$ of features $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^\top \Phi(x_i)) + \mu \Omega(\theta)$$

convex data fitting term + regularizer

• Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$ training cost

• Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \theta^{\top} \Phi(x))$ testing cost

- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$
 - May be tackled simultaneously

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top} \Phi(x)$ of features $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^\top \Phi(x_i)) \text{ such that } \Omega(\theta) \leqslant D$$

$$\text{ convex data fitting term + constraint}$$

• Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$ training cost

• Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \theta^{\top} \Phi(x))$ testing cost

- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$
 - May be tackled simultaneously

General assumptions

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Bounded features $\Phi(x) \in \mathbb{R}^d$: $\|\Phi(x)\|_2 \leq R$
- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$ training cost
- Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \theta^{\top} \Phi(x))$ testing cost
- Loss for a single observation: $f_i(\theta) = \ell(y_i, \theta^\top \Phi(x_i))$ $\Rightarrow \forall i, f(\theta) = \mathbb{E}f_i(\theta)$
- Properties of f_i, f, \hat{f}
 - Convex on \mathbb{R}^d
 - Additional regularity assumptions: Lipschitz-continuity, smoothness and strong convexity

• Global definitions

• Global definitions (full domain)

- Not assuming differentiability:

 $\forall \theta_1, \theta_2, \alpha \in [0, 1], \quad g(\alpha \theta_1 + (1 - \alpha)\theta_2) \leq \alpha g(\theta_1) + (1 - \alpha)g(\theta_2)$

• Global definitions (full domain)

- Assuming differentiability:

$$\forall \theta_1, \theta_2, \quad g(\theta_1) \ge g(\theta_2) + g'(\theta_2)^\top (\theta_1 - \theta_2)$$

• Extensions to all functions with subgradients / subdifferential

Subgradients and subdifferentials

$$\forall \theta' \in \mathbb{R}^d, g(\theta') \ge g(\theta) + s^\top (\theta' - \theta)$$

– Subdifferential $\partial g(\theta) = \text{set of all subgradients at } \theta$

- If g is differentiable at θ , then $\partial g(\theta) = \{g'(\theta)\}$
- Example: absolute value
- The subdifferential is never empty! See Rockafellar (1997)

• Global definitions (full domain)

• Local definitions

- Twice differentiable functions
- $\forall \theta, g''(\theta) \geq 0$ (positive semi-definite Hessians)

• Global definitions (full domain)

• Local definitions

- Twice differentiable functions
- $\forall \theta, g''(\theta) \geq 0$ (positive semi-definite Hessians)
- Why convexity?

Why convexity?

• Local minimum = global minimum

- Optimality condition (non-smooth): $0 \in \partial g(\theta)$
- Optimality condition (smooth): $g'(\theta) = 0$
- Convex duality
 - See Boyd and Vandenberghe (2003)
- Recognizing convex problems
 - See Boyd and Vandenberghe (2003)

Lipschitz continuity

 Bounded gradients of g (⇔ Lipschitz-continuity): the function g if convex, differentiable and has (sub)gradients uniformly bounded by B on the ball of center 0 and radius D:

$$\forall \theta \in \mathbb{R}^d, \|\theta\|_2 \leqslant D \Rightarrow \|g'(\theta)\|_2 \leqslant B$$

 \Leftrightarrow

 $\forall \theta, \theta' \in \mathbb{R}^d, \|\theta\|_2, \|\theta'\|_2 \leqslant D \Rightarrow |g(\theta) - g(\theta')| \leqslant B \|\theta - \theta'\|_2$

• Machine learning

- with
$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$$

– G-Lipschitz loss and R-bounded data: B = GR

 A function g : ℝ^d → ℝ is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz-continuous

$$\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ \|g'(\theta_1) - g'(\theta_2)\|_2 \leq L \|\theta_1 - \theta_2\|_2$$

• If g is twice differentiable: $\forall \theta \in \mathbb{R}^d, g''(\theta) \preccurlyeq L \cdot Id$

 A function g : ℝ^d → ℝ is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz-continuous

$$\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ \|g'(\theta_1) - g'(\theta_2)\|_2 \leq L \|\theta_1 - \theta_2\|_2$$

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^d, g''(\theta) \preccurlyeq L \cdot Id$
- Machine learning
 - with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
 - Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top}$
 - L_{loss} -smooth loss and R-bounded data: $L = L_{\text{loss}}R^2$

• A function $g: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

 $\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ g(\theta_1) \ge g(\theta_2) + g'(\theta_2)^\top (\theta_1 - \theta_2) + \frac{\mu}{2} \|\theta_1 - \theta_2\|_2^2$

• If g is twice differentiable: $\forall \theta \in \mathbb{R}^d, g''(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$

• If g is convex, then $g + \frac{\mu}{2} \| \cdot \|_2^2$ is μ -strongly convex

• A function $g: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

 $\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ g(\theta_1) \ge g(\theta_2) + g'(\theta_2)^\top (\theta_1 - \theta_2) + \frac{\mu}{2} \|\theta_1 - \theta_2\|_2^2$

• If g is twice differentiable: $\forall \theta \in \mathbb{R}^d, g''(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$

(large μ/L)

⁽small μ/L)

• A function $g: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

 $\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ g(\theta_1) \ge g(\theta_2) + g'(\theta_2)^\top (\theta_1 - \theta_2) + \frac{\mu}{2} \|\theta_1 - \theta_2\|_2^2$

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^d, g''(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$
- Machine learning
 - with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
 - Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top}$
 - Data with invertible covariance matrix (low correlation/dimension)

• A function $g: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

 $\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ g(\theta_1) \ge g(\theta_2) + g'(\theta_2)^\top (\theta_1 - \theta_2) + \frac{\mu}{2} \|\theta_1 - \theta_2\|_2^2$

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^d, g''(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$
- Machine learning
 - with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
 - Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top}$
 - Data with invertible covariance matrix (low correlation/dimension)
- Adding regularization by $\frac{\mu}{2} \|\theta\|^2$

– creates additional bias unless μ is small

Summary of smoothness/convexity assumptions

• Bounded gradients of g (Lipschitz-continuity): the function g if convex, differentiable and has (sub)gradients uniformly bounded by B on the ball of center 0 and radius D:

$$\forall \theta \in \mathbb{R}^d, \|\theta\|_2 \leqslant D \Rightarrow \|g'(\theta)\|_2 \leqslant B$$

• Smoothness of g: the function g is convex, differentiable with L-Lipschitz-continuous gradient g' (e.g., bounded Hessians):

$$\forall \theta_1, \theta_2 \in \mathbb{R}^d, \quad \|g'(\theta_1) - g'(\theta_2)\|_2 \leq L \|\theta_1 - \theta_2\|_2$$

• Strong convexity of g: The function g is strongly convex with respect to the norm $\|\cdot\|$, with convexity constant $\mu > 0$:

$$\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ g(\theta_1) \ge g(\theta_2) + g'(\theta_2)^\top (\theta_1 - \theta_2) + \frac{\mu}{2} \|\theta_1 - \theta_2\|_2^2$$

• Approximation and estimation errors: $\Theta = \{\theta \in \mathbb{R}^d, \Omega(\theta) \leq D\}$

$$\begin{split} f(\hat{\theta}) - \min_{\theta \in \mathbb{R}^d} f(\theta) &= \begin{bmatrix} f(\hat{\theta}) - \min_{\theta \in \Theta} f(\theta) \end{bmatrix} + \begin{bmatrix} \min_{\theta \in \Theta} f(\theta) - \min_{\theta \in \mathbb{R}^d} f(\theta) \end{bmatrix} \\ & \text{Estimation error} & \text{Approximation error} \\ - \text{NB: may replace } \min_{\theta \in \mathbb{R}^d} f(\theta) \text{ by best (non-linear) predictions} \end{split}$$

43

• Approximation and estimation errors: $\Theta = \{\theta \in \mathbb{R}^d, \Omega(\theta) \leq D\}$

$$f(\hat{\theta}) - \min_{\theta \in \mathbb{R}^d} f(\theta) = \begin{bmatrix} f(\hat{\theta}) - \min_{\theta \in \Theta} f(\theta) \end{bmatrix} + \begin{bmatrix} \min_{\theta \in \Theta} f(\theta) - \min_{\theta \in \mathbb{R}^d} f(\theta) \end{bmatrix}$$

Estimation error Approximation error

1. Uniform deviation bounds, with $\hat{\theta} \in \arg\min_{\theta \in \Theta} \hat{f}(\theta)$

$$\begin{split} f(\hat{\theta}) - \min_{\theta \in \Theta} f(\theta) &= \left[f(\hat{\theta}) - \hat{f}(\hat{\theta}) \right] + \left[\hat{f}(\hat{\theta}) - \hat{f}((\theta_*)_{\Theta}) \right] + \left[\hat{f}((\theta_*)_{\Theta}) - f((\theta_*)_{\Theta}) \right] \\ &\leq \sup_{\theta \in \Theta} f(\theta) - \hat{f}(\theta) + \qquad 0 \qquad + \sup_{\theta \in \Theta} \hat{f}(\theta) - f(\theta) \\ \end{split}$$

• Approximation and estimation errors: $\Theta = \{\theta \in \mathbb{R}^d, \Omega(\theta) \leq D\}$

$$f(\hat{\theta}) - \min_{\theta \in \mathbb{R}^d} f(\theta) = \begin{bmatrix} f(\hat{\theta}) - \min_{\theta \in \Theta} f(\theta) \end{bmatrix} + \begin{bmatrix} \min_{\theta \in \Theta} f(\theta) - \min_{\theta \in \mathbb{R}^d} f(\theta) \end{bmatrix}$$

Estimation error Approximation error

1. Uniform deviation bounds, with $\hat{\theta} \in \arg\min_{\theta \in \Theta} \hat{f}(\theta)$

$$f(\hat{\theta}) - \min_{\theta \in \Theta} f(\theta) \leq \sup_{\theta \in \Theta} f(\theta) - \hat{f}(\theta) + \sup_{\theta \in \Theta} \hat{f}(\theta) - f(\theta)$$

– Typically slow rate $O(1/\sqrt{n})$

2. More refined concentration results with faster rates O(1/n)

• Approximation and estimation errors: $\Theta = \{\theta \in \mathbb{R}^d, \Omega(\theta) \leq D\}$

$$f(\hat{\theta}) - \min_{\theta \in \mathbb{R}^d} f(\theta) = \begin{bmatrix} f(\hat{\theta}) - \min_{\theta \in \Theta} f(\theta) \end{bmatrix} + \begin{bmatrix} \min_{\theta \in \Theta} f(\theta) - \min_{\theta \in \mathbb{R}^d} f(\theta) \end{bmatrix}$$

Estimation error Approximation error

1. Uniform deviation bounds, with $\hat{\theta} \in \arg\min_{\theta \in \Theta} \hat{f}(\theta)$

$$f(\hat{\theta}) - \min_{\theta \in \Theta} f(\theta) \leq 2 \cdot \sup_{\theta \in \Theta} |f(\theta) - \hat{f}(\theta)|$$

– Typically slow rate $O(1/\sqrt{n})$

2. More refined concentration results with faster rates O(1/n)

Motivation from least-squares

• For least-squares, we have $\ell(y, \theta^{\top} \Phi(x)) = \frac{1}{2}(y - \theta^{\top} \Phi(x))^2$, and

$$\begin{split} \hat{f}(\theta) - f(\theta) &= \frac{1}{2} \theta^{\top} \bigg(\frac{1}{n} \sum_{i=1}^{n} \Phi(x_{i}) \Phi(x_{i})^{\top} - \mathbb{E} \Phi(X) \Phi(X)^{\top} \bigg) \theta \\ &- \theta^{\top} \bigg(\frac{1}{n} \sum_{i=1}^{n} y_{i} \Phi(x_{i}) - \mathbb{E} Y \Phi(X) \bigg) + \frac{1}{2} \bigg(\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - \mathbb{E} Y^{2} \bigg), \\ \sup_{\|\theta\|_{2} \leqslant D} |f(\theta) - \hat{f}(\theta)| &\leqslant \frac{D^{2}}{2} \bigg\| \frac{1}{n} \sum_{i=1}^{n} \Phi(x_{i}) \Phi(x_{i})^{\top} - \mathbb{E} \Phi(X) \Phi(X)^{\top} \bigg\|_{\text{op}} \\ &+ D \bigg\| \frac{1}{n} \sum_{i=1}^{n} y_{i} \Phi(x_{i}) - \mathbb{E} Y \Phi(X) \bigg\|_{2} + \frac{1}{2} \bigg| \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - \mathbb{E} Y^{2} \bigg|, \end{split}$$

 $\sup_{\|\theta\|_2 \leqslant D} |f(\theta) - \hat{f}(\theta)| \leqslant O(1/\sqrt{n}) \text{ with high probability from 3 concentrations}$

Slow rate for supervised learning

- Assumptions (f is the expected risk, \hat{f} the empirical risk)
 - $\Omega(\theta) = \|\theta\|_2$ (Euclidean norm)
 - "Linear" predictors: $\theta(x) = \theta^{\top} \Phi(x)$, with $\|\Phi(x)\|_2 \leq R$ a.s.
 - G-Lipschitz loss: f and \hat{f} are GR-Lipschitz on $\Theta = \{ \|\theta\|_2 \leq D \}$
 - No assumptions regarding convexity

Slow rate for supervised learning

• Assumptions (f is the expected risk, \hat{f} the empirical risk)

- $\Omega(\theta) = \|\theta\|_2$ (Euclidean norm)

- "Linear" predictors: $\theta(x) = \theta^{\top} \Phi(x)$, with $\|\Phi(x)\|_2 \leq R$ a.s.
- G-Lipschitz loss: f and \hat{f} are GR-Lipschitz on $\Theta = \{ \|\theta\|_2 \leq D \}$

- No assumptions regarding convexity

- With probability greater than 1δ $\sup_{\theta \in \Theta} |\hat{f}(\theta) - f(\theta)| \leq \frac{\ell_0 + GRD}{\sqrt{n}} \left[2 + \sqrt{2\log\frac{2}{\delta}} \right]$
- Expectated estimation error: $\mathbb{E}\left[\sup_{\theta \in \Theta} |\hat{f}(\theta) f(\theta)|\right] \leq \frac{4\ell_0 + 4GRD}{\sqrt{n}}$
- Using Rademacher averages (see, e.g., Boucheron et al., 2005)
- Lipschitz functions \Rightarrow slow rate

Symmetrization with Rademacher variables

• Let $\mathcal{D}' = \{x'_1, y'_1, \dots, x'_n, y'_n\}$ an independent copy of the data $\mathcal{D} = \{x_1, y_1, \dots, x_n, y_n\}$, with corresponding loss functions $f'_i(\theta)$

$$\begin{split} \mathbb{E} \Big[\sup_{\theta \in \Theta} f(\theta) - \hat{f}(\theta) \Big] &= \mathbb{E} \Big[\sup_{\theta \in \Theta} \left(f(\theta) - \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \right) \Big] \\ &= \mathbb{E} \Big[\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \Big(f'_i(\theta) - f_i(\theta) | \mathcal{D} \Big) \Big] \\ &\leqslant \mathbb{E} \Big[\mathbb{E} \Big[\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \Big(f'_i(\theta) - f_i(\theta) \Big) \Big] \Big] \\ &= \mathbb{E} \Big[\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i \Big(f'_i(\theta) - f_i(\theta) \Big) \Big] \\ &= \mathbb{E} \Big[\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i f_i(\theta) - f_i(\theta) \Big) \Big] \text{ with } \varepsilon_i \text{ uniform in } \{-1, 1\} \\ &\leqslant 2\mathbb{E} \Big[\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i f_i(\theta) \Big] = \text{Rademacher complexity} \end{split}$$

Rademacher complexity

• Rademacher complexity of the class of functions $(X,Y) \mapsto \ell(Y, \theta^{\top} \Phi(X))$

$$R_n = \mathbb{E}\left[\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \varepsilon_i f_i(\theta)\right]$$

- with $f_i(\theta) = \ell(x_i, \theta^{\top} \Phi(x_i))$, (x_i, y_i) , i.i.d

- NB 1: two expectations, with respect to \mathcal{D} and with respect to ε - "Empirical" Rademacher average \hat{R}_n by conditioning on \mathcal{D}
- NB 2: sometimes defined as $\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i f_i(\theta)$
- Main property:

$$\mathbb{E}\Big[\sup_{\theta\in\Theta}f(\theta) - \hat{f}(\theta)\Big] \text{ and } \mathbb{E}\Big[\sup_{\theta\in\Theta}\hat{f}(\theta) - f(\theta)\Big] \leqslant 2R_n$$

From Rademacher complexity to uniform bound

• Let
$$Z = \sup_{\theta \in \Theta} |f(\theta) - \hat{f}(\theta)|$$

• By changing the pair (x_i, y_i) , Z may only change by

$$\frac{2}{n} \sup |\ell(Y, \theta^{\top} \Phi(X))| \leq \frac{2}{n} (\sup |\ell(Y, 0)| + GRD) \leq \frac{2}{n} (\ell_0 + GRD) = c$$

with $\sup |\ell(Y, 0)| = \ell_0$

• MacDiarmid inequality: with probability greater than $1 - \delta$,

$$Z \leqslant \mathbb{E}Z + \sqrt{\frac{n}{2}}c \cdot \sqrt{\log\frac{1}{\delta}} \leqslant 2R_n + \frac{\sqrt{2}}{\sqrt{n}}(\ell_0 + GRD)\sqrt{\log\frac{1}{\delta}}$$

Bounding the Rademacher average - I

• We have, with $\varphi_i(u) = \ell(y_i, u) - \ell(y_i, 0)$ is almost surely G-Lipschitz:

$$\begin{aligned} \hat{R}_n &= \mathbb{E}_{\varepsilon} \left[\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \varepsilon_i f_i(\theta) \right] \\ &= \mathbb{E}_{\varepsilon} \left[\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \varepsilon_i f_i(0) \right] + \mathbb{E}_{\varepsilon} \left[\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \varepsilon_i \left[f_i(\theta) - f_i(0) \right] \right] \\ &= 0 + \mathbb{E}_{\varepsilon} \left[\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \varepsilon_i \left[f_i(\theta) - f_i(0) \right] \right] \\ &= 0 + \mathbb{E}_{\varepsilon} \left[\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \varepsilon_i \varphi_i(\theta^{\top} \Phi(x_i)) \right] \end{aligned}$$

• Using Ledoux-Talagrand contraction results for Rademacher averages (since φ_i is G-Lipschitz), we get (Meir and Zhang, 2003):

$$\hat{R}_n \leqslant G \cdot \mathbb{E}_{\varepsilon} \left[\sup_{\|\theta\|_2 \leqslant D} \frac{1}{n} \sum_{i=1}^n \varepsilon_i \theta^\top \Phi(x_i) \right]$$

Proof of Ledoux-Talagrand lemma (Meir and Zhang, 2003, Lemma 5)

• Given any $b, a_i : \Theta \to \mathbb{R}$ (no assumption) and $\varphi_i : \mathbb{R} \to \mathbb{R}$ any 1-Lipschitz-functions, i = 1, ..., n

$$\mathbb{E}_{\varepsilon} \left[\sup_{\theta \in \Theta} b(\theta) + \sum_{i=1}^{n} \varepsilon_{i} \varphi_{i}(a_{i}(\theta)) \right] \leqslant \mathbb{E}_{\varepsilon} \left[\sup_{\theta \in \Theta} b(\theta) + \sum_{i=1}^{n} \varepsilon_{i} a_{i}(\theta) \right]$$

- \bullet Proof by induction on \boldsymbol{n}
 - -n=0: trivial
- From n to n + 1: see next slide

From n to n+1

$$\begin{split} \mathbb{E}_{\varepsilon_{1},\ldots,\varepsilon_{n+1}} \bigg[\sup_{\theta\in\Theta} b(\theta) + \sum_{i=1}^{n+1} \varepsilon_{i}\varphi_{i}(a_{i}(\theta)) \bigg] \\ &= \mathbb{E}_{\varepsilon_{1},\ldots,\varepsilon_{n}} \bigg[\sup_{\theta,\theta'\in\Theta} \frac{b(\theta) + b(\theta')}{2} + \sum_{i=1}^{n} \varepsilon_{i} \frac{\varphi_{i}(a_{i}(\theta)) + \varphi_{i}(a_{i}(\theta'))}{2} + \frac{\varphi_{n+1}(a_{n+1}(\theta)) - \varphi_{n+1}(a_{n+1}(\theta'))}{2} \bigg] \\ &= \mathbb{E}_{\varepsilon_{1},\ldots,\varepsilon_{n}} \bigg[\sup_{\theta,\theta'\in\Theta} \frac{b(\theta) + b(\theta')}{2} + \sum_{i=1}^{n} \varepsilon_{i} \frac{\varphi_{i}(a_{i}(\theta)) + \varphi_{i}(a_{i}(\theta'))}{2} + \frac{|\varphi_{n+1}(a_{n+1}(\theta)) - \varphi_{n+1}(a_{n+1}(\theta'))|}{2} \bigg] \\ &\leqslant \mathbb{E}_{\varepsilon_{1},\ldots,\varepsilon_{n}} \bigg[\sup_{\theta,\theta'\in\Theta} \frac{b(\theta) + b(\theta')}{2} + \sum_{i=1}^{n} \varepsilon_{i} \frac{\varphi_{i}(a_{i}(\theta)) + \varphi_{i}(a_{i}(\theta'))}{2} + \frac{|a_{n+1}(\theta) - a_{n+1}(\theta')|}{2} \bigg] \\ &= \mathbb{E}_{\varepsilon_{1},\ldots,\varepsilon_{n}} \mathbb{E}_{\varepsilon_{n+1}} \bigg[\sup_{\theta\in\Theta} b(\theta) + \varepsilon_{n+1}a_{n+1}(\theta) + \sum_{i=1}^{n} \varepsilon_{i}\varphi_{i}(a_{i}(\theta)) \bigg] \\ &\leqslant \mathbb{E}_{\varepsilon_{1},\ldots,\varepsilon_{n},\varepsilon_{n+1}} \bigg[\sup_{\theta\in\Theta} b(\theta) + \varepsilon_{n+1}a_{n+1}(\theta) + \sum_{i=1}^{n} \varepsilon_{i}a_{i}(\theta) \bigg]$$
by recursion

Bounding the Rademacher average - II

• We have:

$$\begin{split} R_n &\leqslant 2G\mathbb{E}\bigg[\sup_{\|\theta\|_2 \leqslant D} \frac{1}{n} \sum_{i=1}^n \varepsilon_i \theta^\top \Phi(x_i)\bigg] \\ &= 2G\mathbb{E} \bigg\| D \frac{1}{n} \sum_{i=1}^n \varepsilon_i \Phi(x_i) \bigg\|_2 \\ &\leqslant 2GD \sqrt{\mathbb{E} \bigg\| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \Phi(x_i) \bigg\|_2^2} \text{ by Jensen's inequality} \\ &\leqslant \frac{2GRD}{\sqrt{n}} \text{ by using } \|\Phi(x)\|_2 \leqslant R \text{ and independence} \end{split}$$

• Overall, we get, with probability $1 - \delta$:

$$\sup_{\theta \in \Theta} \left| f(\theta) - \hat{f}(\theta) \right| \leq \frac{1}{\sqrt{n}} \left(\ell_0 + GRD \right) \left(4 + \sqrt{2\log\frac{1}{\delta}} \right)$$

Putting it all together

- \bullet We have, with probability $1-\delta$
 - For exact minimizer $\hat{\theta} \in \arg \min_{\theta \in \Theta} \hat{f}(\theta)$, we have

$$f(\hat{\theta}) - \min_{\theta \in \Theta} f(\theta) \leq \sup_{\theta \in \Theta} \hat{f}(\theta) - f(\theta) + \sup_{\theta \in \Theta} f(\theta) - \hat{f}(\theta)$$
$$\leq \frac{2}{\sqrt{n}} \left(\ell_0 + GRD\right) \left(4 + \sqrt{2\log\frac{1}{\delta}}\right)$$

– For inexact minimizer $\eta\in\Theta$

$$f(\eta) - \min_{\theta \in \Theta} f(\theta) \leq 2 \cdot \sup_{\theta \in \Theta} |\hat{f}(\theta) - f(\theta)| + \left[\hat{f}(\eta) - \hat{f}(\hat{\theta})\right]$$

• Only need to optimize with precision $\frac{2}{\sqrt{n}}(\ell_0 + GRD)$

Putting it all together

- \bullet We have, with probability $1-\delta$
 - For exact minimizer $\hat{\theta} \in \arg \min_{\theta \in \Theta} \hat{f}(\theta)$, we have

$$f(\hat{\theta}) - \min_{\theta \in \Theta} f(\theta) \leq 2 \cdot \sup_{\theta \in \Theta} |\hat{f}(\theta) - f(\theta)|$$
$$\leq \frac{2}{\sqrt{n}} \left(\ell_0 + GRD\right) \left(4 + \sqrt{2\log\frac{1}{\delta}}\right)$$

– For inexact minimizer $\eta\in\Theta$

$$f(\eta) - \min_{\theta \in \Theta} f(\theta) \leq 2 \cdot \sup_{\theta \in \Theta} |\hat{f}(\theta) - f(\theta)| + \left[\hat{f}(\eta) - \hat{f}(\hat{\theta})\right]$$

• Only need to optimize with precision $\frac{2}{\sqrt{n}}(\ell_0 + GRD)$

Slow rate for supervised learning (summary)

- Assumptions (f is the expected risk, \hat{f} the empirical risk)
 - $\Omega(\theta) = \|\theta\|_2$ (Euclidean norm)
 - "Linear" predictors: $\theta(x) = \theta^{\top} \Phi(x)$, with $\|\Phi(x)\|_2 \leq R$ a.s.
 - G-Lipschitz loss: f and \hat{f} are GR-Lipschitz on $\Theta = \{ \|\theta\|_2 \leq D \}$
 - No assumptions regarding convexity
- With probability greater than 1δ $\sup_{\theta \in \Theta} |\hat{f}(\theta) - f(\theta)| \leqslant \frac{(\ell_0 + GRD)}{\sqrt{n}} \left[2 + \sqrt{2\log\frac{2}{\delta}} \right]$ • Expectated estimation error: $\mathbb{E}\left[\sup_{\theta \in \Theta} |\hat{f}(\theta) - f(\theta)|\right] < \frac{4(\ell_0 + GRD)}{4(\ell_0 + GRD)}$
- Expectated estimation error: $\mathbb{E}\left[\sup_{\theta\in\Theta}|\hat{f}(\theta) f(\theta)|\right] \leqslant \frac{4(\ell_0 + GRD)}{\sqrt{n}}$
- Using Rademacher averages (see, e.g., Boucheron et al., 2005)
- Lipschitz functions \Rightarrow slow rate

Motivation from mean estimation

- Estimator $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} z_i = \arg \min_{\theta \in \mathbb{R}} \frac{1}{2n} \sum_{i=1}^{n} (\theta z_i)^2 = \hat{f}(\theta)$
 - $-\theta_* = \mathbb{E}z = \arg\min_{\theta \in \mathbb{R}} \frac{1}{2} \mathbb{E}(\theta z)^2 = f(\theta)$
 - From before (estimation error): $f(\hat{\theta}) f(\theta_*) = O(1/\sqrt{n})$

Motivation from mean estimation

- Estimator $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} z_i = \arg \min_{\theta \in \mathbb{R}} \frac{1}{2n} \sum_{i=1}^{n} (\theta z_i)^2 = \hat{f}(\theta)$
 - $-\theta_* = \mathbb{E}z = \arg\min_{\theta \in \mathbb{R}} \frac{1}{2} \mathbb{E}(\theta z)^2 = f(\theta)$
 - From before (estimation error): $f(\hat{\theta}) f(\theta_*) = O(1/\sqrt{n})$
- Direct computation:

$$-f(\theta) = \frac{1}{2}\mathbb{E}(\theta - z)^2 = \frac{1}{2}(\theta - \mathbb{E}z)^2 + \frac{1}{2}\operatorname{var}(z)$$

• More refined/direct bound:

$$f(\hat{\theta}) - f(\mathbb{E}z) = \frac{1}{2}(\hat{\theta} - \mathbb{E}z)^2$$
$$\mathbb{E}[f(\hat{\theta}) - f(\mathbb{E}z)] = \frac{1}{2}\mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n z_i - \mathbb{E}z\right)^2 = \frac{1}{2n}\operatorname{var}(z)$$

• Bound only at $\hat{\theta}$ + strong convexity (instead of uniform bound)

Fast rate for supervised learning

- Assumptions (f is the expected risk, \hat{f} the empirical risk)
 - Same as before (bounded features, Lipschitz loss)
 - Regularized risks: $f^{\mu}(\theta) = f(\theta) + \frac{\mu}{2} \|\theta\|_2^2$ and $\hat{f}^{\mu}(\theta) = \hat{f}(\theta) + \frac{\mu}{2} \|\theta\|_2^2$

- Convexity

• For any a > 0, with probability greater than $1 - \delta$, for all $\theta \in \mathbb{R}^d$, $f^{\mu}(\hat{\theta}) - \min_{\eta \in \mathbb{R}^d} f^{\mu}(\eta) \leqslant \frac{8G^2R^2(32 + \log \frac{1}{\delta})}{\mu n}$

- Results from Sridharan, Srebro, and Shalev-Shwartz (2008)
 - see also Boucheron and Massart (2011) and references therein
- Strongly convex functions \Rightarrow fast rate
 - Warning: μ should decrease with n to reduce approximation error