Statistical machine learning and convex optimization

Francis Bach - Aymeric Dieuleveut

Mastère M2 - Paris-Sud - Spring 2022
Slides available: www.di.ens.fr/~fbach/fbach_orsay_2022.pdf

Statistical machine learning and convex optimization

- Six classes (lecture notes and slides online), Gotomeeting/live

1. FB: Monday January $24,2 \mathrm{pm}$ to 5 pm
2. FB: Monday January 31, 2 pm to 5 pm
3. AD: Monday February 07, 2pm to 5pm
4. AD: Monday February 14, 2pm to 5 pm
5. AD: Monday February 21, 2pm to 5 pm
6. FB: Monday March 07, 2pm to 5pm

- Evaluation

1. Basic implementations (Matlab / Python / R)
2. Attending 4 out of 6 classes is mandatory
3. Short exam (Monday March 28, 2pm to $4 / 5 \mathrm{pm}$)

- Register online (https://www.di.ens.fr/~fbach/orsay2022.html)
- Book in preparation: https://www.di.ens.fr/~fbach/ltfp_book.pdf

"Big data" revolution? A new scientific context

- Data everywhere: size does not (always) matter
- Science and industry
- Size and variety
- Learning from examples
- n observations in dimension d

Search engines - Advertising

Recherche

Environ 561000000 résultats (0,20 secondes)

Web	Accueil - Fête de la science (site internet)	
	www.fetedelascience.fr/	
Images	Fête de la science 2012, du 10 au 14 octobre. La science vient à votre rencontre !	
Maps	Manipulez, jouez, expérimentez, visitez des la	toires, dialoguez avec des ...
	Les programmes régionaux	Fête de la science 2012
Vidéos	... imprimable. Quel que soit votre	Villages des sciences, opérations
Actualités	choix, toutes les animations ...	d'envergure, manifestations ...
Shopping	Déposer un projet ? Le mode ...	20e édition en 2011
	Déposer un projet? Le mode d'emploi.	20e édition en 2011. La Fête de la
Plus	Bienvenue aux futurs ...	science se déroule du 12 au 16 ...
	Tout savoir sur la Fête de la ...	Les lauréats nationaux

Search engines - Advertising

Advertising

Marketing - Personalized recommendation

Visual object recognition

Bioinformatics

- Protein: Crucial elements of cell life
- Massive data: 2 millions for humans
- Complex data

Context Machine learning for "big data"

- Large-scale machine learning: large d, large n
- d : dimension of each observation (input)
- n : number of observations
- Examples: computer vision, bioinformatics, advertising

Context Machine learning for "big data"

- Large-scale machine learning: large d, large n
- d : dimension of each observation (input)
- n : number of observations
- Examples: computer vision, bioinformatics, advertising
- Ideal running-time complexity: $O(d n)$

Context
 Machine learning for "big data"

- Large-scale machine learning: large d, large n
- d : dimension of each observation (input)
- n : number of observations
- Examples: computer vision, bioinformatics, advertising
- Ideal running-time complexity: $O(d n)$
- Going back to simple methods
- Stochastic gradient methods (Robbins and Monro, 1951b)
- Mixing statistics and optimization

Scaling to large problems "Retour aux sources"

- 1950's: Computers not powerful enough

IBM "1620", 1959
CPU frequency: 50 KHz
Price >100000 dollars

- 2010's: Data too massive

Scaling to large problems "Retour aux sources"

- 1950's: Computers not powerful enough

IBM "1620", 1959
CPU frequency: 50 KHz
Price >100000 dollars

- 2010's: Data too massive
- Stochastic gradient methods (Robbins and Monro, 1951a)
- Going back to simple methods

Outline - I

1. Introduction

- Large-scale machine learning and optimization
- Classes of functions (convex, smooth, etc.)
- Traditional statistical analysis through Rademacher complexity

2. Classical methods for convex optimization

- Smooth optimization (gradient descent, Newton method)
- Non-smooth optimization (subgradient descent)
- Proximal methods

3. Non-smooth stochastic approximation

- Stochastic (sub)gradient and averaging
- Non-asymptotic results and lower bounds
- Strongly convex vs. non-strongly convex

Outline - II

4. Classical stochastic approximation

- Asymptotic analysis
- Robbins-Monro algorithm
- Polyak-Rupert averaging

5. Smooth stochastic approximation algorithms

- Non-asymptotic analysis for smooth functions
- Logistic regression
- Least-squares regression without decaying step-sizes

6. Finite data sets

- Gradient methods with exponential convergence rates
- Convex duality
- (Dual) stochastic coordinate descent - Frank-Wolfe

Supervised machine learning

- Data: n observations $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}, i=1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top} \Phi(x)$ of features $\Phi(x) \in \mathbb{R}^{d}$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$
\begin{aligned}
\min _{\theta \in \mathbb{R}^{d}} & \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right)+\mu \Omega(\theta) \\
& \text { convex data fitting term }+ \text { regularizer }
\end{aligned}
$$

Usual losses

- Regression: $y \in \mathbb{R}$, prediction $\hat{y}=\theta^{\top} \Phi(x)$
- quadratic loss $\frac{1}{2}(y-\hat{y})^{2}=\frac{1}{2}\left(y-\theta^{\top} \Phi(x)\right)^{2}$

Usual losses

- Regression: $y \in \mathbb{R}$, prediction $\hat{y}=\theta^{\top} \Phi(x)$
- quadratic loss $\frac{1}{2}(y-\hat{y})^{2}=\frac{1}{2}\left(y-\theta^{\top} \Phi(x)\right)^{2}$
- Classification : $y \in\{-1,1\}$, prediction $\hat{y}=\boldsymbol{\operatorname { s i g n }}\left(\theta^{\top} \Phi(x)\right)$
- loss of the form $\ell\left(y \theta^{\top} \Phi(x)\right)$
-"True" 0-1 loss: $\ell\left(y \theta^{\top} \Phi(x)\right)=1_{y} \theta^{\top} \Phi(x)<0$
- Usual convex losses:

Main motivating examples

- Support vector machine (hinge loss): non-smooth

$$
\ell\left(Y, \theta^{\top} \Phi(X)\right)=\max \left\{1-Y \theta^{\top} \Phi(X), 0\right\}
$$

- Logistic regression: smooth

$$
\ell\left(Y, \theta^{\top} \Phi(X)\right)=\log \left(1+\exp \left(-Y \theta^{\top} \Phi(X)\right)\right)
$$

- Least-squares regression

$$
\ell\left(Y, \theta^{\top} \Phi(X)\right)=\frac{1}{2}\left(Y-\theta^{\top} \Phi(X)\right)^{2}
$$

- Structured output regression
- See Tsochantaridis et al. (2005); Lacoste-Julien et al. (2013)

Usual regularizers

- Main goal: avoid overfitting
- (squared) Euclidean norm: $\|\theta\|_{2}^{2}=\sum_{j=1}^{d}\left|\theta_{j}\right|^{2}$
- Numerically well-behaved
- Representer theorem and kernel methods : $\theta=\sum_{i=1}^{n} \alpha_{i} \Phi\left(x_{i}\right)$
- See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004)

Usual regularizers

- Main goal: avoid overfitting
- (squared) Euclidean norm: $\|\theta\|_{2}^{2}=\sum_{j=1}^{d}\left|\theta_{j}\right|^{2}$
- Numerically well-behaved
- Representer theorem and kernel methods : $\theta=\sum_{i=1}^{n} \alpha_{i} \Phi\left(x_{i}\right)$
- See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004)
- Sparsity-inducing norms
- Main example: ℓ_{1}-norm $\|\theta\|_{1}=\sum_{j=1}^{d}\left|\theta_{j}\right|$
- Perform model selection as well as regularization
- Non-smooth optimization and structured sparsity
- See, e.g., Bach, Jenatton, Mairal, and Obozinski (2012b,a)

Supervised machine learning

- Data: n observations $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}, i=1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top} \Phi(x)$ of features $\Phi(x) \in \mathbb{R}^{d}$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$
\begin{aligned}
\min _{\theta \in \mathbb{R}^{d}} & \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right)+\mu \Omega(\theta) \\
& \text { convex data fitting term }+ \text { regularizer }
\end{aligned}
$$

Supervised machine learning

- Data: n observations $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}, i=1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top} \Phi(x)$ of features $\Phi(x) \in \mathbb{R}^{d}$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$
\begin{aligned}
& \min _{\theta \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right)+\mu \Omega(\theta) \\
& \\
& \text { convex data fitting term }+ \text { regularizer }
\end{aligned}
$$

- Empirical risk: $\hat{f}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right) \quad$ training cost
- Expected risk: $f(\theta)=\mathbb{E}_{(x, y)} \ell\left(y, \theta^{\top} \Phi(x)\right) \quad$ testing cost
- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$

Supervised machine learning

- Data: n observations $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}, i=1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top} \Phi(x)$ of features $\Phi(x) \in \mathbb{R}^{d}$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$
\begin{aligned}
\min _{\theta \in \mathbb{R}^{d}} & \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right)+\mu \Omega(\theta) \\
& \text { convex data fitting term }+ \text { regularizer }
\end{aligned}
$$

- Empirical risk: $\hat{f}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right) \quad$ training cost
- Expected risk: $f(\theta)=\mathbb{E}_{(x, y)} \ell\left(y, \theta^{\top} \Phi(x)\right) \quad$ testing cost
- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$
- May be tackled simultaneously

Supervised machine learning

- Data: n observations $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}, i=1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top} \Phi(x)$ of features $\Phi(x) \in \mathbb{R}^{d}$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$
\begin{gathered}
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right) \text { such that } \Omega(\theta) \leqslant D \\
\text { convex data fitting term }+ \text { constraint }
\end{gathered}
$$

- Empirical risk: $\hat{f}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right) \quad$ training cost
- Expected risk: $f(\theta)=\mathbb{E}_{(x, y)} \ell\left(y, \theta^{\top} \Phi(x)\right) \quad$ testing cost
- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$
- May be tackled simultaneously

General assumptions

- Data: n observations $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}, i=1, \ldots, n$, i.i.d.
- Bounded features $\Phi(x) \in \mathbb{R}^{d}:\|\Phi(x)\|_{2} \leqslant R$
- Empirical risk: $\hat{f}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right) \quad$ training cost
- Expected risk: $f(\theta)=\mathbb{E}_{(x, y)} \ell\left(y, \theta^{\top} \Phi(x)\right)$
testing cost
- Loss for a single observation: $f_{i}(\theta)=\ell\left(y_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right)$
$\Rightarrow \forall i, f(\theta)=\mathbb{E} f_{i}(\theta)$
- Properties of f_{i}, f, \hat{f}
- Convex on \mathbb{R}^{d}
- Additional regularity assumptions: Lipschitz-continuity, smoothness and strong convexity

Convexity

- Global definitions

Convexity

- Global definitions (full domain)

- Not assuming differentiability:
$\forall \theta_{1}, \theta_{2}, \alpha \in[0,1], \quad g\left(\alpha \theta_{1}+(1-\alpha) \theta_{2}\right) \leqslant \alpha g\left(\theta_{1}\right)+(1-\alpha) g\left(\theta_{2}\right)$

Convexity

- Global definitions (full domain)

- Assuming differentiability:

$$
\forall \theta_{1}, \theta_{2}, \quad g\left(\theta_{1}\right) \geqslant g\left(\theta_{2}\right)+g^{\prime}\left(\theta_{2}\right)^{\top}\left(\theta_{1}-\theta_{2}\right)
$$

- Extensions to all functions with subgradients / subdifferential

Subgradients and subdifferentials

- Given $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ convex

$-s \in \mathbb{R}^{d}$ is a subgradient of g at θ if and only if

$$
\forall \theta^{\prime} \in \mathbb{R}^{d}, g\left(\theta^{\prime}\right) \geqslant g(\theta)+s^{\top}\left(\theta^{\prime}-\theta\right)
$$

- Subdifferential $\partial g(\theta)=$ set of all subgradients at θ
- If g is differentiable at θ, then $\partial g(\theta)=\left\{g^{\prime}(\theta)\right\}$
- Example: absolute value
- The subdifferential is never empty! See Rockafellar (1997)

Convexity

- Global definitions (full domain)

- Local definitions
- Twice differentiable functions
- $\forall \theta, g^{\prime \prime}(\theta) \succcurlyeq 0$ (positive semi-definite Hessians)

Convexity

- Global definitions (full domain)

- Local definitions
- Twice differentiable functions
- $\forall \theta, g^{\prime \prime}(\theta) \succcurlyeq 0$ (positive semi-definite Hessians)
- Why convexity?

Why convexity?

- Local minimum $=$ global minimum
- Optimality condition (non-smooth): $0 \in \partial g(\theta)$
- Optimality condition (smooth): $g^{\prime}(\theta)=0$
- Convex duality
- See Boyd and Vandenberghe (2003)
- Recognizing convex problems
- See Boyd and Vandenberghe (2003)

Lipschitz continuity

- Bounded gradients of g (\Leftrightarrow Lipschitz-continuity): the function g if convex, differentiable and has (sub)gradients uniformly bounded by B on the ball of center 0 and radius D :

$$
\forall \theta \in \mathbb{R}^{d},\|\theta\|_{2} \leqslant D \Rightarrow\left\|g^{\prime}(\theta)\right\|_{2} \leqslant B
$$

$$
\Leftrightarrow
$$

$$
\forall \theta, \theta^{\prime} \in \mathbb{R}^{d},\|\theta\|_{2},\left\|\theta^{\prime}\right\|_{2} \leqslant D \Rightarrow\left|g(\theta)-g\left(\theta^{\prime}\right)\right| \leqslant B\left\|\theta-\theta^{\prime}\right\|_{2}
$$

- Machine learning
- with $g(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right)$
- G-Lipschitz loss and R-bounded data: $B=G R$

Smoothness and strong convexity

- A function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz-continuous

$$
\forall \theta_{1}, \theta_{2} \in \mathbb{R}^{d},\left\|g^{\prime}\left(\theta_{1}\right)-g^{\prime}\left(\theta_{2}\right)\right\|_{2} \leqslant L\left\|\theta_{1}-\theta_{2}\right\|_{2}
$$

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^{d}, g^{\prime \prime}(\theta) \preccurlyeq L \cdot I d$

Smoothness and strong convexity

- A function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz-continuous

$$
\forall \theta_{1}, \theta_{2} \in \mathbb{R}^{d},\left\|g^{\prime}\left(\theta_{1}\right)-g^{\prime}\left(\theta_{2}\right)\right\|_{2} \leqslant L\left\|\theta_{1}-\theta_{2}\right\|_{2}
$$

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^{d}, g^{\prime \prime}(\theta) \preccurlyeq L \cdot I d$
- Machine learning
- with $g(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right)$
- Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi\left(x_{i}\right) \Phi\left(x_{i}\right)^{\top}$
- $L_{\text {loss }}$-smooth loss and R-bounded data: $L=L_{\text {loss }} R^{2}$

Smoothness and strong convexity

- A function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is μ-strongly convex if and only if

$$
\forall \theta_{1}, \theta_{2} \in \mathbb{R}^{d}, g\left(\theta_{1}\right) \geqslant g\left(\theta_{2}\right)+g^{\prime}\left(\theta_{2}\right)^{\top}\left(\theta_{1}-\theta_{2}\right)+\frac{\mu}{2}\left\|\theta_{1}-\theta_{2}\right\|_{2}^{2}
$$

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^{d}, g^{\prime \prime}(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$

- If g is convex, then $g+\frac{\mu}{2}\|\cdot\|_{2}^{2}$ is μ-strongly convex

Smoothness and strong convexity

- A function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is μ-strongly convex if and only if

$$
\forall \theta_{1}, \theta_{2} \in \mathbb{R}^{d}, g\left(\theta_{1}\right) \geqslant g\left(\theta_{2}\right)+g^{\prime}\left(\theta_{2}\right)^{\top}\left(\theta_{1}-\theta_{2}\right)+\frac{\mu}{2}\left\|\theta_{1}-\theta_{2}\right\|_{2}^{2}
$$

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^{d}, g^{\prime \prime}(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$

(large μ / L)

(small μ / L)

Smoothness and strong convexity

- A function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is μ-strongly convex if and only if

$$
\forall \theta_{1}, \theta_{2} \in \mathbb{R}^{d}, g\left(\theta_{1}\right) \geqslant g\left(\theta_{2}\right)+g^{\prime}\left(\theta_{2}\right)^{\top}\left(\theta_{1}-\theta_{2}\right)+\frac{\mu}{2}\left\|\theta_{1}-\theta_{2}\right\|_{2}^{2}
$$

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^{d}, g^{\prime \prime}(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$
- Machine learning
- with $g(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right)$
- Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi\left(x_{i}\right) \Phi\left(x_{i}\right)^{\top}$
- Data with invertible covariance matrix (low correlation/dimension)

Smoothness and strong convexity

- A function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is μ-strongly convex if and only if

$$
\forall \theta_{1}, \theta_{2} \in \mathbb{R}^{d}, g\left(\theta_{1}\right) \geqslant g\left(\theta_{2}\right)+g^{\prime}\left(\theta_{2}\right)^{\top}\left(\theta_{1}-\theta_{2}\right)+\frac{\mu}{2}\left\|\theta_{1}-\theta_{2}\right\|_{2}^{2}
$$

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^{d}, g^{\prime \prime}(\theta) \succcurlyeq \mu \cdot \operatorname{Id}$
- Machine learning
- with $g(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right)$
- Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi\left(x_{i}\right) \Phi\left(x_{i}\right)^{\top}$
- Data with invertible covariance matrix (low correlation/dimension)
- Adding regularization by $\frac{\mu}{2}\|\theta\|^{2}$
- creates additional bias unless μ is small

Summary of smoothness/convexity assumptions

- Bounded gradients of g (Lipschitz-continuity): the function g if convex, differentiable and has (sub)gradients uniformly bounded by B on the ball of center 0 and radius D :

$$
\forall \theta \in \mathbb{R}^{d},\|\theta\|_{2} \leqslant D \Rightarrow\left\|g^{\prime}(\theta)\right\|_{2} \leqslant B
$$

- Smoothness of g : the function g is convex, differentiable with L-Lipschitz-continuous gradient g^{\prime} (e.g., bounded Hessians):

$$
\forall \theta_{1}, \theta_{2} \in \mathbb{R}^{d}, \quad\left\|g^{\prime}\left(\theta_{1}\right)-g^{\prime}\left(\theta_{2}\right)\right\|_{2} \leqslant L\left\|\theta_{1}-\theta_{2}\right\|_{2}
$$

- Strong convexity of g : The function g is strongly convex with respect to the norm $\|\cdot\|$, with convexity constant $\mu>0$:

$$
\forall \theta_{1}, \theta_{2} \in \mathbb{R}^{d}, g\left(\theta_{1}\right) \geqslant g\left(\theta_{2}\right)+g^{\prime}\left(\theta_{2}\right)^{\top}\left(\theta_{1}-\theta_{2}\right)+\frac{\mu}{2}\left\|\theta_{1}-\theta_{2}\right\|_{2}^{2}
$$

Analysis of empirical risk minimization

- Approximation and estimation errors: $\Theta=\left\{\theta \in \mathbb{R}^{d}, \Omega(\theta) \leqslant D\right\}$

$$
f(\hat{\theta})-\min _{\theta \in \mathbb{R}^{d}} f(\theta)=\left[f(\hat{\theta})-\min _{\theta \in \Theta} f(\theta)\right]+\left[\min _{\theta \in \Theta} f(\theta)-\min _{\theta \in \mathbb{R}^{d}} f(\theta)\right]
$$

Estimation error Approximation error

- NB: may replace $\min _{\theta \in \mathbb{R}^{d}} f(\theta)$ by best (non-linear) predictions

Analysis of empirical risk minimization

- Approximation and estimation errors: $\Theta=\left\{\theta \in \mathbb{R}^{d}, \Omega(\theta) \leqslant D\right\}$

$$
f(\hat{\theta})-\min _{\theta \in \mathbb{R}^{d}} f(\theta)=\left[f(\hat{\theta})-\min _{\theta \in \Theta} f(\theta)\right]+\left[\min _{\theta \in \Theta} f(\theta)-\min _{\theta \in \mathbb{R}^{d}} f(\theta)\right]
$$

Estimation error Approximation error

1. Uniform deviation bounds, with $\hat{\theta} \in \arg \min _{\theta \in \Theta} \hat{f}(\theta)$

$$
\begin{aligned}
f(\hat{\theta})-\min _{\theta \in \Theta} f(\theta) & =[f(\hat{\theta})-\hat{f}(\hat{\theta})]+\left[\hat{f}(\hat{\theta})-\hat{f}\left(\left(\theta_{*}\right)_{\Theta}\right)\right]+\left[\hat{f}\left(\left(\theta_{*}\right)_{\Theta}\right)-f\left(\left(\theta_{*}\right)_{\Theta}\right)\right] \\
& \leqslant \sup _{\theta \in \Theta} f(\theta)-\hat{f}(\theta)+\quad 0 \quad+\sup _{\theta \in \Theta} \hat{f}(\theta)-f(\theta)
\end{aligned}
$$

Analysis of empirical risk minimization

- Approximation and estimation errors: $\Theta=\left\{\theta \in \mathbb{R}^{d}, \Omega(\theta) \leqslant D\right\}$

$$
f(\hat{\theta})-\min _{\theta \in \mathbb{R}^{d}} f(\theta)=\left[f(\hat{\theta})-\min _{\theta \in \Theta} f(\theta)\right]+\left[\min _{\theta \in \Theta} f(\theta)-\min _{\theta \in \mathbb{R}^{d}} f(\theta)\right]
$$

Estimation error Approximation error

1. Uniform deviation bounds, with $\hat{\theta} \in \arg \min _{\theta \in \Theta} \hat{f}(\theta)$

$$
f(\hat{\theta})-\min _{\theta \in \Theta} f(\theta) \leqslant \sup _{\theta \in \Theta} f(\theta)-\hat{f}(\theta)+\sup _{\theta \in \Theta} \hat{f}(\theta)-f(\theta)
$$

- Typically slow rate $O(1 / \sqrt{n})$

2. More refined concentration results with faster rates $O(1 / n)$

Analysis of empirical risk minimization

- Approximation and estimation errors: $\Theta=\left\{\theta \in \mathbb{R}^{d}, \Omega(\theta) \leqslant D\right\}$

$$
f(\hat{\theta})-\min _{\theta \in \mathbb{R}^{d}} f(\theta)=\left[f(\hat{\theta})-\min _{\theta \in \Theta} f(\theta)\right]+\left[\min _{\theta \in \Theta} f(\theta)-\min _{\theta \in \mathbb{R}^{d}} f(\theta)\right]
$$

Estimation error Approximation error

1. Uniform deviation bounds, with $\hat{\theta} \in \arg \min _{\theta \in \Theta} \hat{f}(\theta)$

$$
f(\hat{\theta})-\min _{\theta \in \Theta} f(\theta) \leqslant 2 \cdot \sup _{\theta \in \Theta}|f(\theta)-\hat{f}(\theta)|
$$

- Typically slow rate $O(1 / \sqrt{n})$

2. More refined concentration results with faster rates $O(1 / n)$

Motivation from least-squares

- For least-squares, we have $\ell\left(y, \theta^{\top} \Phi(x)\right)=\frac{1}{2}\left(y-\theta^{\top} \Phi(x)\right)^{2}$, and

$$
\begin{aligned}
\hat{f}(\theta)-f(\theta)= & \frac{1}{2} \theta^{\top}\left(\frac{1}{n} \sum_{i=1}^{n} \Phi\left(x_{i}\right) \Phi\left(x_{i}\right)^{\top}-\mathbb{E} \Phi(X) \Phi(X)^{\top}\right) \theta \\
& -\theta^{\top}\left(\frac{1}{n} \sum_{i=1}^{n} y_{i} \Phi\left(x_{i}\right)-\mathbb{E} Y \Phi(X)\right)+\frac{1}{2}\left(\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2}-\mathbb{E} Y^{2}\right), \\
\sup _{\|\theta\|_{2} \leqslant D}|f(\theta)-\hat{f}(\theta)| \leqslant & \frac{D^{2}}{2}\left\|\frac{1}{n} \sum_{i=1}^{n} \Phi\left(x_{i}\right) \Phi\left(x_{i}\right)^{\top}-\mathbb{E} \Phi(X) \Phi(X)^{\top}\right\|_{\mathrm{op}} \\
& +D\left\|\frac{1}{n} \sum_{i=1}^{n} y_{i} \Phi\left(x_{i}\right)-\mathbb{E} Y \Phi(X)\right\|_{2}+\frac{1}{2}\left|\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2}-\mathbb{E} Y^{2}\right|,
\end{aligned}
$$

$\sup _{\|\theta\|_{2} \leqslant D}|f(\theta)-\hat{f}(\theta)| \leqslant O(1 / \sqrt{n})$ with high probability from 3 concentrations

Slow rate for supervised learning

- Assumptions (f is the expected risk, \hat{f} the empirical risk)
$-\Omega(\theta)=\|\theta\|_{2}$ (Euclidean norm)
- "Linear" predictors: $\theta(x)=\theta^{\top} \Phi(x)$, with $\|\Phi(x)\|_{2} \leqslant R$ a.s.
- G-Lipschitz loss: f and \hat{f} are $G R$-Lipschitz on $\Theta=\left\{\|\theta\|_{2} \leqslant D\right\}$
- No assumptions regarding convexity

Slow rate for supervised learning

- Assumptions (f is the expected risk, \hat{f} the empirical risk)
$-\Omega(\theta)=\|\theta\|_{2}$ (Euclidean norm)
- "Linear" predictors: $\theta(x)=\theta^{\top} \Phi(x)$, with $\|\Phi(x)\|_{2} \leqslant R$ a.s.
- G-Lipschitz loss: f and \hat{f} are $G R$-Lipschitz on $\Theta=\left\{\|\theta\|_{2} \leqslant D\right\}$
- No assumptions regarding convexity
- With probability greater than $1-\delta$

$$
\sup _{\theta \in \Theta}|\hat{f}(\theta)-f(\theta)| \leqslant \frac{\ell_{0}+G R D}{\sqrt{n}}\left[2+\sqrt{2 \log \frac{2}{\delta}}\right]
$$

- Expectated estimation error: $\mathbb{E}\left[\sup _{\theta \in \Theta}|\hat{f}(\theta)-f(\theta)|\right] \leqslant \frac{4 \ell_{0}+4 G R D}{\sqrt{n}}$
- Using Rademacher averages (see, e.g., Boucheron et al., 2005)
- Lipschitz functions \Rightarrow slow rate

Symmetrization with Rademacher variables

- Let $\mathcal{D}^{\prime}=\left\{x_{1}^{\prime}, y_{1}^{\prime}, \ldots, x_{n}^{\prime}, y_{n}^{\prime}\right\}$ an independent copy of the data $\mathcal{D}=\left\{x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right\}$, with corresponding loss functions $f_{i}^{\prime}(\theta)$

$$
\begin{aligned}
\mathbb{E}\left[\sup _{\theta \in \Theta} f(\theta)-\hat{f}(\theta)\right] & =\mathbb{E}\left[\sup _{\theta \in \Theta}\left(f(\theta)-\frac{1}{n} \sum_{i=1}^{n} f_{i}(\theta)\right)\right] \\
& =\mathbb{E}\left[\left.\sup _{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(f_{i}^{\prime}(\theta)-f_{i}(\theta) \mid \mathcal{D}\right) \right\rvert\,\right. \\
& \leqslant \mathbb{E}\left[\mathbb{E}\left[\left.\sup _{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n}\left(f_{i}^{\prime}(\theta)-f_{i}(\theta)\right) \right\rvert\, \mathcal{D}\right]\right] \\
& =\mathbb{E}\left[\sup _{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n}\left(f_{i}^{\prime}(\theta)-f_{i}(\theta)\right)\right] \\
& =\mathbb{E}\left[\sup _{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\left(f_{i}^{\prime}(\theta)-f_{i}(\theta)\right)\right] \text { with } \varepsilon_{i} \text { uniform in }\{-1,1\} \\
& \leqslant 2 \mathbb{E}\left[\sup _{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f_{i}(\theta)\right]=\text { Rademacher complexity }
\end{aligned}
$$

Rademacher complexity

- Rademacher complexity of the class of functions $(X, Y) \mapsto$ $\ell\left(Y, \theta^{\top} \Phi(X)\right)$

$$
R_{n}=\mathbb{E}\left[\sup _{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f_{i}(\theta)\right]
$$

- with $f_{i}(\theta)=\ell\left(x_{i}, \theta^{\top} \Phi\left(x_{i}\right)\right),\left(x_{i}, y_{i}\right)$, i.i.d
- NB 1: two expectations, with respect to \mathcal{D} and with respect to ε
- "Empirical" Rademacher average \hat{R}_{n} by conditioning on \mathcal{D}
- NB 2: sometimes defined as $\sup _{\theta \in \Theta}\left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f_{i}(\theta)\right|$
- Main property:

$$
\mathbb{E}\left[\sup _{\theta \in \Theta} f(\theta)-\hat{f}(\theta)\right] \text { and } \mathbb{E}\left[\sup _{\theta \in \Theta} \hat{f}(\theta)-f(\theta)\right] \leqslant 2 R_{n}
$$

From Rademacher complexity to uniform bound

- Let $Z=\sup _{\theta \in \Theta}|f(\theta)-\hat{f}(\theta)|$
- By changing the pair $\left(x_{i}, y_{i}\right), Z$ may only change by

$$
\begin{aligned}
& \frac{2}{n} \sup \left|\ell\left(Y, \theta^{\top} \Phi(X)\right)\right| \leqslant \frac{2}{n}(\sup |\ell(Y, 0)|+G R D) \leqslant \frac{2}{n}\left(\ell_{0}+G R D\right)=c \\
& \text { with } \sup |\ell(Y, 0)|=\ell_{0}
\end{aligned}
$$

- MacDiarmid inequality: with probability greater than $1-\delta$,

$$
Z \leqslant \mathbb{E} Z+\sqrt{\frac{n}{2}} c \cdot \sqrt{\log \frac{1}{\delta}} \leqslant 2 R_{n}+\frac{\sqrt{2}}{\sqrt{n}}\left(\ell_{0}+G R D\right) \sqrt{\log \frac{1}{\delta}}
$$

Bounding the Rademacher average - I

- We have, with $\varphi_{i}(u)=\ell\left(y_{i}, u\right)-\ell\left(y_{i}, 0\right)$ is almost surely G-Lipschitz:

$$
\begin{aligned}
\hat{R}_{n} & =\mathbb{E}_{\varepsilon}\left[\sup _{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f_{i}(\theta)\right] \\
& =\mathbb{E}_{\varepsilon}\left[\sup _{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f_{i}(0)\right]+\mathbb{E}_{\varepsilon}\left[\sup _{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\left[f_{i}(\theta)-f_{i}(0)\right]\right] \\
& =0+\mathbb{E}_{\varepsilon}\left[\sup _{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\left[f_{i}(\theta)-f_{i}(0)\right]\right] \\
& =0+\mathbb{E}_{\varepsilon}\left[\sup _{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \varphi_{i}\left(\theta^{\top} \Phi\left(x_{i}\right)\right)\right]
\end{aligned}
$$

- Using Ledoux-Talagrand contraction results for Rademacher averages (since φ_{i} is G-Lipschitz), we get (Meir and Zhang, 2003):

$$
\hat{R}_{n} \leqslant G \cdot \mathbb{E}_{\varepsilon}\left[\sup _{\|\theta\|_{2} \leqslant D} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \theta^{\top} \Phi\left(x_{i}\right)\right]
$$

Proof of Ledoux-Talagrand lemma (Meir and Zhang, 2003, Lemma 5)

- Given any $b, a_{i}: \Theta \rightarrow \mathbb{R}$ (no assumption) and $\varphi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ any 1-Lipschitz-functions, $i=1, \ldots, n$

$$
\mathbb{E}_{\varepsilon}\left[\sup _{\theta \in \Theta} b(\theta)+\sum_{i=1}^{n} \varepsilon_{i} \varphi_{i}\left(a_{i}(\theta)\right)\right] \leqslant \mathbb{E}_{\varepsilon}\left[\sup _{\theta \in \Theta} b(\theta)+\sum_{i=1}^{n} \varepsilon_{i} a_{i}(\theta)\right]
$$

- Proof by induction on n
$-n=0$: trivial
- From n to $n+1$: see next slide

From n to $n+1$

$$
\begin{aligned}
& \mathbb{E}_{\varepsilon_{1}, \ldots, \varepsilon_{n+1}}\left[\sup _{\theta \in \Theta} b(\theta)+\sum_{i=1}^{n+1} \varepsilon_{i} \varphi_{i}\left(a_{i}(\theta)\right)\right] \\
= & \mathbb{E}_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\left[\sup _{\theta, \theta^{\prime} \in \Theta} \frac{b(\theta)+b\left(\theta^{\prime}\right)}{2}+\sum_{i=1}^{n} \varepsilon_{i} \frac{\varphi_{i}\left(a_{i}(\theta)\right)+\varphi_{i}\left(a_{i}\left(\theta^{\prime}\right)\right)}{2}+\frac{\varphi_{n+1}\left(a_{n+1}(\theta)\right)-\varphi_{n+1}\left(a_{n+1}\left(\theta^{\prime}\right)\right)}{2}\right. \\
= & \mathbb{E}_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\left[\sup _{\theta, \theta^{\prime} \in \Theta} \frac{b(\theta)+b\left(\theta^{\prime}\right)}{2}+\sum_{i=1}^{n} \varepsilon_{i} \frac{\varphi_{i}\left(a_{i}(\theta)\right)+\varphi_{i}\left(a_{i}\left(\theta^{\prime}\right)\right)}{2}+\frac{\mid \varphi_{n+1}\left(a_{n+1}(\theta)\right)-\varphi_{n+1}\left(a_{n+1}\left(\theta^{\prime}\right)\right)}{2}\right. \\
\leqslant & \mathbb{E}_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\left[\sup _{\theta, \theta^{\prime} \in \Theta} \frac{b(\theta)+b\left(\theta^{\prime}\right)}{2}+\sum_{i=1}^{n} \varepsilon_{i} \frac{\varphi_{i}\left(a_{i}(\theta)\right)+\varphi_{i}\left(a_{i}\left(\theta^{\prime}\right)\right)}{2}+\frac{\left|a_{n+1}(\theta)-a_{n+1}\left(\theta^{\prime}\right)\right|}{2}\right] \\
= & \mathbb{E}_{\varepsilon_{1}, \ldots, \varepsilon_{n}} \mathbb{E}_{\varepsilon_{n+1}}\left[\sup _{\theta \in \Theta} b(\theta)+\varepsilon_{n+1} a_{n+1}(\theta)+\sum_{i=1}^{n} \varepsilon_{i} \varphi_{i}\left(a_{i}(\theta)\right)\right] \\
\leqslant & \mathbb{E}_{\varepsilon_{1}, \ldots, \varepsilon_{n}, \varepsilon_{n+1}}\left[\sup _{\theta \in \Theta} b(\theta)+\varepsilon_{n+1} a_{n+1}(\theta)+\sum_{i=1}^{n} \varepsilon_{i} a_{i}(\theta)\right] \text { by recursion }
\end{aligned}
$$

Bounding the Rademacher average - II

- We have:

$$
\begin{aligned}
R_{n} & \leqslant 2 G \mathbb{E}\left[\sup _{\|\theta\|_{2} \leqslant D} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \theta^{\top} \Phi\left(x_{i}\right)\right] \\
& =2 G \mathbb{E}\left\|D \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \Phi\left(x_{i}\right)\right\|_{2} \\
& \leqslant 2 G D \sqrt{\mathbb{E}\left\|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \Phi\left(x_{i}\right)\right\|_{2}^{2}} \text { by Jensen's inequality } \\
& \leqslant \frac{2 G R D}{\sqrt{n}} \text { by using }\|\Phi(x)\|_{2} \leqslant R \text { and independence }
\end{aligned}
$$

- Overall, we get, with probability $1-\delta$:

$$
\sup _{\theta \in \Theta}|f(\theta)-\hat{f}(\theta)| \leqslant \frac{1}{\sqrt{n}}\left(\ell_{0}+G R D\right)\left(4+\sqrt{2 \log \frac{1}{\delta}}\right)
$$

Putting it all together

- We have, with probability $1-\delta$
- For exact minimizer $\hat{\theta} \in \arg \min _{\theta \in \Theta} \hat{f}(\theta)$, we have

$$
\begin{aligned}
f(\hat{\theta})-\min _{\theta \in \Theta} f(\theta) & \leqslant \sup _{\theta \in \Theta} \hat{f}(\theta)-f(\theta)+\sup _{\theta \in \Theta} f(\theta)-\hat{f}(\theta) \\
& \leqslant \frac{2}{\sqrt{n}}\left(\ell_{0}+G R D\right)\left(4+\sqrt{2 \log \frac{1}{\delta}}\right)
\end{aligned}
$$

- For inexact minimizer $\eta \in \Theta$

$$
f(\eta)-\min _{\theta \in \Theta} f(\theta) \leqslant 2 \cdot \sup _{\theta \in \Theta}|\hat{f}(\theta)-f(\theta)|+[\hat{f}(\eta)-\hat{f}(\hat{\theta})]
$$

- Only need to optimize with precision $\frac{2}{\sqrt{n}}\left(\ell_{0}+G R D\right)$

Putting it all together

- We have, with probability $1-\delta$
- For exact minimizer $\hat{\theta} \in \arg \min _{\theta \in \Theta} \hat{f}(\theta)$, we have

$$
\begin{aligned}
f(\hat{\theta})-\min _{\theta \in \Theta} f(\theta) & \leqslant 2 \cdot \sup _{\theta \in \Theta}|\hat{f}(\theta)-f(\theta)| \\
& \leqslant \frac{2}{\sqrt{n}}\left(\ell_{0}+G R D\right)\left(4+\sqrt{2 \log \frac{1}{\delta}}\right)
\end{aligned}
$$

- For inexact minimizer $\eta \in \Theta$

$$
f(\eta)-\min _{\theta \in \Theta} f(\theta) \leqslant 2 \cdot \sup _{\theta \in \Theta}|\hat{f}(\theta)-f(\theta)|+[\hat{f}(\eta)-\hat{f}(\hat{\theta})]
$$

- Only need to optimize with precision $\frac{2}{\sqrt{n}}\left(\ell_{0}+G R D\right)$

Slow rate for supervised learning (summary)

- Assumptions (f is the expected risk, \hat{f} the empirical risk)
$-\Omega(\theta)=\|\theta\|_{2}$ (Euclidean norm)
- "Linear" predictors: $\theta(x)=\theta^{\top} \Phi(x)$, with $\|\Phi(x)\|_{2} \leqslant R$ a.s.
- G-Lipschitz loss: f and \hat{f} are $G R$-Lipschitz on $\Theta=\left\{\|\theta\|_{2} \leqslant D\right\}$
- No assumptions regarding convexity
- With probability greater than $1-\delta$

$$
\sup _{\theta \in \Theta}|\hat{f}(\theta)-f(\theta)| \leqslant \frac{\left(\ell_{0}+G R D\right)}{\sqrt{n}}\left[2+\sqrt{2 \log \frac{2}{\delta}}\right]
$$

- Expectated estimation error: $\mathbb{E}\left[\sup _{\theta \in \Theta}|\hat{f}(\theta)-f(\theta)|\right] \leqslant \frac{4\left(\ell_{0}+G R D\right)}{\sqrt{n}}$
- Using Rademacher averages (see, e.g., Boucheron et al., 2005)
- Lipschitz functions \Rightarrow slow rate

Motivation from mean estimation

- Estimator $\hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} z_{i}=\arg \min _{\theta \in \mathbb{R}} \frac{1}{2 n} \sum_{i=1}^{n}\left(\theta-z_{i}\right)^{2}=\hat{f}(\theta)$
$-\theta_{*}=\mathbb{E} z=\arg \min _{\theta \in \mathbb{R}} \frac{1}{2} \mathbb{E}(\theta-z)^{2}=f(\theta)$
- From before (estimation error): $f(\hat{\theta})-f\left(\theta_{*}\right)=O(1 / \sqrt{n})$

Motivation from mean estimation

- Estimator $\hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} z_{i}=\arg \min _{\theta \in \mathbb{R}} \frac{1}{2 n} \sum_{i=1}^{n}\left(\theta-z_{i}\right)^{2}=\hat{f}(\theta)$
$-\theta_{*}=\mathbb{E} z=\arg \min _{\theta \in \mathbb{R}} \frac{1}{2} \mathbb{E}(\theta-z)^{2}=f(\theta)$
- From before (estimation error): $f(\hat{\theta})-f\left(\theta_{*}\right)=O(1 / \sqrt{n})$
- Direct computation:
$-f(\theta)=\frac{1}{2} \mathbb{E}(\theta-z)^{2}=\frac{1}{2}(\theta-\mathbb{E} z)^{2}+\frac{1}{2} \operatorname{var}(z)$
- More refined/direct bound:

$$
\begin{aligned}
f(\hat{\theta})-f(\mathbb{E} z) & =\frac{1}{2}(\hat{\theta}-\mathbb{E} z)^{2} \\
\mathbb{E}[f(\hat{\theta})-f(\mathbb{E} z)] & =\frac{1}{2} \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} z_{i}-\mathbb{E} z\right)^{2}=\frac{1}{2 n} \operatorname{var}(z)
\end{aligned}
$$

- Bound only at $\hat{\theta}+$ strong convexity (instead of uniform bound)

Fast rate for supervised learning

- Assumptions (f is the expected risk, \hat{f} the empirical risk)
- Same as before (bounded features, Lipschitz loss)
- Regularized risks: $f^{\mu}(\theta)=f(\theta)+\frac{\mu}{2}\|\theta\|_{2}^{2}$ and $\hat{f}^{\mu}(\theta)=\hat{f}(\theta)+\frac{\mu}{2}\|\theta\|_{2}^{2}$
- Convexity
- For any $a>0$, with probability greater than $1-\delta$, for all $\theta \in \mathbb{R}^{d}$,

$$
f^{\mu}(\hat{\theta})-\min _{\eta \in \mathbb{R}^{d}} f^{\mu}(\eta) \leqslant \frac{8 G^{2} R^{2}\left(32+\log \frac{1}{\delta}\right)}{\mu n}
$$

- Results from Sridharan, Srebro, and Shalev-Shwartz (2008)
- see also Boucheron and Massart (2011) and references therein
- Strongly convex functions \Rightarrow fast rate
- Warning: μ should decrease with n to reduce approximation error

