Outline - |

1. Introduction

e Large-scale machine learning and optimization
e Classes of functions (convex, smooth, etc.)
e T[raditional statistical analysis through Rademacher complexity

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex
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Outline - 11

4. Classical stochastic approximation

e Asymptotic analysis
e Robbins-Monro algorithm
e Polyak-Rupert averaging

5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions
e Logistic regression
e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates
e Convex duality
e (Dual) stochastic coordinate descent - Frank-Wolfe
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Stochastic approximation

e Goal: Minimizing a function f defined on R?

— given only unbiased estimates f)(6,) of its gradients f'(6,) at
certain points 6,, € R¢
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Stochastic approximation

e Goal: Minimizing a function f defined on R?

— given only unbiased estimates f)(6,) of its gradients f'(6,) at
certain points 6,, € R¢

e Machine learning - statistics

— loss for a single pair of observations: | f,,(0) = ((y,,0 "' ®(z,))
— f(0) =Ef,(0) = EL(y,,0 " ®(x,)) = generalization error

— Expected gradient: f'(8) =Ef}(0) = E{{'(yn,0' ®(z,)) ®(xn)}
— Non-asymptotic results

e Number of iterations = number of observations
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Stochastic approximation

e Goal: Minimizing a function f defined on R?

— given only unbiased estimates f)(6,) of its gradients f'(6,) at
certain points 6,, € R¢

e Stochastic approximation

— (much) broader applicability beyond convex optimization
Hn — ‘9n—1 — /Vnhn(en—l) with E[hn(gn—l)wn—l] — h(en—l)

— Beyond convex problems, i.i.d assumption, finite dimension, etc.

— Typically asymptotic results (see next lecture)
— See, e.g., Kushner and Yin (2003); Benveniste et al. (2012)
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Relationship to online learning

e Stochastic approximation

— Minimize f(0) = E_¢(0, z) = generalization error of
— Using the gradients of single i.i.d. observations
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Relationship to online learning

e Stochastic approximation

— Minimize f(0) = E_¢(0, z) = generalization error of
— Using the gradients of single i.i.d. observations

e Batch learning

— Finite set of observations: z1,..., 2,

— Empirical risk: f(0) = 230 £(0, 2;)

— Estimator & = Minimizer of f(#) over a certain class ©
— Generalization bound using uniform concentration results
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Relationship to online learning

e Stochastic approximation
— Minimize f(0) = E ¢(0, z) = generalization error of
— Using the gradients of single i.i.d. observations

e Batch learning

— Finite set of observations: z1,..., 2,

— Empirical risk: f(9) =L = . 000, z;)
— Estimator 0 = M|n|m|zer of f() over a certain class ©

— Generalization bound using uniform concentration results

e Online learning

— Update 0,, after each new (potentially adversarial) observation zy,
— Cumulative loss: =>"7_, 0(0r_1, z)
— Online to batch through averaging (Cesa-Bianchi et al., 2004)
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Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex
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Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex

e Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

Hn — Hn—l — /anf;b(en—l)

— Polyak-Ruppert averaging: 6,, = Zk 0 0

—

— Which learning rate sequence ~,,? Classical setting: | v,, = Cn

115



Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex

e Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

Hn — Hn—l — /anf;b(en—l)

— Polyak-Ruppert averaging: 6,, = Zk 0 0,

— Which learning rate sequence ~,,? Classical setting: | v, = Cn™ ¢

e Desirable practical behavior

— Applicable (at least) to classical supervised learning problems
— Robustness to (potentially unknown) constants (L,B,u)
— Adaptivity to difficulty of the problem (e.g., strong convexity)
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Stochastic subgradient “descent” /method

e Assumptions

— fn convex and B-Lipschitz-continuous on {[|0]|2 < D}

— (f,) i.i.d. functions such that Ef,, = f
— 0, global optimum of f on C = {||0||2 < D}

_ 2D
e Algorithm: 6, =1Ip (Hn_1 — B—\/ﬁ ;L(Hn—l)>
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Stochastic subgradient “descent” /method

e Assumptions

— fn convex and B-Lipschitz-continuous on {||#]|2 < D}

— (fn) i.i.d. functions such that Ef,, = f
— 6, global optimum of f on C = {||f||2 < D}

_ 2D
e Algorithm: 6, =1Ip (Hn_1 — B—\/ﬁ ;L(en—l)>

e Bound:

122 2DB
Ef(ﬁgek) — f(0s) < NG

e “Same” three-line proof as in the deterministic case

e Minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

e Running-time complexity: O(dn) after n iterations
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Stochastic subgradient method - proof - |

® lteration: 0, =1p(0,_1 — Vuf) (0n_1)) with ~, = 255

® f, : information up to time n

® ||f(0)]2 < B and ||f||]2 < D, unbiased gradients/functions E( f,,|F,,_1) = f

0,1 — 0, — fynf’( n—1)||5 by contractivity of projections
071 — 0 ||2 YV = 29 (0n-1 = 0+) " f(0n—1) because || f;,(05-1)|l2

E[[16r — 04131 F01] < 10n-1 — 04113 + B*v — 29 (0n-1 = 0:) " f'(0n—1)
< 162 = 0.1 + B0} [f( ) — £(6.)] (subgradient prope
E[l6n — 0.3 < H@n 1 — 0. H2 Yo = 290 [Ef (0n—1) — £(6.)]
: By, 1 2 2
o leading to Ef(6,—1) — f(8.) < =1+ [E[6,1 — 6.]13 — E[6, — 0.]]3]

2 29n
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Stochastic subgradient method - proof - |l

B?~ 1
i El6,,_1 — 0.|2 — E||6,, — 0.5
2+ 5 [Elfs 0,13 ~ El6, — 0.]3]

/N

e Starting from Ef(6,,—1) — f(6«)

n n B2 " n 1
> [ESOu) = F0) < D05+ D0 5[0t — 0.3 — B0 — 0. ]
u=1 u

u=1 u=1
zn: By  AD® 9D B+/n with 2D
S < n with ~,, =
LT Ty, " Byn

n—1
1 2DB
® Using convexity: [Ef (E E Hk) — f(e*) < \/ﬁ
k=0
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Stochastic subgradient method
Extension to online learning

e Assume different and arbitrary functions f,, : R — R

— Observations of f/(60,,_1) + €,
— with E(e,,|Fr—1) =0 and ||f}(0,,—1) + €| < B almost surely

e Performance criterion: (normalized) regret

1 mn
n ; Filbima) = e Z 70

— Warning: often not normalized
— May not be non-negative (typically is)
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Stochastic subgradient method - online learning - |

e lteration: 0, = IIp(0n—1 — Yn(f(On_1) +€n)) with v, = B2\l/)ﬁ

® 7, : information up to time n - @ an arbitrary point such that ||0|| < D

® ||fl(0h—1)+en|l2 < B and ||#]2 < D, unbiased gradients E(¢,|F,,_1) =0

10, — 0|3 < |01 — 0 — Vn(f)(0n_1) + &) ||3 by contractivity of projections

< |
< Nbn—1 — 0]13 + B*v2 — 29, (01 — 0) ' (f1(0n—1) + €n) because || f}(0r_1) -

E[Hen - QHS‘JTn—l] < Hen I 9“2 — 2%1(07%—1 _ H)Tf;z(en—l)
< |01 — 0|5 + BQ%L — 29 [ fn(On—1) — f.(0)] (subgradient proper
El6n — 0l < E6n-1— 03+ B*v; — 29 [Ef(0n-1) — fu(0)]
B?~, 1

e leading to Ef,,(0,—1) — fn(0) < + —[E[|6—1 — 0|5 — E||6, — 0]|3]

2 29n
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Stochastic subgradient method - online learning - |l

B?v, 1

e Starting from Ef,,(0,_1) — f.(0) < 5 + > [EHHn_l — HHS —E||6,, — QHS}
- B2fyu "1
Z Efu fu( )} X Z 9 +227 [EH% 1 — QHS_EHQU_HHS]

"\ B%?y, 4D? 2D
< <2DB ith ~,, = ——
25t % vn with o B/n

1 1
e For any 6 such that ||0|| < D: — E Efr(0r_1) — — E fr(0) <
n n
k=1 k=

2DB
V1
e Online to batch conversion: assuming convexity
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Stochastic subgradient descent - strong convexity - |

e Assumptions

— f, convex and B-Lipschitz-continuous

— (fn) i.i.d. functions such that Ef,, = f
— f p-strongly convex on {||0||- < D}

— 0, global optimum of f over {||0|2 < D}

2
p(n +1)

e Algorithm: 6,, = 1Ip (Hn_l — fé(%-l))

e Bound:

( (n+1) Zk@’“ 1>_ ) < u(ile)

e “Same” proof than deterministic case (Lacoste-Julien et al., 2012)

e Minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
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Stochastic subgradient - strong convexity - proof - |

® lteration: 0, = IIp(0p—1 — Ynf,,(0:—1)) with 7y, = —u(n2+1)

® Assumption: ||f/(0)|l2 < B and ||| < D and p-strong convexity of f

10, — 0.3 < ||0n_1 — 0s —vnf (8,—1)||5 by contractivity of projections
< NOn—1 = 0.3 + By — 29 (0n—1 — 0.) " £,(0:—1) because || f;,(6¢—1)]l2
[
E([Fn-1) < [l0n-1— 0.3+ = 29 [f (Bn1) = F(0)+5 11601 = 03]

(property of subgradients and strong convexity)

® |eading to

B?~ 1.1
Ef(0,-1) — f(0,) < B o= — ][0t — 0.5 — 0., — 0.||3
F0at) = £6) < 25 5[ = 6nms = 6ul — 560 — 0.1
B? pwen—1 pu(n+ 1)
e+ T B — 0.5 = E 6, — 6.
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Stochastic subgradient - strong convexity - proof - |l

n+1)

0,6, 3

® FromEf(0,_1)—f(0.) < ik +H[n;1

u(

S ulEf(Ou) - F0)] <3 iz (= DE|0ur — 0.3 — u(u + DE]0

— e+ 1) —
2 2
< ﬂ+1[o—n(n+1)zﬁzuen—e*ug} B
7 4
Us v Ef{- Z 0 L) < 257
° : ub,—1 | —
sing convexity 1 g 1

e NB: with step-size v,, = 1/(nu), extra logarithmic factor (see later)
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Stochastic subgradient descent - strong convexity - ||

e Assumptions

— f,, convex and B-Lipschitz-continuous

— (fn) i.i.d. functions such that Ef,, = f

— 0. global optimum of g = f + £ - ||3

— No compactness assumption - no projections

e Algorithm:

2 B 2 ,
,LL(TL + 1)gn(0n—1) — Hn—l_lu(n T 1) [fn(en_l)—hu@n_l]

‘9n — en—l_

2 - 2B?
Bound: E kOr_1 ) — g(0,) <

e Minimax convergence rate

127



Strong convexity - proof with logn factor - |

® lteration: 0, =IIp(0,—1 — Y f),(0:—1)) with v, = ;%n

® Assumption: ||f/(8)|]2 < B and ||| < D and u-strong convexity of f

10, — 0.3 < ||0n_1 — 0s —vnf (8,—1)||5 by contractivity of projections
< NOn—1 = 0.3 + B*v; — 29m(0n—1 — 0.) " f,(0:—1) because || f;,(6:—1)]l2
[
E([Fn-1) < [l0n-1— 0.3+ = 29 [f (Bn1) = F(0) 511601 = 03]

(property of subgradients and strong convexity)

® |eading to

B?~ 1,1
Ef(0,_1) — f(6,) < D = — ul|[fny — 6.2 — 0,, — 0.3
f(On—1) — f(6) 5 +2[% ) 16r—1 — 0.5 — 2%H (B
B*  p n
< + 5[0 = 11001 = 0.5 — =116 — 6.5

2un 2 2
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Strong convexity - proof with logn factor - |l

2

B 14 N
® From Ef(0,_1) — f(6,) < o +3 5 [ —1]|0n—1— 0.5 — 7”977, — 0.3

N [Ef(Bur) — £(0)] <Z <A Z (u=DE||0u—1 — 0.5 — uE[|0u — 0.3]

2,uu u_
B?logn 1 B?logn
< T 0 - nE0n — 03] <
214 2 214

1 B?]
® Using convexity: ]Ef (E Z Hu_1> — f ) 21& Oin
u=1

e \WWhy could this be useful?
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Stochastic subgradient descent - strong convexity
Online learning

e Need logn term for uniform averaging. For all 6:

] — 1 — B?logn
— i(0i—1) — — :(0) <
n;f( 1) n;f() 20

e Optimal. See Hazan and Kale (2014).
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Beyond convergence in expectation

2DB
/n

— Obtained with simple conditioning arguments

n—1
1
e Typical result: Ef (E Zﬁk) — f(0«) <
k=0

e High-probability bounds

— Markov inequality: P(f(% Z;; Hk) — f(04)

WV
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Beyond convergence in expectation

2DB
/n

— Obtained with simple conditioning arguments

n—1
1
e Typical result: Ef (E Zﬁk) — f(0«) <
k=0

e High-probability bounds
2DB

~ Markov inequality: P(f(1 3425 0k ) = f(0.) > =) < N
— Deviation inequality (Nemirovski et al., 2009; Nesterov and Vial,
2008)

IP’(f (i:zé Hk) — f(0.) 2 2\1/)%9(2 + 4t)) < 2exp(—t7)

e See also Bach (2013) for logistic regression
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Stochastic subgradient method - high probability - |

® lteration: 0, = p(0,_1 — Ynf,(0n_1)) with v, = 2\1/75

® f, : information up to time n

o ||f1(0)||2 < B and ||0||2 < D, unbiased gradients/functions E( f,,|F,,—1) = f

16, — Y f1 (6 n_1)||5 by contractivity of projections
[ ||2 + By — 29 (0n—1 — 0.) " f,(0n—1) because || f,,(0r—1)]|2

16, — 6.5 <|
< |

E (165 — 0.[151F—1] < [10n—1 = 0.]13 + B*v — 290 (0—1 — 0.) " f'(0n1)
(6

< |
< ||0n-1 — 0.3+ B*v; — 27, [f( ) — f

)} (subgradient prope
e Without expectations and with Z,, = —27,,(0,—1 — 0) " [f/ (0n_1) — f'(0r_1)]

00— 0,13 < 0um1 — 0.1 + B2 — 29 [f(0u1) — F(0.)] + Z,

133



Stochastic subgradient method - high probability - |l

e Without expectations and with Z,, = —2v,(0,—1 — 0) " [f/.(0n_1) — f'(0r_1)]

10 = 013 < 1001 = 0.2+ B*vy — 29 [f(On—1) = f(0.)] + Z,

1 B%*y, 7,
g LI s = 015 = 16, — 0:113) + =5 +

n n

& " B%y, 1 ) ) Z
[(Our) = FO)] < D= +Zg[ueu_1—9*u2—Heu—e*uﬂ+ZE
u=1

u

_ 32% Z, _2DB " Z. .
<2 Z: I A

e Need to study Z — with E(Z,,|F,-1) =0 and |Z,| < 8v,DB
274

2D
By/1
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Stochastic subgradient method - high probability - 11|

n 7,
e Need to study 22— with E( L|\Fn—1) =0and |Z,| < 4DB
Yu
—1

e Azuma-Hoeffding inequality for bounded martingale increments:

n

IP(ZZ

t2
> ty/n - 4DB) exp ( — —)
u=1 27“

2

e Moments with Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994)
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Beyond stochastic gradient method

e Adding a proximal step
— Goal: min f(0)+Q0)=Ef,(0) + Q(0)

HER
— Replace recursion 6, = 0,,_1 — v f,(05) by

0, = min [0 — 1 + 7 fa(00)|[5 + CQUO)

0 cRd

— Xiao (2010); Hu et al. (2009)
— May be accelerated (Ghadimi and Lan, 2013)

e Related frameworks

— Regularized dual averaging (Nesterov, 2009; Xiao, 2010)
— Mirror descent (Nemirovski et al., 2009; Lan et al., 2012)
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Mirror descent

e Projected (stochastic) gradient descent adapted to Euclidean
geometry

maxy greco ||0 — 0'[|2 - maxgce || f/(0)]|2

/n

— bound:

e \What about other norms?

— Example: natural bound on maxgce || f/(8)]|s leads to v/d factor
— Avoidable with mirror descent, which leads to factor y/log d
— Nemirovski et al. (2009); Lan et al. (2012)
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Mirror descent

e Projected (stochastic) gradient descent adapted to Euclidean
geometry

maxy greco ||0 — 0'[|2 - maxgce || f/(0)]|2

/n

— bound:

e \What about other norms?

— Example: natural bound on maxgce || f/(8)]|s leads to v/d factor
— Avoidable with mirror descent, which leads to factor y/log d
— Nemirovski et al. (2009); Lan et al. (2012)

e From Hilbert to Banach spaces

— Gradient f'(0) defined through f(60 + df) — f(6) = (f'(0),d0) for
a certain dot-product
— Generally, the differential is an element of the dual space

138



Mirror descent set-up

e Function f defined on domain C
e Arbitrary norm || - || with dual norm ||s||. = supj; < 0's
e B-Lipschitz-continuous function w.r.t. || - ||: ||f(0)]« < B

e Given a strictly-convex function ®, define the Bregman divergence

Dg(0,m) = @(0) — @(n) — @'(n)" (6 — n)

DCD(H)T])

DO(n)+P'(n).(6-1)

| > H
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Mirror map

e Strongly-convex function ® : C4 — R such that

(a) the gradient ®’ takes all possible values in R?, leading to a bijection
from Cg to R

(b) the gradient @ diverges on the boundary of Cg

(c) Co contains the closure of the domain C of the optimization
problem

e Bregman projection on C uniquely defined on Cg:

2(6) — arg min Do(n.6)

= arg min P(y) — $(0) — (0) (n )

— . q) L q)/ T
arg min  ®(n) — &(6) 7

e Example of squared Euclidean norm and entropy
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Mirror descent

e lteration:
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Mirror descent

e |teration:
0r = Tg ("7 [®'(0e—1) — 7f'(0e-1)])

e Convergence: assume (a) D? = supycc ®(0) — infoec ®(0), (b) @
is a-strongly convex with respect to || - || and (c) f is B-Lipschitz-

2¢.
b

(Ze) inf f(0) < DB\/%

— See detailed proof in Bubeck (2015, p. 299)
— “Same” as subgradient method + allows stochastic gradients

continuous wr.t. || - ||. Then with v = %
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Mirror descent (proof)

e Define (I)/(nt) = (I)/(et—l) — ’Yf/(gt—l)- We have

FO—1) — f(O) < f/(0—1) ' (0i—1 —0) = %((I)/(Ht—l) —®'(n)) " (-1 — 0)
= ~[Dal0,00-1) + ~ Da(6,m.)]
e By optimality of 6;: (®'(6;)—®'(n;)) ' (8;—0) < 0 which is equivalent
to: Dq;(@,?ﬁ) = Dq)(g, 9,5) + . Thus

= B(0; 1) — D(0:) — (1) ' (Br—1 — 62)
< (@ (0r-1) = O ()T (Bt = 02) = 51011 — 64l
VF'(0r—1) " (B—1 — 6r) — %H@t—l — 04I°

o B)?
YB|0;—1 — 04| — =[|0:—1 — 04||* < (B)
2 20

/N

e Thus Zizl [f(et—l) _ f(@)} < Dq>(79,90) _|_7124_it
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Mirror descent examples

e Euclidean: & = 1| - |2 with || || = || - || and Co = R

— Regular gradient descent

o Simplex: ®(A) = 3.0 6;log; with |- || = || - |1 and Co = {6 €
d
RY, i bi = 1}
— Bregman divergence = Kullback-Leibler divergence

— Iteration (multiplicative update): 8; o< 0;_1 exp(—7f'(6:-1))
— Constant: D? =logd, a =1

o (y-ball: @(0) = 3[10]7, with || || = || [lp, p € (1,2]

— We havea=p—1
— Typically used with p =1 + ;= to cover the £;-geometry
— See Duchi et al. (2010)
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Minimax rates (Agarwal et al., 2012)
e Model of computation (i.e., algorithms): first-order oracle
— Queries a function f by obtaining f(0x) and f'(6x) with zero-mean
bounded variance noise, for K =0,...,n — 1 and outputs 6,,
e Class of functions
— convex B-Lipschitz-continuous (w.r.t. fs-norm) on a compact
convex set C containing an {.-ball
e Performance measure

— for a given algorithm and function ¢,,(algo, ) = f(0,)—infgcc f(6)

— for a given algorithm: sup  ey(algo, f)
functions f
e Minimax performance: inf sup  en(algo, f)

algo functions f
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Minimax rates (Agarwal et al., 2012)

e Convex functions: domain C that contains an ¢..-ball of radius D

d
inf sup  e(algo, f) > cst X min {BD\/:, BD}
algo functions ¢ n

— Consequences for £o-ball of radius D: BD/+\/n
— Upper-bound through stochastic subgradient

e /-strongly-convex functions:

B? B? d
inf sup  en(algo, f) > cst x min{ : ,BD\/:, BD}
algo functions f pn pud n
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Minimax rates - sketch of proof

1. Create a subclass of functions indexed by some vertices o/,
j=1,..., M of the hypercube {—1,1}¢, which are sufficiently far in

Hamming metric Ay (denote V this set with |V| = M)

\V/] # k? AH(O/L)OZJ) > Z?

e.g., a “%—packing” (possible with M exponential in d - see later)
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Minimax rates - sketch of proof

1. Create a subclass of functions indexed by some vertices o/,
j=1,..., M of the hypercube {—1,1}¢, which are sufficiently far in

Hamming metric Ay (denote V this set with |V| = M)

\V/] # k? AH(&Z7&3) > Z?

e.g., a “%—packing” (possible with M exponential in d - see later)

2. Design functions so that

— approximate optimization of the function is equivalent to function
identification among the class above

— stochastic oracle corresponds to a sequence of coin tosses with
biases index by o/, j =1,..., M
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Minimax rates - sketch of proof

1. Create a subclass of functions indexed by some vertices o/,
j=1,..., M of the hypercube {—1,1}¢, which are sufficiently far in

Hamming metric Ay (denote V this set with |V| = M)

\V/] # k? AH(&Z7&3) > Z?

e.g., a “%—packing” (possible with M exponential in d - see later)

2. Design functions so that

— approximate optimization of the function is equivalent to function
identification among the class above

— stochastic oracle corresponds to a sequence of coin tosses with
biases index by o/, j =1,..., M

3. Any such identification procedure (i.e., a test) has a lower bound on
the probability of error
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Packing number for the hyper-cube
Proof

e Varshamov-Gilbert’s lemma (Massart, 2003, p. 105): the maximal
number of points in the hypercube that are at least d/4-apart in
Hamming loss is greater than than exp(d/8).

1. Maximality of family V = |y, Bu(a, d/4) = {-1,1}¢

2. Cardinality: >° ., |Bu(a,d/4)] > 2¢

acV

3. Link with deviation of Z distributed as Binomial(d, 1/2)

27U Br(a,d/4)| =P(Z < d/4) =P(Z > 3d/4)

4. Hoeffding inequality: P(Z — % > %) < exp(—%) = exp(—%)
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Designing a class of functions

o Given o € {—1,1}¢, and a precision parameter § > 0:

gale) =SS + 0id) (@) + (G — 0ad) £ ()}

2 2
e Properties
— Functions f;'s and constant ¢ to ensure proper regularity and/or
strong convexity
e Oracle

(a) Pick anindex ¢ € {1,...,d} at random
(b) Draw b; € {0,1} from a Bernoulli with parameter = + ;0
(c) Consider go(z) = c|bif;" + (1 — b;) f;] and its value / gradient
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Optimizing is function identification

e Goal: if g, is optimized up to error €, then this identifies oo € V

o “Metric” between functions:

p(f.g) = Inf f(0) + g(0) — Inf f(6) — inf g(0)

oc

— p(f,g) = 0 with equality iff f and g have the same minimizers

e Lemma: let ¢ (0) = min,2gey p(ga, gs). For any 9 € C, there is at

most one function g, such that g,(0) — infycc go(0) < @
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Optimizing is function identification

e Goal: if g, is optimized up to error €, then this identifies oo € V

o “Metric” between functions:

p(f.g) = Inf f(0) + g(0) — Inf f(6) — inf g(0)

oc

— p(f,g) = 0 with equality iff f and g have the same minimizers

e Lemma: let ¢ (0) = min,2gey p(ga, gs). For any 9 € C, there is at

most one function g, such that g,(0) — infycc go(0) < @

— (a) optimizing an unknown function from the class up to precision
@ leads to identification of o € V
¥(©)

— (b) If the expected minimax error rate is greater than wg , there
exists a function from the set of random gradient and function

values such the probability of error is less than 1/3
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Lower bounds on coin tossing
(Agarwal et al., 2012, Lemma 3)

e Lemma: For § < 1/4, given a* uniformly at random in V, if n
outcomes of a random single coin (out of the d) are revealed, then
any test will have a probability of error greater than

16162 + log 2
5 log(2/+/e)

— Proof based on Fano's inequality: If g is a function of Y, and X
takes m values, then

HX|Y)-1 H(X) IX,)Y)+1
Plo(X) #Y) > logm ~ logm B logm
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Construction of f; for convex functions

o f7(0) =10(:) + 4| and f;(8) = |6(i) — 5

— 1-Lipschitz-continuous with respect to the £5-norm. With ¢ = B/2,

then g, 1s B-Lipschitz.
— Calling the oracle reveals a coin
e Lower bound on the discrepancy function
— each g, is minimized at 6, = —a//2

— Fact: p(ga,98) = 22Apu(a, B) > L = (9)

e Set error/precision £ = £ so that ¢ < 1(J)/9

_ 16nd°+log?2 :
> 1 Tiog(2/ /<)’ that is, | n > cst X

e Consequence:

L?d?
22
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Construction of f; for strongly-convex functions

l—x, .. 1,
—E00) + )

— Strongly convex and Lipschitz-continuous

o [5(6) = 5rl6() + o] +

e Same proof technique (more technical details)

e See more details by Agarwal et al. (2012); Raginsky and Rakhlin
(2011)

156



Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex

nonsmooth | deterministic: BD/+/t deterministic: B?/(tp)
stochastic: BD/+/n stochastic: B?/(nu)

smooth deterministic: LD?/t? deterministic: exp(—t+/u/L)

quadratic | deterministic: LD?/t? deterministic: exp(—t+/u/L)
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