Outline - I

1. Introduction

- Large-scale machine learning and optimization
- Classes of functions (convex, smooth, etc.)
- Traditional statistical analysis through Rademacher complexity

2. Classical methods for convex optimization

- Smooth optimization (gradient descent, Newton method)
- Non-smooth optimization (subgradient descent)
- Proximal methods

3. Non-smooth stochastic approximation

- Stochastic (sub)gradient and averaging
- Non-asymptotic results and lower bounds
- Strongly convex vs. non-strongly convex

Outline - II

4. Classical stochastic approximation

- Asymptotic analysis
- Robbins-Monro algorithm
- Polyak-Rupert averaging

5. Smooth stochastic approximation algorithms

- Non-asymptotic analysis for smooth functions
- Logistic regression
- Least-squares regression without decaying step-sizes

6. Finite data sets

- Gradient methods with exponential convergence rates
- Convex duality
- (Dual) stochastic coordinate descent Frank-Wolfe

Stochastic approximation

- ullet Goal: Minimizing a function f defined on \mathbb{R}^d
 - given only unbiased estimates $f_n'(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n \in \mathbb{R}^d$

Stochastic approximation

- **Goal**: Minimizing a function f defined on \mathbb{R}^d
 - given only unbiased estimates $f'_n(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n \in \mathbb{R}^d$
- Machine learning statistics
 - loss for a single pair of observations: $|f_n(\theta) = \ell(y_n, \theta^{\top} \Phi(x_n))|$

$$f_n(\theta) = \ell(y_n, \theta^{\top} \Phi(x_n))$$

- $-f(\theta) = \mathbb{E} f_n(\theta) = \mathbb{E} \ell(y_n, \theta^{\top} \Phi(x_n)) =$ generalization error
- Expected gradient: $f'(\theta) = \mathbb{E}f'_n(\theta) = \mathbb{E}\left\{\ell'(y_n, \theta^\top \Phi(x_n)) \Phi(x_n)\right\}$
- Non-asymptotic results
- Number of iterations = number of observations

Stochastic approximation

- ullet Goal: Minimizing a function f defined on \mathbb{R}^d
 - given only unbiased estimates $f_n'(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n \in \mathbb{R}^d$

Stochastic approximation

- (much) broader applicability beyond convex optimization

$$\theta_n = \theta_{n-1} - \gamma_n h_n(\theta_{n-1})$$
 with $\mathbb{E}[h_n(\theta_{n-1})|\theta_{n-1}] = h(\theta_{n-1})$

- Beyond convex problems, i.i.d assumption, finite dimension, etc.
- Typically asymptotic results (see next lecture)
- See, e.g., Kushner and Yin (2003); Benveniste et al. (2012)

Relationship to online learning

• Stochastic approximation

- Minimize $f(\theta) = \mathbb{E}_z \ell(\theta, z) =$ generalization error of θ
- Using the gradients of single i.i.d. observations

Relationship to online learning

Stochastic approximation

- Minimize $f(\theta) = \mathbb{E}_z \ell(\theta, z) =$ generalization error of θ
- Using the gradients of single i.i.d. observations

Batch learning

- Finite set of observations: z_1, \ldots, z_n
- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{k=1}^{n} \ell(\theta, z_i)$
- Estimator $\hat{\theta} = \mathsf{Minimizer}$ of $\hat{f}(\theta)$ over a certain class Θ
- Generalization bound using uniform concentration results

Relationship to online learning

Stochastic approximation

- Minimize $f(\theta) = \mathbb{E}_z \ell(\theta, z) =$ generalization error of θ
- Using the gradients of single i.i.d. observations

Batch learning

- Finite set of observations: z_1, \ldots, z_n
- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{k=1}^{n} \ell(\theta, z_i)$
- Estimator $\hat{\theta}=$ Minimizer of $\hat{f}(\theta)$ over a certain class Θ
- Generalization bound using uniform concentration results

Online learning

- Update $\hat{ heta}_n$ after each new (potentially adversarial) observation z_n
- Cumulative loss: $\frac{1}{n} \sum_{k=1}^{n} \ell(\hat{\theta}_{k-1}, z_k)$
- Online to batch through averaging (Cesa-Bianchi et al., 2004)

Convex stochastic approximation

- Key properties of f and/or f_n
 - Smoothness: f B-Lipschitz continuous, f' L-Lipschitz continuous
 - Strong convexity: $f \mu$ -strongly convex

Convex stochastic approximation

- Key properties of f and/or f_n
 - Smoothness: f B-Lipschitz continuous, f' L-Lipschitz continuous
 - Strong convexity: $f \mu$ -strongly convex
- **Key algorithm:** Stochastic gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n f_n'(\theta_{n-1})$$

- Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n} \sum_{k=0}^{n-1} \theta_k$
- Which learning rate sequence γ_n ? Classical setting: $| \gamma_n = Cn^{-\alpha} |$

$$\gamma_n = C n^{-\alpha}$$

Convex stochastic approximation

- Key properties of f and/or f_n
 - Smoothness: f B-Lipschitz continuous, f' L-Lipschitz continuous
 - Strong convexity: $f \mu$ -strongly convex
- **Key algorithm:** Stochastic gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n f'_n(\theta_{n-1})$$

- Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n} \sum_{k=0}^{n-1} \theta_k$
- Which learning rate sequence γ_n ? Classical setting: $| \gamma_n = C n^{-\alpha} |$

$$\gamma_n = C n^{-\alpha}$$

Desirable practical behavior

- Applicable (at least) to classical supervised learning problems
- Robustness to (potentially unknown) constants (L,B,μ)
- Adaptivity to difficulty of the problem (e.g., strong convexity)

Stochastic subgradient "descent"/method

Assumptions

- f_n convex and B-Lipschitz-continuous on $\{\|\theta\|_2 \leq D\}$
- (f_n) i.i.d. functions such that $\mathbb{E} f_n = f$
- θ_* global optimum of f on $\mathcal{C} = \{\|\theta\|_2 \leqslant D\}$

• Algorithm:
$$\theta_n = \Pi_D \left(\theta_{n-1} - \frac{2D}{B\sqrt{n}} f_n'(\theta_{n-1}) \right)$$

Stochastic subgradient "descent"/method

Assumptions

- f_n convex and B-Lipschitz-continuous on $\{\|\theta\|_2 \leq D\}$
- (f_n) i.i.d. functions such that $\mathbb{E}f_n=f$
- $-\theta_*$ global optimum of f on $\mathcal{C} = \{\|\theta\|_2 \leqslant D\}$
- Algorithm: $\theta_n = \Pi_D \left(\theta_{n-1} \frac{2D}{B\sqrt{n}} f_n'(\theta_{n-1}) \right)$
- Bound:

$$\mathbb{E}f\left(\frac{1}{n}\sum_{k=0}^{n-1}\theta_k\right) - f(\theta_*) \leqslant \frac{2DB}{\sqrt{n}}$$

- "Same" three-line proof as in the deterministic case
- Minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
- ullet Running-time complexity: O(dn) after n iterations

Stochastic subgradient method - proof - I

- Iteration: $\theta_n = \Pi_D(\theta_{n-1} \gamma_n f_n'(\theta_{n-1}))$ with $\gamma_n = \frac{2D}{B\sqrt{n}}$
- ullet \mathcal{F}_n : information up to time n
- $||f'_n(\theta)||_2 \leq B$ and $||\theta||_2 \leq D$, unbiased gradients/functions $\mathbb{E}(f_n|\mathcal{F}_{n-1}) = f$

$$\begin{split} \|\theta_{n} - \theta_{*}\|_{2}^{2} & \leqslant \|\theta_{n-1} - \theta_{*} - \gamma_{n} f_{n}'(\theta_{n-1})\|_{2}^{2} \text{ by contractivity of projections} \\ & \leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2 \gamma_{n} (\theta_{n-1} - \theta_{*})^{\top} f_{n}'(\theta_{n-1}) \text{ because } \|f_{n}'(\theta_{n-1})\|_{2} \end{split}$$

$$\begin{split} \mathbb{E} \big[\|\theta_{n} - \theta_{*}\|_{2}^{2} |\mathcal{F}_{n-1} \big] \leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2 \gamma_{n} (\theta_{n-1} - \theta_{*})^{\top} f'(\theta_{n-1}) \\ \leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2 \gamma_{n} \big[f(\theta_{n-1}) - f(\theta_{*}) \big] \text{ (subgradient prope} \\ \mathbb{E} \|\theta_{n} - \theta_{*}\|_{2}^{2} \leqslant \mathbb{E} \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2 \gamma_{n} \big[\mathbb{E} f(\theta_{n-1}) - f(\theta_{*}) \big] \end{split}$$

$$\bullet \ \ \text{leading to} \ \mathbb{E} f(\theta_{n-1}) - f(\theta_*) \leqslant \frac{B^2 \gamma_n}{2} + \frac{1}{2\gamma_n} \big[\mathbb{E} \|\theta_{n-1} - \theta_*\|_2^2 - \mathbb{E} \|\theta_n - \theta_*\|_2^2 \big]$$

Stochastic subgradient method - proof - II

 $\bullet \ \ \mathsf{Starting} \ \ \mathsf{from} \ \ \underline{\mathbb{E}} f(\theta_{n-1}) - f(\theta_*) \leqslant \frac{B^2 \gamma_n}{2} + \frac{1}{2\gamma_n} \big[\underline{\mathbb{E}} \|\theta_{n-1} - \theta_*\|_2^2 - \underline{\mathbb{E}} \|\theta_n - \theta_*\|_2^2 \big]$

$$\begin{split} \sum_{u=1}^{n} \left[\mathbb{E} f(\theta_{u-1}) - f(\theta_{*}) \right] \leqslant & \sum_{u=1}^{n} \frac{B^{2} \gamma_{u}}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma_{u}} \left[\mathbb{E} \|\theta_{u-1} - \theta_{*}\|_{2}^{2} - \mathbb{E} \|\theta_{u} - \theta_{*}\|_{2}^{2} \right] \\ \leqslant & \sum_{u=1}^{n} \frac{B^{2} \gamma_{u}}{2} + \frac{4D^{2}}{2 \gamma_{n}} \leqslant 2DB\sqrt{n} \text{ with } \gamma_{n} = \frac{2D}{B\sqrt{n}} \end{split}$$

• Using convexity: $\mathbb{E} f\left(\frac{1}{n}\sum_{k=0}^{n-1}\theta_k\right) - f(\theta_*) \leqslant \frac{2DB}{\sqrt{n}}$

Stochastic subgradient method Extension to online learning

- ullet Assume different and arbitrary functions $f_n:\mathbb{R}^d o \mathbb{R}$
 - Observations of $f'_n(\theta_{n-1}) + \varepsilon_n$
 - with $\mathbb{E}(\varepsilon_n|\mathcal{F}_{n-1})=0$ and $\|f_n'(\theta_{n-1})+\varepsilon_n\|\leqslant B$ almost surely
- Performance criterion: (normalized) regret

$$\frac{1}{n} \sum_{i=1}^{n} f_i(\theta_{i-1}) - \inf_{\|\theta\|_2 \leq D} \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

- Warning: often not normalized
- May not be non-negative (typically is)

Stochastic subgradient method - online learning - I

- Iteration: $\theta_n = \Pi_D(\theta_{n-1} \gamma_n(f'_n(\theta_{n-1}) + \varepsilon_n))$ with $\gamma_n = \frac{2D}{B\sqrt{n}}$
- ullet \mathcal{F}_n : information up to time n heta an arbitrary point such that $\| heta\|\leqslant D$
- $||f'_n(\theta_{n-1}) + \varepsilon_n||_2 \leqslant B$ and $||\theta||_2 \leqslant D$, unbiased gradients $\mathbb{E}(\varepsilon_n | \mathcal{F}_{n-1}) = 0$

$$\begin{split} \|\theta_n - \boldsymbol{\theta}\|_2^2 &\leqslant \|\theta_{n-1} - \boldsymbol{\theta} - \gamma_n (f_n'(\theta_{n-1}) + \varepsilon_n)\|_2^2 \text{ by contractivity of projections} \\ &\leqslant \|\theta_{n-1} - \boldsymbol{\theta}\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n (\theta_{n-1} - \boldsymbol{\theta})^\top (f_n'(\theta_{n-1}) + \varepsilon_n) \text{ because } \|f_n'(\theta_{n-1}) - \boldsymbol{\theta}\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n (\theta_{n-1} - \boldsymbol{\theta})^\top (f_n'(\theta_{n-1}) + \varepsilon_n) \end{split}$$

$$\mathbb{E}\left[\|\theta_{n} - \boldsymbol{\theta}\|_{2}^{2}|\mathcal{F}_{n-1}\right] \leqslant \|\theta_{n-1} - \boldsymbol{\theta}\|_{2}^{2} + B^{2}\gamma_{n}^{2} - 2\gamma_{n}(\theta_{n-1} - \boldsymbol{\theta})^{\top}f_{n}'(\theta_{n-1})$$

$$\leqslant \|\theta_{n-1} - \boldsymbol{\theta}\|_{2}^{2} + B^{2}\gamma_{n}^{2} - 2\gamma_{n}\left[f_{n}(\theta_{n-1}) - f_{n}(\boldsymbol{\theta})\right] \text{ (subgradient proper)}$$

$$\mathbb{E}\|\theta_{n} - \boldsymbol{\theta}\|_{2}^{2} \leqslant \mathbb{E}\|\theta_{n-1} - \boldsymbol{\theta}\|_{2}^{2} + B^{2}\gamma_{n}^{2} - 2\gamma_{n}\left[\mathbb{E}f_{n}(\theta_{n-1}) - f_{n}(\boldsymbol{\theta})\right]$$

$$\bullet \ \ \text{leading to} \ \mathbb{E} f_{\boldsymbol{n}}(\boldsymbol{\theta}_{n-1}) - f_{\boldsymbol{n}}(\boldsymbol{\theta}) \leqslant \frac{B^2 \gamma_n}{2} + \frac{1}{2\gamma_n} \big[\mathbb{E} \|\boldsymbol{\theta}_{n-1} - \boldsymbol{\theta}\|_2^2 - \mathbb{E} \|\boldsymbol{\theta}_n - \boldsymbol{\theta}\|_2^2 \big]$$

Stochastic subgradient method - online learning - II

 $\bullet \ \ \text{Starting from} \ \mathbb{E} f_{\mathbf{n}}(\theta_{n-1}) - f_{\mathbf{n}}({\color{blue}\theta}) \leqslant \frac{B^2 \gamma_n}{2} + \frac{1}{2\gamma_n} \big[\mathbb{E} \|\theta_{n-1} - {\color{blue}\theta}\|_2^2 - \mathbb{E} \|\theta_n - {\color{blue}\theta}\|_2^2 \big]$

$$\begin{split} \sum_{u=1}^n \left[\mathbb{E} f_{\mathbf{u}}(\theta_{u-1}) - f_{\mathbf{u}}(\boldsymbol{\theta}) \right] \leqslant & \sum_{u=1}^n \frac{B^2 \gamma_u}{2} + \sum_{u=1}^n \frac{1}{2\gamma_u} \left[\mathbb{E} \|\boldsymbol{\theta}_{u-1} - \boldsymbol{\theta}\|_2^2 - \mathbb{E} \|\boldsymbol{\theta}_u - \boldsymbol{\theta}\|_2^2 \right] \\ \leqslant & \sum_{u=1}^n \frac{B^2 \gamma_u}{2} + \frac{4D^2}{2\gamma_n} \leqslant 2DB\sqrt{n} \text{ with } \gamma_n = \frac{2D}{B\sqrt{n}} \end{split}$$

- For any θ such that $\|\theta\|\leqslant D$: $\frac{1}{n}\sum_{k=1}^n\mathbb{E} f_k(\theta_{k-1})-\frac{1}{n}\sum_{k=1}^n f_k(\theta)\leqslant \frac{2DB}{\sqrt{n}}$
- Online to batch conversion: assuming convexity

Stochastic subgradient descent - strong convexity - I

Assumptions

- f_n convex and B-Lipschitz-continuous
- (f_n) i.i.d. functions such that $\mathbb{E} f_n = f$
- $f \mu$ -strongly convex on $\{\|\theta\|_2 \leqslant D\}$
- $-\theta_*$ global optimum of f over $\{\|\theta\|_2 \leq D\}$

• Algorithm:
$$\theta_n = \Pi_D \left(\theta_{n-1} - \frac{2}{\mu(n+1)} f'_n(\theta_{n-1}) \right)$$

Bound:

$$\mathbb{E}f\left(\frac{2}{n(n+1)}\sum_{k=1}^{n}k\theta_{k-1}\right) - f(\theta_*) \leqslant \frac{2B^2}{\mu(n+1)}$$

- "Same" proof than deterministic case (Lacoste-Julien et al., 2012)
- Minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

Stochastic subgradient - strong convexity - proof - I

- Iteration: $\theta_n = \Pi_D(\theta_{n-1} \gamma_n f'_n(\theta_{t-1}))$ with $\gamma_n = \frac{2}{\mu(n+1)}$
- Assumption: $||f'_n(\theta)||_2 \leqslant B$ and $||\theta||_2 \leqslant D$ and μ -strong convexity of f

$$\|\theta_{n} - \theta_{*}\|_{2}^{2} \leqslant \|\theta_{n-1} - \theta_{*} - \gamma_{n} f'_{n}(\theta_{t-1})\|_{2}^{2} \text{ by contractivity of projections}$$

$$\leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2\gamma_{n}(\theta_{n-1} - \theta_{*})^{\top} f'_{n}(\theta_{t-1}) \text{ because } \|f'_{n}(\theta_{t-1})\|_{2}$$

$$\mathbb{E}(\cdot|\mathcal{F}_{n-1}) \leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2\gamma_{n} \left[f(\theta_{n-1}) - f(\theta_{*}) + \frac{\mu}{2} \|\theta_{n-1} - \theta_{*}\|_{2}^{2}\right]$$

(property of subgradients and strong convexity)

leading to

$$\mathbb{E}f(\theta_{n-1}) - f(\theta_*) \leqslant \frac{B^2 \gamma_n}{2} + \frac{1}{2} \left[\frac{1}{\gamma_n} - \mu \right] \|\theta_{n-1} - \theta_*\|_2^2 - \frac{1}{2\gamma_n} \|\theta_n - \theta_*\|_2^2$$

$$\leqslant \frac{B^2}{\mu(n+1)} + \frac{\mu}{2} \left[\frac{n-1}{2} \right] \|\theta_{n-1} - \theta_*\|_2^2 - \frac{\mu(n+1)}{4} \|\theta_n - \theta_*\|_2^2$$

Stochastic subgradient - strong convexity - proof - II

$$\bullet \ \operatorname{From} \mathbb{E} f(\theta_{n-1}) - f(\theta_*) \leqslant \frac{B^2}{\mu(n+1)} + \frac{\mu}{2} \big[\frac{n-1}{2} \big] \mathbb{E} \|\theta_{n-1} - \theta_*\|_2^2 - \frac{\mu(n+1)}{4} \mathbb{E} \|\theta_n - \theta_*\|_2^2$$

$$\sum_{u=1}^{n} u \left[\mathbb{E} f(\theta_{u-1}) - f(\theta_{*}) \right] \leq \sum_{u=1}^{n} \frac{B^{2}u}{\mu(u+1)} + \frac{1}{4} \sum_{u=1}^{n} \left[u(u-1)\mathbb{E} \|\theta_{u-1} - \theta_{*}\|_{2}^{2} - u(u+1)\mathbb{E} \|\theta_{u}\|_{2}^{2} \right]$$

$$\leq \frac{B^{2}n}{\mu} + \frac{1}{4} \left[0 - n(n+1)\mathbb{E} \|\theta_{n} - \theta_{*}\|_{2}^{2} \right] \leq \frac{B^{2}n}{\mu}$$

• Using convexity:
$$\mathbb{E} f\left(\frac{2}{n(n+1)}\sum_{u=1}^n u\theta_{u-1}\right) - g(\theta_*) \leqslant \frac{2B^2}{n+1}$$

• NB: with step-size $\gamma_n=1/(n\mu)$, extra logarithmic factor (see later)

Stochastic subgradient descent - strong convexity - II

Assumptions

- f_n convex and B-Lipschitz-continuous
- (f_n) i.i.d. functions such that $\mathbb{E} f_n = f$
- θ_* global optimum of $g = f + \frac{\mu}{2} \| \cdot \|_2^2$
- No compactness assumption no projections

• Algorithm:

$$\theta_n = \theta_{n-1} - \frac{2}{\mu(n+1)} g'_n(\theta_{n-1}) = \theta_{n-1} - \frac{2}{\mu(n+1)} [f'_n(\theta_{n-1}) + \mu \theta_{n-1}]$$

• Bound:
$$\mathbb{E}g\left(\frac{2}{n(n+1)}\sum_{k=1}^{n}k\theta_{k-1}\right)-g(\theta_*)\leqslant \frac{2B^2}{\mu(n+1)}$$

Minimax convergence rate

Strong convexity - proof with $\log n$ factor - I

- Iteration: $\theta_n = \Pi_D(\theta_{n-1} \gamma_n f'_n(\theta_{t-1}))$ with $\gamma_n = \frac{1}{\mu n}$
- Assumption: $||f'_n(\theta)||_2 \leq B$ and $||\theta||_2 \leq D$ and μ -strong convexity of f

$$\|\theta_{n} - \theta_{*}\|_{2}^{2} \leqslant \|\theta_{n-1} - \theta_{*} - \gamma_{n} f'_{n}(\theta_{t-1})\|_{2}^{2} \text{ by contractivity of projections}$$

$$\leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2\gamma_{n}(\theta_{n-1} - \theta_{*})^{\top} f'_{n}(\theta_{t-1}) \text{ because } \|f'_{n}(\theta_{t-1})\|_{2}$$

$$\mathbb{E}(\cdot|\mathcal{F}_{n-1}) \leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2\gamma_{n} \left[f(\theta_{n-1}) - f(\theta_{*}) + \frac{\mu}{2} \|\theta_{n-1} - \theta_{*}\|_{2}^{2}\right]$$

(property of subgradients and strong convexity)

leading to

$$\mathbb{E}f(\theta_{n-1}) - f(\theta_*) \leqslant \frac{B^2 \gamma_n}{2} + \frac{1}{2} \left[\frac{1}{\gamma_n} - \mu \right] \|\theta_{n-1} - \theta_*\|_2^2 - \frac{1}{2\gamma_n} \|\theta_n - \theta_*\|_2^2$$

$$\leqslant \frac{B^2}{2\mu n} + \frac{\mu}{2} \left[n - 1 \right] \|\theta_{n-1} - \theta_*\|_2^2 - \frac{n\mu}{2} \|\theta_n - \theta_*\|_2^2$$

Strong convexity - proof with $\log n$ factor - II

$$\bullet \ \operatorname{From} \ \mathbb{E} f(\theta_{n-1}) - f(\theta_*) \! \leqslant \! \frac{B^2}{2\mu n} + \frac{\mu}{2} \big[n-1 \big] \|\theta_{n-1} - \theta_*\|_2^2 - \frac{n\mu}{2} \|\theta_n - \theta_*\|_2^2$$

$$\sum_{u=1}^{n} \left[\mathbb{E} f(\theta_{u-1}) - f(\theta_{*}) \right] \leqslant \sum_{u=1}^{n} \frac{B^{2}}{2\mu u} + \frac{1}{2} \sum_{u=1}^{n} \left[(u-1)\mathbb{E} \|\theta_{u-1} - \theta_{*}\|_{2}^{2} - u\mathbb{E} \|\theta_{u} - \theta_{*}\|_{2}^{2} \right]$$

$$\leqslant \frac{B^{2} \log n}{2\mu} + \frac{1}{2} \left[0 - n\mathbb{E} \|\theta_{n} - \theta_{*}\|_{2}^{2} \right] \leqslant \frac{B^{2} \log n}{2\mu}$$

$$\bullet \text{ Using convexity:} \quad \mathbb{E} f \bigg(\frac{1}{n} \sum_{u=1}^n \theta_{u-1} \bigg) - f(\theta_*) \leqslant \frac{B^2 \frac{\log n}{2\mu}}{n}$$

• Why could this be useful?

Stochastic subgradient descent - strong convexity Online learning

• Need $\log n$ term for uniform averaging. For all θ :

$$\frac{1}{n} \sum_{i=1}^{n} f_i(\theta_{i-1}) - \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \leqslant \frac{B^2 \log n}{2\mu n}$$

Optimal. See Hazan and Kale (2014).

Beyond convergence in expectation

• Typical result:
$$\mathbb{E} f\left(\frac{1}{n}\sum_{k=0}^{n-1}\theta_k\right) - f(\theta_*) \leqslant \frac{2DB}{\sqrt{n}}$$

Obtained with simple conditioning arguments

High-probability bounds

- Markov inequality:
$$\mathbb{P}\Big(f\Big(\frac{1}{n}\sum_{k=0}^{n-1}\theta_k\Big)-f(\theta_*)\geqslant \varepsilon\Big)\leqslant \frac{2DB}{\sqrt{n}\varepsilon}$$

Beyond convergence in expectation

• Typical result:
$$\mathbb{E} f\left(\frac{1}{n}\sum_{k=0}^{n-1}\theta_k\right) - f(\theta_*) \leqslant \frac{2DB}{\sqrt{n}}$$

Obtained with simple conditioning arguments

High-probability bounds

- Markov inequality: $\mathbb{P}\Big(f\Big(\frac{1}{n}\sum_{k=0}^{n-1}\theta_k\Big)-f(\theta_*)\geqslant \varepsilon\Big)\leqslant \frac{2DB}{\sqrt{n}\varepsilon}$
- Deviation inequality (Nemirovski et al., 2009; Nesterov and Vial, 2008)

$$\mathbb{P}\left(f\left(\frac{1}{n}\sum_{k=0}^{n-1}\theta_k\right) - f(\theta_*) \geqslant \frac{2DB}{\sqrt{n}}(2+4t)\right) \leqslant 2\exp(-t^2)$$

• See also Bach (2013) for logistic regression

Stochastic subgradient method - high probability - I

- Iteration: $\theta_n = \Pi_D(\theta_{n-1} \gamma_n f_n'(\theta_{n-1}))$ with $\gamma_n = \frac{2D}{B\sqrt{n}}$
- \mathcal{F}_n : information up to time n
- $||f'_n(\theta)||_2 \leq B$ and $||\theta||_2 \leq D$, unbiased gradients/functions $\mathbb{E}(f_n|\mathcal{F}_{n-1}) = f$

$$\begin{split} \|\theta_{n} - \theta_{*}\|_{2}^{2} & \leqslant \|\theta_{n-1} - \theta_{*} - \gamma_{n} f_{n}'(\theta_{n-1})\|_{2}^{2} \text{ by contractivity of projections} \\ & \leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2 \gamma_{n} (\theta_{n-1} - \theta_{*})^{\top} f_{n}'(\theta_{n-1}) \text{ because } \|f_{n}'(\theta_{n-1})\|_{2} \end{split}$$

$$\mathbb{E} \left[\|\theta_{n} - \theta_{*}\|_{2}^{2} |\mathcal{F}_{n-1}\right] \leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2\gamma_{n} (\theta_{n-1} - \theta_{*})^{\top} f'(\theta_{n-1})$$

$$\leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2\gamma_{n} \left[f(\theta_{n-1}) - f(\theta_{*}) \right]$$
 (subgradient properties)

• Without expectations and with $Z_n = -2\gamma_n(\theta_{n-1} - \theta_*)^{\top}[f_n'(\theta_{n-1}) - f'(\theta_{n-1})]$

$$\|\theta_n - \theta_*\|_2^2 \le \|\theta_{n-1} - \theta_*\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n [f(\theta_{n-1}) - f(\theta_*)] + Z_n$$

Stochastic subgradient method - high probability - II

• Without expectations and with $Z_n = -2\gamma_n(\theta_{n-1} - \theta_*)^{\top}[f_n'(\theta_{n-1}) - f'(\theta_{n-1})]$

$$\|\theta_{n} - \theta_{*}\|_{2}^{2} \leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2}\gamma_{n}^{2} - 2\gamma_{n} \left[f(\theta_{n-1}) - f(\theta_{*})\right] + Z_{n}$$

$$f(\theta_{n-1}) - f(\theta_{*}) \leqslant \frac{1}{2\gamma_{n}} \left[\|\theta_{n-1} - \theta_{*}\|_{2}^{2} - \|\theta_{n} - \theta_{*}\|_{2}^{2}\right] + \frac{B^{2}\gamma_{n}}{2} + \frac{Z_{n}}{2\gamma_{n}}$$

$$\sum_{u=1}^{n} \left[f(\theta_{u-1}) - f(\theta_*) \right] \leqslant \sum_{u=1}^{n} \frac{B^2 \gamma_u}{2} + \sum_{u=1}^{n} \frac{1}{2\gamma_u} \left[\|\theta_{u-1} - \theta_*\|_2^2 - \|\theta_u - \theta_*\|_2^2 \right] + \sum_{u=1}^{n} \frac{Z_u}{2\gamma_u}$$

$$\leqslant \sum_{u=1}^{n} \frac{B^2 \gamma_u}{2} + \frac{4D^2}{2\gamma_n} + \sum_{u=1}^{n} \frac{Z_u}{2\gamma_u} \leqslant \frac{2DB}{\sqrt{n}} + \sum_{u=1}^{n} \frac{Z_u}{2\gamma_u} \text{ with } \gamma_n = \frac{2D}{B\sqrt{n}}$$

• Need to study $\sum_{n=1}^n \frac{Z_n}{2\gamma_n}$ with $\mathbb{E}(Z_n|\mathcal{F}_{n-1})=0$ and $|Z_n|\leqslant 8\gamma_n DB$

Stochastic subgradient method - high probability - III

- Need to study $\sum_{u=1}^n \frac{Z_u}{2\gamma_u}$ with $\mathbb{E}(\frac{Z_n}{2\gamma_n}|\mathcal{F}_{n-1})=0$ and $|Z_n|\leqslant 4DB$
- Azuma-Hoeffding inequality for bounded martingale increments:

$$\mathbb{P}\Big(\sum_{u=1}^{n} \frac{Z_u}{2\gamma_u} \geqslant t\sqrt{n} \cdot 4DB\Big) \leqslant \exp\Big(-\frac{t^2}{2}\Big)$$

Moments with Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994)

Beyond stochastic gradient method

Adding a proximal step

- Goal: $\min_{\theta \in \mathbb{R}^d} f(\theta) + \Omega(\theta) = \mathbb{E} f_n(\theta) + \Omega(\theta)$
- Replace recursion $\theta_n = \theta_{n-1} \gamma_n f_n'(\theta_n)$ by

$$\theta_n = \min_{\theta \in \mathbb{R}^d} \left\| \theta - \theta_{n-1} + \gamma_n f'_n(\theta_n) \right\|_2^2 + C\Omega(\theta)$$

- Xiao (2010); Hu et al. (2009)
- May be accelerated (Ghadimi and Lan, 2013)

Related frameworks

- Regularized dual averaging (Nesterov, 2009; Xiao, 2010)
- Mirror descent (Nemirovski et al., 2009; Lan et al., 2012)

Mirror descent

Projected (stochastic) gradient descent adapted to Euclidean geometry

- bound:
$$\frac{\max_{\theta,\theta'\in\Theta}\|\theta-\theta'\|_2\cdot\max_{\theta\in\Theta}\|f'(\theta)\|_2}{\sqrt{n}}$$

- What about other norms?
 - Example: natural bound on $\max_{\theta \in \Theta} \|f'(\theta)\|_{\infty}$ leads to \sqrt{d} factor
 - Avoidable with mirror descent, which leads to factor $\sqrt{\log d}$
 - Nemirovski et al. (2009); Lan et al. (2012)

Mirror descent

Projected (stochastic) gradient descent adapted to Euclidean geometry

- bound:
$$\frac{\max_{\theta,\theta'\in\Theta}\|\theta-\theta'\|_2\cdot\max_{\theta\in\Theta}\|f'(\theta)\|_2}{\sqrt{n}}$$

- What about other norms?
 - Example: natural bound on $\max_{\theta \in \Theta} \|f'(\theta)\|_{\infty}$ leads to \sqrt{d} factor
 - Avoidable with mirror descent, which leads to factor $\sqrt{\log d}$
 - Nemirovski et al. (2009); Lan et al. (2012)
- From Hilbert to Banach spaces
 - Gradient $f'(\theta)$ defined through $f(\theta+d\theta)-f(\theta)=\langle f'(\theta),d\theta\rangle$ for a certain dot-product
 - Generally, the differential is an element of the dual space

Mirror descent set-up

- ullet Function f defined on domain ${\mathcal C}$
- Arbitrary norm $\|\cdot\|$ with dual norm $\|s\|_* = \sup_{\|\theta\| \leqslant 1} \theta^\top s$
- B-Lipschitz-continuous function w.r.t. $\|\cdot\|: \|f'(\theta)\|_* \leq B$
- \bullet Given a strictly-convex function Φ , define the Bregman divergence

$$D_{\Phi}(\theta, \eta) = \Phi(\theta) - \Phi(\eta) - \Phi'(\eta)^{\top}(\theta - \eta)$$

Mirror map

- ullet Strongly-convex function $\Phi:\mathcal{C}_\Phi o\mathbb{R}$ such that
- (a) the gradient Φ' takes all possible values in \mathbb{R}^d , leading to a bijection from \mathcal{C}_Φ to \mathbb{R}^d
- (b) the gradient Φ' diverges on the boundary of \mathcal{C}_Φ
- (c) \mathcal{C}_Φ contains the closure of the domain \mathcal{C} of the optimization problem
- Bregman projection on C uniquely defined on C_{Φ} :

$$\Pi_{\mathcal{C}}^{\Phi}(\theta) = \arg \min_{\eta \in \mathcal{C}_{\Phi} \cap \mathcal{C}} D_{\Phi}(\eta, \theta)$$

$$= \arg \min_{\eta \in \mathcal{C}_{\Phi} \cap \mathcal{C}} \Phi(\eta) - \Phi(\theta) - \Phi'(\theta)^{\top}(\eta - \theta)$$

$$= \arg \min_{\eta \in \mathcal{C}_{\Phi} \cap \mathcal{C}} \Phi(\eta) - \Phi'(\theta)^{\top}\eta$$

• Example of squared Euclidean norm and entropy

Mirror descent

• Iteration:

$$\theta_t = \Pi_{\mathcal{C}}^{\Phi} \left(\Phi'^{-1} \left[\Phi'(\theta_{t-1}) - \gamma f'(\theta_{t-1}) \right] \right)$$

Mirror descent

• Iteration:

$$\theta_t = \Pi_{\mathcal{C}}^{\Phi} \left(\Phi'^{-1} \left[\Phi'(\theta_{t-1}) - \gamma f'(\theta_{t-1}) \right] \right)$$

• Convergence: assume (a) $D^2 = \sup_{\theta \in \mathcal{C}} \Phi(\theta) - \inf_{\theta \in \mathcal{C}} \Phi(\theta)$, (b) Φ is α -strongly convex with respect to $\|\cdot\|$ and (c) f is B-Lipschitz-continuous wr.t. $\|\cdot\|$. Then with $\gamma = \frac{D}{B} \sqrt{\frac{2\alpha}{t}}$:

$$f\left(\frac{1}{t}\sum_{u=1}^{t}\theta_{u}\right) - \inf_{\theta \in \mathcal{C}}f(\theta) \leqslant DB\sqrt{\frac{2}{\alpha t}}$$

- See detailed proof in Bubeck (2015, p. 299)
- "Same" as subgradient method + allows stochastic gradients

Mirror descent (proof)

• Define $\Phi'(\eta_t) = \Phi'(\theta_{t-1}) - \gamma f'(\theta_{t-1})$. We have

$$f(\theta_{t-1}) - f(\theta) \leqslant f'(\theta_{t-1})^{\top}(\theta_{t-1} - \theta) = \frac{1}{\gamma} (\Phi'(\theta_{t-1}) - \Phi'(\eta_t))^{\top}(\theta_{t-1} - \theta)$$
$$= \frac{1}{\gamma} \left[D_{\Phi}(\theta, \theta_{t-1}) + D_{\Phi}(\theta_{t-1}, \eta_t) - D_{\Phi}(\theta, \eta_t) \right]$$

• By optimality of θ_t : $(\Phi'(\theta_t) - \Phi'(\eta_t))^{\top}(\theta_t - \theta) \leq 0$ which is equivalent to: $D_{\Phi}(\theta, \eta_t) \geq D_{\Phi}(\theta, \theta_t) + D_{\Phi}(\theta_t, \eta_t)$. Thus

$$D_{\Phi}(\theta_{t-1}, \eta_{t}) - D_{\Phi}(\theta_{t}, \eta_{t}) = \Phi(\theta_{t-1}) - \Phi(\theta_{t}) - \Phi'(\eta_{t})^{\top}(\theta_{t-1} - \theta_{t})
\leq (\Phi'(\theta_{t-1}) - \Phi'(\eta_{t}))^{\top}(\theta_{t-1} - \theta_{t}) - \frac{\alpha}{2} \|\theta_{t-1} - \theta_{t}\|^{2}
= \gamma f'(\theta_{t-1})^{\top}(\theta_{t-1} - \theta_{t}) - \frac{\alpha}{2} \|\theta_{t-1} - \theta_{t}\|^{2}
\leq \gamma B \|\theta_{t-1} - \theta_{t}\| - \frac{\alpha}{2} \|\theta_{t-1} - \theta_{t}\|^{2} \leq \frac{(\gamma B)^{2}}{2\alpha}$$

• Thus $\sum_{u=1}^{t} \left[f(\theta_{t-1}) - f(\theta) \right] \leqslant \frac{D_{\Phi}(\theta, \theta_0)}{\gamma} + \gamma \frac{L^2 t}{2\alpha}$

Mirror descent examples

- Euclidean: $\Phi = \frac{1}{2} \|\cdot\|_2^2$ with $\|\cdot\| = \|\cdot\|_2$ and $\mathcal{C}_{\Phi} = \mathbb{R}^d$
 - Regular gradient descent
- Simplex: $\Phi(\theta) = \sum_{i=1}^d \theta_i \log \theta_i$ with $\|\cdot\| = \|\cdot\|_1$ and $\mathcal{C}_{\Phi} = \{\theta \in \mathbb{R}^d_+, \sum_{i=1}^d \theta_i = 1\}$
 - Bregman divergence = Kullback-Leibler divergence
 - Iteration (multiplicative update): $\theta_t \propto \theta_{t-1} \exp(-\gamma f'(\theta_{t-1}))$
 - Constant: $D^2 = \log d$, $\alpha = 1$
- ℓ_p -ball: $\Phi(\theta) = \frac{1}{2} \|\theta\|_p^2$, with $\|\cdot\| = \|\cdot\|_p$, $p \in (1,2]$
 - We have $\alpha = p-1$
 - Typically used with $p=1+\frac{1}{\log d}$ to cover the ℓ_1 -geometry
 - See Duchi et al. (2010)

Minimax rates (Agarwal et al., 2012)

- Model of computation (i.e., algorithms): first-order oracle
 - Queries a function f by obtaining $f(\theta_k)$ and $f'(\theta_k)$ with zero-mean bounded variance noise, for $k=0,\ldots,n-1$ and outputs θ_n

Class of functions

– convex B-Lipschitz-continuous (w.r.t. ℓ_2 -norm) on a compact convex set $\mathcal C$ containing an ℓ_∞ -ball

Performance measure

- for a given algorithm and function $\varepsilon_n(\mathsf{algo}, f) = f(\theta_n) \inf_{\theta \in \mathcal{C}} f(\theta)$
- for a given algorithm: $\sup_{f} \varepsilon_n(\mathsf{algo}, f)$
- Minimax performance: $\inf_{\mathsf{algo}} \sup_{\mathsf{functions}} \varepsilon_n(\mathsf{algo}, f)$

Minimax rates (Agarwal et al., 2012)

ullet Convex functions: domain $\mathcal C$ that contains an ℓ_∞ -ball of radius D

$$\inf_{\text{algo functions }f}\sup_{\varepsilon(\text{algo},f)\geqslant }\sup_{\text{cst }\times\min\left\{\frac{BD\sqrt{\frac{d}{n}},BD\right\}}$$

- Consequences for ℓ_2 -ball of radius D: BD/\sqrt{n}
- Upper-bound through stochastic subgradient
- μ -strongly-convex functions:

$$\inf_{\text{algo functions }f} \sup_{\varepsilon_n(\text{algo},f) \geqslant \text{ cst } \times \min \Big\{ \frac{B^2}{\mu n}, \frac{B^2}{\mu d}, BD\sqrt{\frac{d}{n}}, BD \Big\}$$

Minimax rates - sketch of proof

1. Create a subclass of functions indexed by some vertices α^j , $j=1,\ldots,M$ of the hypercube $\{-1,1\}^d$, which are sufficiently far in Hamming metric Δ_H (denote $\mathcal V$ this set with $|\mathcal V|=M$) $\forall j\neq k,\ \Delta_H(\alpha^i,\alpha^j)\geqslant \frac{d}{A},$

e.g., a " $\frac{d}{4}$ -packing" (possible with M exponential in d - see later)

Minimax rates - sketch of proof

1. Create a subclass of functions indexed by some vertices α^j , $j=1,\ldots,M$ of the hypercube $\{-1,1\}^d$, which are sufficiently far in Hamming metric Δ_H (denote $\mathcal V$ this set with $|\mathcal V|=M$)

$$\forall j \neq k, \ \Delta_H(\alpha^i, \alpha^j) \geqslant \frac{a}{4},$$

e.g., a " $\frac{d}{4}$ -packing" (possible with M exponential in d - see later)

2. **Design functions** so that

- approximate optimization of the function is equivalent to function identification among the class above
- stochastic oracle corresponds to a sequence of coin tosses with biases index by α^j , $j=1,\ldots,M$

Minimax rates - sketch of proof

1. Create a subclass of functions indexed by some vertices α^j , $j=1,\ldots,M$ of the hypercube $\{-1,1\}^d$, which are sufficiently far in Hamming metric Δ_H (denote $\mathcal V$ this set with $|\mathcal V|=M$)

$$\forall j \neq k, \ \Delta_H(\alpha^i, \alpha^j) \geqslant \frac{a}{4},$$

e.g., a " $\frac{d}{4}$ -packing" (possible with M exponential in d - see later)

2. **Design functions** so that

- approximate optimization of the function is equivalent to function identification among the class above
- stochastic oracle corresponds to a sequence of coin tosses with biases index by α^j , $j=1,\ldots,M$
- 3. Any such identification procedure (i.e., **a test**) has a lower bound on the probability of error

Packing number for the hyper-cube Proof

- Varshamov-Gilbert's lemma (Massart, 2003, p. 105): the maximal number of points in the hypercube that are at least d/4-apart in Hamming loss is greater than than $\exp(d/8)$.
- 1. Maximality of family $\mathcal{V} \Rightarrow \bigcup_{\alpha \in \mathcal{V}} \mathcal{B}_H(\alpha, d/4) = \{-1, 1\}^d$
- 2. Cardinality: $\sum_{\alpha \in \mathcal{V}} |\mathcal{B}_H(\alpha, d/4)| \geqslant 2^d$
- 3. Link with deviation of Z distributed as Binomial(d, 1/2)

$$2^{-d}|\mathcal{B}_H(\alpha, d/4)| = \mathbb{P}(Z \leqslant d/4) = \mathbb{P}(Z \geqslant 3d/4)$$

4. Hoeffding inequality: $\mathbb{P}(Z - \frac{d}{2} \geqslant \frac{d}{4}) \leqslant \exp(-\frac{2(d/4)^2}{d}) = \exp(-\frac{d}{8})$

Designing a class of functions

• Given $\alpha \in \{-1,1\}^d$, and a precision parameter $\delta > 0$:

$$g_{\alpha}(x) = \frac{c}{d} \sum_{i=1}^{d} \left\{ \left(\frac{1}{2} + \alpha_{i} \delta\right) f_{i}^{+}(x) + \left(\frac{1}{2} - \alpha_{i} \delta\right) f_{i}^{-}(x) \right\}$$

Properties

– Functions f_i 's and constant c to ensure proper regularity and/or strong convexity

Oracle

- (a) Pick an index $i \in \{1, \dots, d\}$ at random
- (b) Draw $b_i \in \{0,1\}$ from a Bernoulli with parameter $\frac{1}{2} + \alpha_i \delta$
- (c) Consider $\hat{g}_{\alpha}(x) = c \left[b_i f_i^+ + (1 b_i) f_i^- \right]$ and its value / gradient

Optimizing is function identification

- **Goal**: if g_{α} is optimized up to error ε , then this identifies $\alpha \in \mathcal{V}$
- "Metric" between functions:

$$\rho(f,g) = \inf_{\theta \in \mathcal{C}} f(\theta) + g(\theta) - \inf_{\theta \in \mathcal{C}} f(\theta) - \inf_{\theta \in \mathcal{C}} g(\theta)$$

- $-\rho(f,g)\geqslant 0$ with equality iff f and g have the same minimizers
- **Lemma**: let $\psi(\delta) = \min_{\alpha \neq \beta \in \mathcal{V}} \rho(g_{\alpha}, g_{\beta})$. For any $\tilde{\theta} \in \mathcal{C}$, there is at most one function g_{α} such that $g_{\alpha}(\tilde{\theta}) \inf_{\theta \in \mathcal{C}} g_{\alpha}(\theta) \leqslant \frac{\psi(\delta)}{3}$

Optimizing is function identification

- **Goal**: if g_{α} is optimized up to error ε , then this identifies $\alpha \in \mathcal{V}$
- "Metric" between functions:

$$\rho(f,g) = \inf_{\theta \in \mathcal{C}} f(\theta) + g(\theta) - \inf_{\theta \in \mathcal{C}} f(\theta) - \inf_{\theta \in \mathcal{C}} g(\theta)$$

- $-\rho(f,g)\geqslant 0$ with equality iff f and g have the same minimizers
- **Lemma**: let $\psi(\delta) = \min_{\alpha \neq \beta \in \mathcal{V}} \rho(g_{\alpha}, g_{\beta})$. For any $\tilde{\theta} \in \mathcal{C}$, there is at most one function g_{α} such that $g_{\alpha}(\tilde{\theta}) \inf_{\theta \in \mathcal{C}} g_{\alpha}(\theta) \leqslant \frac{\psi(\delta)}{3}$
 - (a) optimizing an unknown function from the class up to precision $\frac{\psi(\delta)}{3}$ leads to identification of $\alpha \in \mathcal{V}$
 - (b) If the expected minimax error rate is greater than $\frac{\psi(\delta)}{9}$, there exists a function from the set of random gradient and function values such the probability of error is less than 1/3

Lower bounds on coin tossing (Agarwal et al., 2012, Lemma 3)

• **Lemma**: For $\delta < 1/4$, given α^* uniformly at random in \mathcal{V} , if n outcomes of a random single coin (out of the d) are revealed, then any test will have a probability of error greater than

$$1 - \frac{16n\delta^2 + \log 2}{\frac{d}{2}\log(2/\sqrt{e})}$$

– Proof based on Fano's inequality: If g is a function of Y, and X takes m values, then

$$\mathbb{P}(g(X) \neq Y) \geqslant \frac{H(X|Y) - 1}{\log m} = \frac{H(X)}{\log m} - \frac{I(X,Y) + 1}{\log m}$$

Construction of f_i for convex functions

- $f_i^+(\theta) = |\theta(i) + \frac{1}{2}| \text{ and } f_i^-(\theta) = |\theta(i) \frac{1}{2}|$
 - 1-Lipschitz-continuous with respect to the ℓ_2 -norm. With c=B/2, then g_{α} is B-Lipschitz.
 - Calling the oracle reveals a coin
- Lower bound on the discrepancy function
 - each g_{α} is minimized at $\theta_{\alpha} = -\alpha/2$
 - Fact: $\rho(g_{\alpha}, g_{\beta}) = \frac{2c\delta}{d} \Delta_H(\alpha, \beta) \geqslant \frac{c\delta}{2} = \psi(\delta)$
- \bullet Set error/precision $\varepsilon = \frac{c\delta}{18}$ so that $\varepsilon < \psi(\delta)/9$
- Consequence: $\frac{1}{3} \geqslant 1 \frac{16n\delta^2 + \log 2}{\frac{d}{2}\log(2/\sqrt{e})}$, that is, $n \geqslant \operatorname{cst} \times \frac{L^2d^2}{\varepsilon^2}$

Construction of f_i for strongly-convex functions

•
$$f_i^{\pm}(\theta) = \frac{1}{2}\kappa|\theta(i) \pm \frac{1}{2}| + \frac{1-\kappa}{4}(\theta(i) \pm \frac{1}{2})^2$$

- Strongly convex and Lipschitz-continuous
- Same proof technique (more technical details)
- See more details by Agarwal et al. (2012); Raginsky and Rakhlin (2011)

Summary of rates of convergence

- Problem parameters
 - D diameter of the domain
 - B Lipschitz-constant
 - L smoothness constant
 - μ strong convexity constant

,		
	convex	strongly convex
nonsmooth	deterministic: BD/\sqrt{t}	deterministic: $B^2/(t\mu)$
	stochastic: BD/\sqrt{n}	stochastic: $B^2/(n\mu)$
smooth	deterministic: LD^2/t^2	deterministic: $\exp(-t\sqrt{\mu/L})$
quadratic	deterministic: LD^2/t^2	deterministic: $\exp(-t\sqrt{\mu/L})$