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1. Introduction

e Large-scale machine learning and optimization
e Classes of functions (convex, smooth, etc.)
e T[raditional statistical analysis through Rademacher complexity

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex
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Outline - 11

4. Classical stochastic approximation

e Asymptotic analysis
e Robbins-Monro algorithm
e Polyak-Rupert averaging

5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions
e Logistic regression
e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates
e Convex duality
e (Dual) stochastic coordinate descent - Frank-Wolfe
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“Classical” stochastic approximation

e General problem of finding zeros of h : R — R

— From random observations of values of h at certain points
— Main example: minimization of f : R? — R, with h = f’

e Classical algorithm (Robbins and Monro, 1951b)

Hn — ‘9n—1 — Tn [h(en—l) + €n}
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“Classical” stochastic approximation

e General problem of finding zeros of h : R — R

— From random observations of values of h at certain points
— Main example: minimization of f : R? — R, with h = f’

e Classical algorithm (Robbins and Monro, 1951b)

Hn — ‘9n—1 — Tn [h(en—l) + €n}

e Goals (see, e.g., Duflo, 1996)

— Beyond reducing noise by averaging observations

— General sufficient conditions for convergence

— Convergence in quadratic mean vs. convergence almost surely
— Rates of convergences and choice of step-sizes

— Asymptotics - no convexity

161



“Classical” stochastic approximation

e Intuition from recursive mean estimation

— Starting from 0y = 0, getting data z,, € R?
Hn — Hn—l — ’Yn(en—l — xn)

— If v, = 1/n, then 0,, = %22:1 Tk
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“Classical” stochastic approximation

e Intuition from recursive mean estimation

— Starting from 0y = 0, getting data z,, € R?
Hn — Hn—l — ’Yn(en—l — xn)

— If v, = 1/n, then 0,, = %22:1 Tk

e In general: Ex,, = z and thus 0,—x = (1—7,)(0p,_1—2)+Vn(z,—T)

n n

On H(l—% JOo—2)+ > ] =il — =)

k=1 1=1 k=1+1
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“Classical” stochastic approximation

e Expanding the recursion with i.i.d. z,,’s and 0° = E||z,, — z||*:

0, —1r = Hl—’yk )(6p — ) +Z% H (1 —v)(x; — )
k=1 1 =1 k=1+1
B, = J[0 - oo — 22+ 322 T[ (-

1=1 k=141
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“Classical” stochastic approximation

e Expanding the recursion with i.i.d. z,,’s and 0° = E||z,, — z||*:

0, —1r = Hl—’yk )(6p — ) +Z% H (1 —v)(x; — )
k=1 1 =1 k=1+1
B, = J[0 - oo — 22+ 322 T[ (-

i=1  k=i+l
e Requires study of f_kzl(l vi) and 300 2 T (T — )

— If v, = 0o(1), log ], (1 — &) ~ —>_._, Y& should go to —cc
Forgetting initial conditions (even arbitrarily far)

- Zz 1 7Vi Hk z—|—1( Wk)2 ~ ZZL 17V Hk z—l—l( — 27v)

Robustness to noise
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Forgetting of initial conditions

og [[1=m) ~ =D
k=1 k=1

e Examples: | v, = C/n“

—a=1 " 1=log(n) + cst +0O(1/n)
—a>1>" &= ct +0(1/n*1)
—ae(0,1), 37" &= cstxn'"*+0(1)
— Proof using relationship with integrals

e Consequences

— if a > 1, no convergence
— If @ € (0,1), exponential convergence
— if @ = 1, convergence of squared norm in 1/n?¢
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Decomposition of the noise term

e Assume (v,) is decreasing and less than 1; then for any m €

{1,...,n}, we may split the following sum as follows:
Z H (1 =) = Z H (1 — )7 + Z H (1 — )i
k=1:1=k+1 k=1:i1=k+1 k=m-+1i1=k+1
< J] a=)) v +m Z H (1 =)y
i=m-+1 k=1 k=m-+1i=k+1
< exp ( Z%) Z% + Y Z | CEROEE | (EED
1=m-+1 k=m-+1 _fi:k—i—l 1=k i

A
@)
Ls
R
M:
2
N———
Ms
~
_|_
2
3
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Decomposition of the noise term

n n

n

> Il G=vivi<exp = > % | D % +Im

k=11i1=k+1

1=m-+1 k=1

e Require v, to tend to zero (vanishing decaying step-size)

— May not need > ~2 < oo for convergence in quadratic mean

e Examples: | v, = C/n“

and mean estimation, with m = n/2

— No need to consider a > 1

— a € (0,1), exp(—C'n!~*)pmaxil=2a.0} L O(Cn~)

— a = 1, convergence of noise term in O(1/n) but forgetting of
initial condition in O(1/n?%)

— Consequences: need o € (0,1] and C' > 1/2 for a = 1

168



Robbins-Monro algorithm

e General problem of finding zeros of h : R — R

— From random observations of values of h at certain points
— Main example: minimization of f : R? = R, with h = f’

e Classical algorithm (Robbins and Monro, 1951b)

Hn — Hn—l — Tn [h(gn—l) + 5n}

e Goals (see, e.g., Duflo, 1996)

— General sufficient conditions for convergence

— Convergence in quadratic mean vs. convergence almost surely
— Rates of convergences and choice of step-sizes

— Asymptotics - no convexity
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Different types of convergences

e Goal: show that 6,, — 60, or d(6,,,0.) — 0 or f(0,) — f(6,)

— Random quantity 0,, € R tending to zero
e Convergence almost-surely: P(6, — 0) =1
e Convergence in probability: Ve > 0,P(|0,] >¢) — 0

e Convergence in mean r > 1: E|§,|" — 0
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Different types of convergences

e Goal: show that 6,, — 60, or d(6,,,0.) — 0 or f(0,) — f(6,)

— Random quantity 0,, € R tending to zero
e Convergence almost-surely: P(6,, - 0) =1
e Convergence in probability: Ve > 0,P(|0,] >¢) — 0
e Convergence in mean r > 1: E|§,|" — 0

¢ Relationship between convergences

— Almost surely = in probability

— In mean = in probability (Markov's inequality)

— In probability (sufficiently fast) = almost surely (Borel-Cantelli)
— Almost surely + domination = in mean
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Robbins-Monro algorithm

Need for Lyapunov functions (even with no noise)
0, =0,_
e [he Robbins-Monro algorithm cannot converge all the time...

e Lyapunov function V : RY — R with following properties

1 — Yn|[h(On—1) + &n]

— Non-negative values: V > 0
— Continuously-differentiable with L-Lipschitz-continuous gradients

— Control of h: V0, [|h(0)]|* < C(1+ V()

— Gradient condition: V0,

h(0) ' V'(0) = alV'(0)|I°
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Robbins-Monro algorithm
Need for Lyapunov functions (even with no noise)

Hn — ‘9n—1 — Tn [h(en—l) + 5n}
e [he Robbins-Monro algorithm cannot converge all the time...

e Lyapunov function V : RY — R with following properties

— Non-negative values: V > 0
— Continuously-differentiable with L-Lipschitz-continuous gradients

— Control of h: V0, [|h(0)]|* < C(1+ V()
— Gradient condition: V0, | h(8) ' V'(0) = &'||V'(9)])

o If h = f/, then V(0) = f(0) — inf f is the default (but not only)
choice for Lyapunov function: applies also to non-convex functions

— Will require often some additional condition [|[V/(6)]|* > 2uV ()
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Robbins-Monro algorithm
Martingale noise

Hn — ‘9n—1 — Tn [h(en—l) + 5n}

e Assumptions about the noise ¢,

— Typical assumption: ¢, i.i.d. = not needed
sequence of increasing o-fields F,
— Example from machine learning: F,, = o(x1, Y1, Tn, Yn)

— “information up to time n':

— Assume | E(e,|F,-1) =0

surely

and

E[HgnHQ‘fn—l} <o’

almost

e Warning: SGD for machine learning does not correspond to ¢, i.i.d.

e Key property: 6, is F,,-measurable
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Robbins-Monro algorithm
Convergence of the Lyapunov function

e Using regularity (and other properties) of V:

L
V(en) < V(en—l) T V/(Qn—l)T(en — Hn—l) + §||9n — ‘9n—1H2

E|V(0,)|Fn-1]

<

VA

2

L
V(0n1) =V (0n1) T (R(Bn1) + ) + 321 (Bnr) + en

L 2
V(6n1) = 1V (1) Th(On—1) + 2G| + 507
V(0n-1) — O/VnHV/(Hn—l)W +

V(‘gn—l) [1 +

LCy;

LC;

1+ V(0p1)] + "0

L 2
| = a9V (Ban)IP* + S2(C + )
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Robbins-Monro algorithm

Convergence of the expected Lyapunov function
with “curvature”

o If [V/(0)]% = 21V (0) and 7, < 224

V(0n-1)[1— o' uyn] + M2
EV (0n-1)[1 — &’ uvyn| + M~

E|V(6,)]|Fn-1]

<
EV(9,) <

e Need to study non-negative sequence d,, < 0,1 [1 — O/,U/Yn} + M~2
with 6, = EV(6,)

e Sufficient conditions for convergence of the expected Lyapunov
function (with curvature)

- > Yn =400 and vy, = 0
— Special case of v, = C/n”

176



Robbins-Monro algorithm
Convergence of the expected Lyapunov function
with “curvature” - ~, = C/n”

Need to study non-negative sequence 0,, < 0,,_1 [1 — o/,zwn} + M~?
with 6, = EV(60,,) (NB: forgetting constraint on ~,, - see next class)

O < H(l — o' Yk )0 +MZ%2 H (1 — o pryg)
k=1 =1 k=1+1

If @ > 1: no forgetting of initial conditions
If o € (0,1): dpexp(— cst o/ uC x nt=%) +~, M

If « =1 and v, = C/n: Son HC + v, M
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Robbins-Monro algorithm
Almost-sure convergence

e Using regularity of V:

L
V(en) < V(en—l) + V/(Hn—l)—r(en — Hn—l) + EHHn - 9n—1||2

L 2
= V(en—l) o ’ynvl(en—l)—r(h(en—l) + 5n) + %Hh(en—l) + 5n||2

, T L~; > L.,
E|V(0n)|Fn-1] < V(br-1) =V (0n-1) h(On—1) + 2RO + =20

LCH?
< V(0n-1) = 0l V' ()| + =52

LC, Ly,
| =l V' (61 * + 5(C + 07)

2
14+ V(0h-1)] + %02

— V(en—l) [1 +
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Robbins and Siegmund (1985)

e Assumptions

— Measurability: Let V,,, 8., Xn, nn four F,-adapted real sequences
— Non-negativity: V,,, Bn, Xn, Nn NON-negative

— Summability: > 3, <ooand > x, < o0

— Inequality: ]E[Vn“rn—l} < Vn—l(1 + Bn—l) T Xn—1— Nn—1

e Theorem: (V) converges almost surely to a random variable V
and ) n, is finite almost surely

e Proof

e Consequence for stochastic approximation (if [|[V/(6)]|* > 2uV (0)):
V(0,) and ||V'(6,)||? converges almost surely to zero
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Robbins and Siegmund (1985) - Proof sketch

e Inequality: E|V,|Fn—1] < Voo1(1+ Ba1) + Xn—1 — -1

e Define a,, = [][;_,(1 + Bx) a converging sequence, V! = a,_1Vp,
Xf/n — Op—1Xn and 77; = p—1Mn SO that:

E([ValFno1] < Vaci 4+ Xno1 — M1

n—1
e Define the super-martingale Y,, = V' — Z(X;c — 1) so that

" k=1
E[Yn‘Fn—l] < Yn—l

e Probabilistic proof using Doob convergence theorem (Duflo, 1996)
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Robbins-Monro analysis - non random errors

e Random unbiased errors: no need for vanishing magnitudes

e Non-random errors: need for vanishing magnitudes

— See Duflo (1996, Theorem 2.111.4)
— See also Schmidt et al. (2011)
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Robbins-Monro analysis - asymptotic
normality (Fabian, 1968)

e Traditional step-size v = C/n (and proof sketch for differential A of
h at unique 8, symmetric)
‘9n — ‘gn—l — Vnh(en—l) — Tnén
~ Op—1— Vn [h/(9*>(9n—1 - 9*)} — Yn€n T %10(”9% - 9*”2)
~ Hn—l — /VnA(en—l - 0*) — Tnén

3

S
3
|
N
Q

(I =mA)--- (I =71A) (0o — 0:) — > (I —mA) - (I — Yes14)VkEk

S
3
|
N
Q

exp | — (In+--+7)A[ (6o —0.) — > exp| — (yn+ -+ Vrt1) A Yrer

Q

exp | — CAlogn|(6y — 6.) — Z exp | — C(logn — log k) A] %5;3

e Asymptotic normality by averaging random variables
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Robbins-Monro analysis - asymptotic
normality (Fabian, 1968)

e Assuming A, (6 — 0.)(0g — 0,)" and E(ere; ) = ¥ commute

& C

exp [ — CAlog n] (Bp — 0,) — Z exp [ — C(logn — log k)A} 7 Ck

Q

Q

Q

k=1

exp [ — 2CAlogn] (0o — 0.)(0p — 0.) "

n 02
+ Z exp | — 2C(logn — log k) A] ﬁE(%%T)
k=1

TL_2CA(90 . 9*)(90 . 9*)—|— 4+ n—QCA Z CQkQCA—QE
k=1

2CA—-1

—2CA[n T —2CA~2 T
n (0p — 0.)(0p — 0s) " +n C 2CA—12
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Robbins-Monro analysis - asymptotic
normality (Fabian, 1968)

1 1
B g \T A —2CA7n CaNT Lo

e Step-size v = C'/n (note that this only a sketch of proof)

— Need 2C' A\ in(A) > 1 for convergence, which implies that the first
term depending on initial condition 6, — 6 is negligible
— (' too small = no convergence - C' too large = large variance

e Dependence on the conditioning of the problem

— If Amin(A) is small, then C' is large

— “Choosing” A proportional to identity for optimal behavior (by
premultiplying A by a conditioning matrix that make A close to a
constant times identity
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Polyak-Ruppert averaging

e Problems with Robbins-Monro algorithm
— Choice of step-sizes in Robbins-Monro algorithm

— Dependence on the unknown conditioning of the problem

e Simple but impactful idea (Polyak and Juditsky, 1992; Ruppert,
1988)

_ 1 —
— Consider the averaged iterate | 6,, = — Z 0,
e

— NB: “Offline” averaging
— Can be computed recursively as 6, = (1 — 1/n)6,,_1 + <0,
— In practice, may start the averaging “after a while”

e Analysis

— Unique optimum 6,. See details by Polyak and Juditsky (1992)
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Cesaro means

e Assume 6, — 0,, with convergence rate ||0,, — 0.|| < a,,
e Cesaro's theorem: 6, = %2221 6,, converges to 0,

e What about convergence rate ||0,, — 0.]|?
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Cesaro means

e Assume 6,, — 0,, with convergence rate ||6,, — 0.|| < «
e Cesaro's theorem: 6, = %2221 6,, converges to 0,

e What about convergence rate ||0,, — 0.]|?

n

_ 1 1
Hn o 9* < o ‘9 o 9* —
Ion = 0ull < 2164 =6l < ng

— Will depend on rate «,
—If > o, < 00, the rate becomes 1/n independently of o,
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Polyak-Ruppert averaging - Proof sketch - |

e Recursion: 6, =0,,_1 — yn(h(0,_1) + €,) with v, = C/n“

— From before, we know that ||0,, — 0.]|* = O(n~%)

1 . _
h(0,,_ = —10,_1—0,,| — ¢,
( 1) Tn ~ ! i
1 . _
Ay 1 — 0+ 001 — 0% = —[0n_1—0,] — e, with A = 1(0)
Tn - )
1
Albyy —0,) = —[Bu1—0,] — entO(n~®)
lzn:A(ek 1 —0.) = — Z k1 — O] —lié“kJrO(’”f_a)
"= "= 1% "=

—Z 0x—1 — 05| +Normal(0, X /n)+0(n™)
o 1%

S| =
X
||M:
—

s
VN
()
H

—

|
()
I
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Polyak-Ruppert averaging - Proof sketch - |l

e Goal: Bounding 2377, 1[0 1 — 64] given [|0,, — 0.]]> = O(n™)

e Abel's summation formula: We have, summing by parts,

n—1

1 1 1

—1 —1 —1
_ka (Ok—1—0Ok) = EZ(‘Q%_H*)(VkJﬂ_%g )_E(en_e*)’yfn ""5(90_‘9*)71
k=1 k=1
leading to
- e — 6;) 01—, T R R PR R
k—1 — O) ZH g0l [Vt = H_nH n =07 +n” 0 — Oullm

which is negligible
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Polyak-Ruppert averaging - Proof sketch - ||

e Recursion: 6, =0,,_1 — yn(h(0,_1) + €,) with v, = C/n“

— From before, we know that ||0,, — 0.]|* = O(n~%)

%ZA(ek_l —6,) = Normal(0,%/n)+0(n"%) +O0(n?*1)
k=1

e Consequence: 0, — 0. is asymptotically normal with mean zero and
covariance +A71¥ A1

— Achieves the Cramer-Rao lower bound (see next lecture)
— Independent of step-size (see next lecture)
— Where are the initial conditions? (see next lecture)
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Beyond the classical analysis

e Lack of strong-convexity

— Step-size 7, = 1/n not robust to ill-conditioning
e Robustness of step-sizes

e Explicit forgetting of initial conditions

191



