
2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2005, New Paltz, NY

MAXIMUM LIKELIHOOD APPROACH FOR BLIND AUDIO SOURCE SEPARATION
USING TIME-FREQUENCY GAUSSIAN SOURCE MODELS

Cédric Févotte∗

Signal Processing Lab
Cambridge University Engineering Dept

Cambridge CB2 1PZ, UK
cf269@cam.ac.uk

Jean-François Cardoso

Lab. de Trait. et Comm. de l’Information
CNRS/LTCI & ENST/TSI

46, rue Barrault, 75634 Paris Cedex 13, France
cardoso@tsi.enst.fr

ABSTRACT

In this paper we propose a simple time-frequency Gaussian model
of audio signals that allows for separation of possibly underdeter-
mined and noisy linear instantaneous mixtures. An efficient EM
algorithm is proposed to estimate the mixing matrix, the noise co-
variance and covariances of the source t-f coefficients over a cho-
sen frame/subband tiling of the time-frequency domain. Results
are given on 4 × 4 and 3 × 4 noisy mixtures of audio sources.

1. INTRODUCTION

Blind Source Separation (BSS) consists in estimating n signals
(the sources) from the sole observation of m mixtures of them (the
observations). In this paper we consider linear instantaneous mix-
tures of time series: at each time index, the observations are a
linear combination of the sources at the same time index.

Determined (m = n) noise-free linear instantaneous mixtures
have been widely studied, within the field of Independent Com-
ponent Analysis, assuming independent and identically distributed
(i.i.d) sources and using higher order statistics (see [1, 2], for a sur-
vey), or using correlation (e.g, [3], [4]), non-stationarity (e.g, [5],
[6]), or both (e.g, [7],[8]), leading to second order statistics based
methods. These methods have proved to perform well for noise-
free determined mixtures. They might still be able to estimate the
mixing matrix reasonably well in noisy conditions provided the
noise level is not too unfavorable, but even in this case, they usu-
ally do not provide explicit denoising of the sources estimates. In
this paper, we focus on a more difficult case: noisy, possibly un-
derdetermined mixtures. The underdetermined case in particular is
very challenging because contrary to (over)determined mixtures,
estimating the mixing system is not sufficient for reconstruction of
the sources, since for m < n the mixing matrix is not invertible.
In this context, prior information about the sources plays a key
role for their reconstruction. Similarly, prior information is also
required for optimal source reconstruction from noisy mixtures.

In this paper we propose a simple time-frequency (t−f ) model
of the sources: in the t − f plane, the coefficients of the source
signals are modeled as Gaussian random variables with constant
variances over time frames and frequency subbands. As usual,
the sources are furthermore assumed mutually independent. This
frame/subband Gaussian model allows for easy maximum likeli-
hood estimation of all parameters of interest using the Expectation-
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Maximization EM algorithm. The sources are reconstructed by
Wiener filtering of the observations in each frame/subband block.

The paper is organized as follows: Section 2 introduces nota-
tions and the source models. Our maximum likelihood approach is
presented in Section 3 and results over 4 × 4 and 3 × 4 noise-free
and noisy mixtures of audio sources are presented in Section 4.

2. MODEL

We consider the following standard linear instantaneous model,
∀t = 1, . . . , N :

x(t) = As(t) + n(t) (1)

where x(t) = [x1(t), . . . , xm(t)]T is a vector of size m contain-
ing the observations, s(t) = [s1(t), . . . , sn(t)]T is a vector of
size n containing the sources and n(t) = [n1(t), . . . , nm(t)]T

is a vector of size m containing additive noise. Variables with-
out time index t denote whole sequences of samples, e.g, x =
[x(1), . . . ,x(N)] and x1 = [x1(1), . . . , x1(N)].

The aim of the following work is to estimate the sources s and
the mixing matrix A up to the standard BSS indeterminacies on
gain and order, that is, compute ŝ and Â such that

Â = ADP (2)
ŝ = P

T
D

−1
s (3)

where D is a diagonal matrix and P is a permutation matrix.

2.1. Time domain / Transform domain

We propose to solve the problem defined by Eq. (1) using a time-
frequency model of the sources. Let x be a real valued sequence
of length N . Let

R
1×N → R

lframe×nframe (4)
x → x̃ (5)

denote a bijective linear time-frequency transform, preferably or-
thonormal, with time resolution lframe.

1
fs

and frequency resolu-
tion 1

lframe
. fs

2
, where fs is the sampling frequency and nframe =

N
lframe

. Such transforms includes the Modulated Lapped Trans-
forms family to which the Modified Discrete Cosine Transform
(MDCT) belongs (see [9] for a survey). In the t − f domain, by
linearity of the t − f transform, model (1) reads:

x̃(q, k) = As̃(q, k) + ñ(q, k) (6)
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Figure 1: Time-frequency model of the sources

with x̃(q, k) = [x̃1(q, k), . . . , x̃m(q, k)]T , for all (q, k) ∈ J1, lframeK×
J1, nframeK and similarly for ñ(q, k) and s̃(q, k).

2.2. Source model

Let [B(1), . . . , B(nblock)] be an arbitrary partition of the frequency
axis J1, lframeK, where each block B(b) corresponds to a frequency
subband.

The statistical model for the source signals is (see Fig. 1):

Model for each source:

1) Each subset of t − f coefficients {s̃i(q, k), q ∈ B(b)} of a
source i in a frequency block B(b) of a frame k is modelled
by a iid Gaussian sequence of variance σ2

i (b, k),

2) The subsets of t − f coefficients of a source i over all the fre-
quency blocks and all the frames are mutually independent.

Model of independent components:

3) The sets of t − f coefficients of the sources are mutually inde-
pendent.

By assumptions 1) and 3), the covariance matrix of the source
coefficients is diagonal: ∀(b, k) ∈ J1, nblockK × J1, nframeK,

Sbk
def
= Cov(s̃(q, k)) = diag

`
σ

2
1(b, k), . . . , σ2

n(b, k)
´

(7)

2.3. Noise model

For simplicity, we model the noise coefficients ñ(q, k) as zero-
mean Gaussian vectors with covariance given by

E{ñ(q, k)ñ(q′, k′)T } = δ(q, q′)δ(k, k
′)J

where J is an arbitrary diagonal matrix. Hence, m parameters are
devoted to model the noise structure. Our method, however, does
not rely heavily on this assumption and could easily be extended
to deal, for instance, with a stationary colored noise model, that
is, E{ñ(q, k)ñ(q′, k′)T } = δ(q, q′)δ(k, k′)g(b)J when q ∈ B(b)

for some function g(b).

2.4. Observation model

Using model (1) and the above assumptions, the covariance matrix
for the transformed data vector x̃(q, k) depends on the block b to
which q belongs:

Rbk
def
= Cov(x̃(q, k)) for q ∈ B

(b)

and is given by
Rbk = ASbk A

T + J (8)

These covariance matrices can be estimated by sample averaging:

bRbk =
1

wb

X

q∈B(b)

x̃(q, k)x̃(q, k)T (9)

where wb denotes the number of data points in the b-th block.

3. METHOD

Our approach to blind separation of noisy mixtures is in two steps.
In a first step, all unknown parameters, collectively denoted by θ:

θ = {A, J, σ
2
i (b, k), i ∈ J1, nK, b ∈ J1, nblockK, k ∈ J1, nframeK}

are estimated by maximizing the likelihood of the model described
in section 2. In second step, the source coefficients in a frame k

at a frequency q belonging to the block B(b) are obtained as the
conditional expectation of s̃(q, k) given the observation x̃(q, k)
and the (estimated) parameters. If true parameters were used, this
technique would yield the best estimates in a least-square sense. It
is easily implemented in our Gaussian framework where it reduces
to linear Wiener filtering:

E{s̃(q, k)|x̃(q, k), θ} = Wbk(θ)x̃(q, k)

where the n × m matrix Wbk(θ) depends on θ according to

Wbk(θ) = (AT
J
−1

A + S
−1
bk )−1

A
T
J
−1

In practice, the source coefficients are obtained by Wbk(θ̂)x̃(q, k)

(where θ̂ is the maximum likelihood estimate of θ, see below) and
the source signals are then reconstructed in the time domain via
inverse transform of the estimated coefficients in each frame.

Maximum likelihood estimation of the unknown parameters
is obtained as follows. The distribution of the t − f coefficients
of the observations for a frame k at a frequency q belonging to the
block B(b) is multivariate Gaussian with zero mean and covariance
matrix Rbk. In the Gaussian model described at section 2.2, the
log-likelihood of the transformed data x̃ is:

log p(x̃|θ) =

nframeX

k=1

nblockX

b=1

X

q∈B(b)

logN (x̃(q, k)|0, Rbk(θ))

Simple computations shows that −2 log p(x̃|θ) = φ(θ)+cst with

φ(θ) =

nframeX

k=1

nblockX

b=1

wq{trace( bRbkRbk(θ)−1)+log detRbk(θ)}

Therefore, the most likely parameters are obtained as θ̂ML =
arg min φ(θ). The important points regarding maximum likeli-
hood estimation in this context are:

• The likelihood (or, equivalently, function φ(θ)) depends on
the data only through the collection {Rbk} of sample co-
variance matrices.

• In the determined, noise-free case (J = 0), criterion φ(θ)
can be understood as a joint diagonalization criterion. A
very efficient algorithm due to Pham [4] can be used to min-
imize it.
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• In the noisy case, possibly underdetermined, a simple Gaus-
sian EM algorithm can be used to minimize φ(θ). The EM
algorithm for likelihood maximization is completely deter-
mined once a set of ‘latent’ or ‘unobserved’ variables are
defined. In our case, these latent variables are taken to be
the source coefficients s̃(q, k). The EM algorithm is de-
rived in [10] in the case when the noise covariance matrix
does not depend on (b, k). It can be extended to more com-
plex noise scenarios, like arbitrary dependence on (b, k) or,
more realistically, a dependence on the frequency band b

only.

4. RESULTS

We present results over mixtures of n = 4 audio sources (speech,
piano, rhythmic guitar, solo guitar). The signals are sampled at
8kHz with N = 65536 (≈ 8s). The time-frequency transform
used is the Modified Discrete Cosine Transform, an overlap/add
transform [9] which has proved to give good sparse approxima-
tions of audio signals, with many coding applications [11, 12]. The
MDCT was used with a sine bell window analysis with lframe =
512, which corresponds to a time resolution of 64ms and a fre-
quency resolution of 7.8Hz. We used a linearly spaced partition
of the frequency axis to model the sources, with equal subband
length lblock = 16 (125Hz), yielding nblock = 32.

The proposed method was applied to 3 mixtures. The first
one is 4 × 4 noise-free mixture, the second mixture is obtained by
adding noise to the first one, and the third mixture is obtained by
discarding one observation of the second one, thus yielding a 3×4
noisy mixture.

All sound samples, including mixtures, original sources and
estimates can be listened to at http://www-sigproc.eng.
cam.ac.uk/˜cf269/waspaa05_1/sound_files.

The separation evaluation criteria used in the following are de-
scribed in [13], but basically, the SDR (Source to Distortion Ra-
tio) provides an overall separation performance criterion, the SIR
(Source to Interferences Ratio) measures the level of interferences
from the other sources in each source estimate, SNR (Source to
Noise Ratio) measures the error due to the additive noise on the
sensors and the SAR (Source to Artifacts Ratio) measures the level
of artifacts in the source estimates. We point out that the perfor-
mance criteria are invariant to a change of basis, so that figures can
be computed either on the time sequences (ŝ compared to s) or the
MDCT coefficients (ˆ̃s compared to s̃).

4.1. Noise-free determined mixture

The determined mixture is obtained by mixing the 4 sources by the
following mixing matrix:

A =

2
64

1 1 1 1
0.8 1.3 −0.9 1
1.2 −0.7 1.1 0.6
0.6 −0.8 0.5 1.2

3
75 (10)

Table 1 shows the SIRs for the source estimates obtained by JADE
[14], BGML [5], and the proposed maximum likelihood approach
(referred to as TFGML). In the noise-free determined case, TFGML
amounts to the joint diagonalization of the set of matrices bRbk

and is, except for the use of the MDCT, identical to [7]. As these
three methods yield source estimates via application of a separat-
ing matrix to the observations, they do not produce artifacts and

ŝ1 ŝ2 ŝ3 ŝ4

TFGML 75.2 88.5 49.5 45.9
BGML 63.0 37.7 39.6 46.3
JADE 35.6 30.6 29.7 31.9

Table 1: Performance criteria in the determined noise-free case.

the SARs are thus infinite. The mixture being noise-free, SNRs are
also infinite. Table 1 illustrates the gain in performance provided
by TFGML. Note however, that, from an audio point of view, no
interference can be heard above 30dB SNRs, so that the 3 methods
perform reasonably well.

The improved SIRs obtained with TFGML are to be linked
with the sparsity of the source t−f coefficients: t−f areas where
one source is “silent” allows for super-efficiency of the criterion
and perfect reconstruction of the corresponding row of A

−1 [5].

4.2. Noisy determined mixture

We now add iid Gaussian noise to the previous mixture, yield-
ing ≈ 18dB input SNR on each observation. Table 2 shows the
separation criteria for the source estimates obtained by JADE and
TFGML (with its EM implementation), as well as oracle results.
The oracle provides upper bounds corresponding to the best results
that can be expected from the chosen model of the sources. Ora-
cle source estimates are obtained by reconstructing the sources via
Wiener filtering of the observations in each frame/subband with
the true mixing matrix, input noise variance, and batch covariances
matrices bSbk computed on the original sources. In Table 2 “Ora-
cle diag” gives upper bounds when the mutual independence of the
source coefficients is enforced, that is when bSbk is constrained to
be diagonal. The figures obtained by both oracles are very simi-
lar, which thus justifies the reliability of the mutual independence
assumption.

When TFGML is initialized with random values of the param-
eter θ, satisfactory convergence is observed after 1000 iterations,
taking approximately 2 minutes on a Mac G4 clocked at 1.25 GHz.
Table 2 shows that TFGML nearly reaches the oracle results and
thus illustrates the accuracy of the EM estimation in the deter-
mined case (and similar results were observed over several runs
of the algorithm with different initializations). As expected, Ta-
ble 2 also shows the benefits of the t−f Gaussian source model in
terms of denoising but also interference rejection of TFMGL with
comparison to JADE.

4.3. Noisy underdetermined mixture

We now consider the difficult case consisting of discarding one
observation of the previous mixture, thus yielding an underdeter-
mined problem. As in previous section, Table 3 shows the sepa-
ration criteria for the source estimates obtained by TFGML with
comparison to the oracle results. TFGML was again initialized
with random values of the parameters and convergence was ob-
served after 3000 iterations. However, in the underdetermined case
the algorithm appears to be more sensitive to initialization, and
convergence happened to be slower on other runs. Preliminary re-
sults did not however indicate local maxima problems in the 3×4,
but this is to be verified on more simulations.

Because the mixture is now underdetermined, the upper bounds
given by the oracles are much lower than in the determined case.
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ŝ1 (speech)
SDR SIR SAR SNR

Oracle 14.2 35.1 15.0 21.8
Oracle diag 13.9 34.7 14.8 21.4

TFGML 12.7 29.1 14.9 17.1
JADE 6.3 18.8 x 6.6

ŝ2 (piano)
SDR SIR SAR SNR

Oracle 20.9 45.7 22.4 26.6
Oracle diag 20.7 45.2 22.2 26.2

TFGML 20.0 37.3 22.8 23.3
JADE 14.9 28.2 x 15.2

ŝ3 (rhythmic guitar)
SDR SIR SAR SNR

Oracle 17.7 40.0 19.3 22.8
Oracle diag 17.5 39.5 19.2 22.4

TFGML 16.7 28.8 20.0 19.9
JADE 11.6 26.2 x 11.7

ŝ4 (solo guitar)
SDR SIR SAR SNR

Oracle 18.8 36.8 21.7 22.1
Oracle diag 18.6 36.3 21.6 21.9

TFGML 17.9 30.7 21.7 20.8
JADE 12.8 29.7 x 12.9

Table 2: Performance criteria in the determined noisy case.

The audio results are however still reasonable. TFGML still pro-
vides good source estimates, though it fails to reach the oracle re-
sults.

5. CONCLUSIONS

We have presented a maximum likelihood approach to blind au-
dio source separation under a simple but powerful time-frequency
Gaussian model of the sources. Even though the model is rather
crude, it still yields accurate source estimates: for determined mix-
tures and also, to some extent, for underdetermined mixtures, the
denoising and interference rejection properties are almost as good
in blind separation as with an oracle.

An important feature of our Gaussian is that its likelihood can
be simply and reasonably quickly maximized by the EM algo-
rithm. This is in contrast to non Gaussian models which may offer
better sound quality but at the cost of much more computationally
intensive optimization techniques [15].

Future work will consider acceleration techniques for maxi-
mizing the likelihood and investigate the influence of the frame/subband
tiling: “wavelet-like” tilings could be used to improve frequency
resolution of the model in low and medium frequency bands (where
audio signals gather most of their energy) while keeping a low
number of parameters to estimate.
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