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Chapter 3

A Sinusoidal Model

3.1 Introduction

he previous chapter, the STFT, is not
propriate for scund modifications.
In this chaptera sinusoidal
ed by the amplitudes,
results from

The analysis/synthesis technique presented in t
a flexible sound representation, and thus, not very ap
However, it is useful as the basis of more suitable representations.
representation based on the STFT is introduced that is characteriz
frequencies, and phases of the component sine Waves. The representation
following the amplitude, frequency, and phase of the most prominent peaks over time in
spectra returned by the STET. From this representation, or a modification
ave for each peak trajectory found. In
identity; that is, the

the series of
of it, a sound is generated by synthesizing 2 sine W
the absence of modifications the process can produce a perceptual
synthesized sound can be made to be perceptually equal to the original one. The analysis

resuits can be modified to obtain new sounds in the synthesis process.

This kind of system can be understood as an instantiation of a tracking phase-vocoder

(Dolson, 1983) in which there are a set of band-pass filters and each filter follows and
extracts a particular energy component of the input sound. The traditional phase-vocoder
(Flanagan, 1966: Portnoff, 1976) is the particular casein which the filters are equally spaced
and non-time-varying. We can also interpret the s nusoidal representation as a simplification
of the output of the STFT, where only the relevant spectral peaks are taken from the set of
spectra returned by the STET. These peaks, each representing a sinusoid, are then groupad

into frequency trajectories.

Sipusoidal representations have been used extensively in music applications (Risset and
Mathews, 1969; Grey, 1975: Moorer, 1973, 1975, 1977, 1978; Strawn, 1980). However
the particular sinusoidal representation discussed in this chapter has only recently been
proposed and used (McAulay and Quatiery, 1984, 1086; Quatiery and McAulay, 1986; Smith
and Serra 1987; Maher 1989). This representation has proved to be more general than the

dal representailons. For the purpose of this thesis its interest is 2s 20
here sounds can be analyzed and transformed

«ill be shown that even though it is more fexible than

previous sinusoi
a.ualysis/transformation/synthesis system, W
in different ways before resynthesis. It
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40 CHAPTER 3. A SINUSOIDAL MODEL

the STFT as a sound modification technique, sinusoidal representations aré pot appropriate
for manipwlating sounds that have noise components. In the next two chapters, alternative
representations that extend this one are presented to include such sounds.

In this chapter, the model which serves as the basis for the sinusoidal representation
is presented first. Then, there is 2 general description of the system, and in the following
coctions the different steps involved in the process are discussed. The chapter ends with a
summary of the system, & presentation of some sound examples, and conclusions.

3.2 The Sinusoidal Model

The sinusoidal model is the basis for the a.nalysis/synthesis system presented in this
chapter. In this model the waveform s(t) is assumed to be the sum of a series of sinusoids,

R
s(t) = Z A (1) cos(8 ()] (3.1)
r=1

where R is the number of sine-wave components, A (1) the instantaneous amplitude and
8.(t) the instantaneous phase. This instantaneous phase is defined by:

=]
2
—

6.(t) = Ltur(r)dr—frf}r((])w‘*_qbr (3.

where w,(t) is the instantaneous radian frequency, 6.(0) the initial phase value, and ¢, the
fixed phase offset, which accommodates the fact that the sine waves ale generally not in

phase.

3.3 General Description of the System

Figure 3.1 shows 2 general block diagram of a system based on the sinusoidal model.
It starts by computing the STFT, in the manner presented in Chapter 2. Then, {rom
the magnitude and phase spectra returned by the STFT, 2 series of peak trajectories are
extracted by a peak detection and a peak continuation algorithm. Each trajectory represeats
. sinusoid characterized by time-varying phase, frequency, and magnitude values. The

synthesis part of the system uses the peak trajectores (o generate sine Waves that are
sdded to create the final synthesized waveform.
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phase
trajectories
_ magnitude peak
spectra delection .
; S magnitude :
: wavelorm N trajectories additive wavelorm
—_— STFT phase - _—
r speclra - peak synlhesis
; continuation |I(€aUency
trajectortes

Figure 3.1: General block diagram of the sinusoidal system.

3.4 Computation of the Magnitude and Phase Spectra

The analysis/synthesis system starts by computing a set of spectra with the STFT.
Since the details of this computation were discussed in the’ previous chapter, only the
distinct aspects affecting the current system are mentioned here.

The sinusoidal system detects the prominent spectral peaks out of the magnitude and
phase spectra of the sound. Thus, conversion of each spectrum from rectangular to polar
coordinates is required. Then, since the system detects the prominent peaks in the magni-
tude spectra, it is important to have the peaks as well resolved as possible. It was shown
in Chapter 2 that zero-padding results in a smoother spectrum, making the peak detection
easier and more accurate. Here, the zero-padding factor should be as large as it is practical.

iy s Bt s
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Another point concerning the STFT is related to the synthesis part of the system. The

" synthesis process is based on an additive synthesis model, not an overlap-add one. This

implies that the restriction imposed for the overlap-add method, that the analysis windows

add to a constant (or close to it), s unnecessary. Now the hop-size of the analysis window,

a parameter that affects the overlap factor, is more flexible than in an overlap-add synthesis
process.
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3.5 Spectra-l' Peak Detection
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¢ LA -

*

Once the set of complex spectra of a sound is computed and converted to polar coordi-
nates, the system extracts the prominent peaks of each spectrum. In this section, the peak
detection algorithm is described.

A peak is defined as a local maximum in the magnitude spectrum |Xi(K)|, where [ is the
frame number. If kg is a bin number in the spectrum, then its value is a maximum when

1X (kg = DI < X (kg)l 2 |X (kg + 1)] (33)

However not all the peaks are equally prominent in the spectrum and it is important to have
control over their selection. This is done by measunag the height of the peaks in relation
to the neighboring valleys, Where the neighboring valleys are the closest local minima on
both sides of the peak. If the detected valleys for X (kg) are X(ky—) and X(ky+), left and
right respectively, then a measure of the peak height, h(kg), 1 determined by

| X (*a)l
(X (& =) + X (k)12

For perceptual purposes it is useful to convert the magnitude into decibels (dB) by

h(ks) (3.4)

X (k) = 20logo | X (K)] (3.3)

where X (k) is the linear magnitude spectra and X (k) is the magnitude spectra in dB. Then,
the peak height is redefined as

) X (k=) + X(kyt)

£ ¥

hlks) & X (ko) - ————e—a——#ﬂl (3.6)
A parameterin the peak detection algorithm, called minimum-peak-height, uses this measure

“+o control the minimum height (in dB) at which 2 peak is detected.

This is more complex because not all peaks of the same height are equally relevant
perceptually, their amplitude and frequency is very important. There are maay factors
which intervene on this issue and it can become an extremely complicated problem. Here,
a very simple method is devised that controls the frequency and magnitude ranges to be
considered in each spectrum. A more elaborate strategy is proposed by Terhardt (Terhardt,
Stoll and Seewann, 19823, 1982b) for the purpose of perceptual analysis, which however, is
not appropriate in an analysis/synthesis system.

The spectral peaks are searched within a frequency-range described by its lower and
upper bounds. If f; and fp are these bounds in Hz, the corresponding frequency bins, ki
and kg, are then obtained by

n o= AN/
ko= AN f (3.
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35. SPECTRAL PEAK DETECTION ' 43

where N is the FFT-size and f, the sampling rate.

By choosing an appropriate range, regions outside the auditory frequency range are
discarded. Practical values for f; and fr are 20Hz and 16KHz respectively.

The selection of a magnitude range is more complicated. First, since the perception of
magnitude is approximately logarithmic, it is important to use a dB scale as calculated in
equation 3.5. For convenience, the maximum value is set to 0dB. Then, the magnitude range
is specified by a number that expresses the Jowest dB magnitude that the peak detection
algorithm will search for. In most situations itis important to have two different ranges, one
relative to the overall sound (genemf-dB—mnge) and another one relative to the maximum
: magnitude of the curreat frame ((ocm'—dB—mnge). For each spectrum the two ranges are
: compared and the widest one is taken. Typical bottom values of the ranges are —70dB for
the overall one and —60dB for the local one. Then, for example, if a peak is at —75dB in
: a spectrum whose local maximum is-30dB below the overall maximum (the peak is 45d13
: down from the local maximum), this peak is detected since it is inside the local range, even
: though is outside the overall range. Thus, in 2 quiet passage softer peaks are detected,

mimicking the auditory system.

i Another attribute of the auditory system is that it does not necessarily perceive two
different {requency components of the same complex tone (e.g., two partials) with the same
physical magnitude as being equally loud. The equal loudness curve across the frequency
range is not fat. Thus, prior to the peak detection, we might want to equalize the magnitude
spectrum according to an equal-loudness criterion. The problem is to find the appropriate

‘L equal-loudness curve to use. Unfortunately, the data of traditional loudness experiments
f are valid only for the comparison of separate tones, whether they are sinusoids (Fletcher
: and Munson, 1933) or complex tones (Zwicker and Scharf, 1963). Here we are dealing with
i components of a complex tone, not independent tones, and there is no conclusive literature
f on this subject. A practical compromise is to design 2 smooth function which approximates
é one of the equal loudness curves from Fletcher and Munson (Fletcher and Munson, 1933).
_} We have chosen the 40dB curve, whose approximation is given by the function”
i Q(z)=z1077 (3.8)
E W%,y
1 where ¢

W §= il z=05+ @r (3.9)

= “A’.é;t,/ﬁ I fs

i and f is the frequency in Hz. This function is then applied to every spectrum, independent
g of the specific magnitude of each compounent frequency. [n Figure 3.2 this function and its
i effect on a spectrum are shown.
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Figure 3.2: Applying an equal-loud
(b) equalized spectrum.

(b) magnitude spectrum of a saxophone sound,
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3.5. SPECTRAL PEAK DETECTION .

3.5.1 Peak interpolation

Due to the sampled nature of the spectra returned by the STFT, each peak-a spectral
bin that is 2 local maximum-is accurate only to within half a sample. A bin (samplein the
frequency spectrur) represents a frequency interval of f,/NHz, where N is the FFT size.
_ As we saw in Chpter 2, zero-padding in the time domain increases the number of DFT bins
per Hz and thus increases the accuracy of the simple peak detection. However, to obtain
: frequency accuracy on the level of 0.1% of the distance from the top of the sinc function to
: its first zero crossing (in the case of a rectangular window), the zero-padding factor required
: is 1000. Since we take at least two periods in the data frame (for a Rectangular window), a
100Hz sinusoid at a sampling rate of 50KHz has a period of 50,000/100 = 500 samples, so
that the FFT size must exceed one million. A more efficient spectral interpolation scheme is
to zero-pad only enough so that quadratic (or other simple) spectral interpolation, using only
bins immediately surrounding the maximum-magnitude bin, suffices to refine the estimate
to 0.1% accuracy.

We have seen that a sinusoid appears as a shifted window transform, which is a sinc-like
function. A robust method for estimating peak frequency of stable sinusoidal components
with very high accuracy fits a window transform to the sampled spectral peaks by cross-
correlating the whole window transform with the entire spectrum and taking an interpolated
: peak location in the cross—corre}at’iaﬁ function as the frequency estimate. This method offers
: much greater immunity to noise and to interference from other signal components. But such
a method is computationally very expensive and not appropriate for peaks which do not
correspond to stable sinusoidal components. For the current system 3 practical solution is
to use a parabolic interpolator which fits a parabola through the highest three samples of
a peak to estimate the true peak location and height (Smith and Serra, 1987), as shown in

g 3.3,

To describe the parabolic interpolation strategy, let us define a coordinate system cen-
tered at (kg,0), where kg is the bin pumber of a spectral magnitude maximum (Fig. 3.3).
We desire a general parabola of the form

iy ndw ik b e b AR e e

y(z) £ a(z - p)* +, . (3.10)

where p is the center of the parabola, @ is a measure of the concavity, and b is the offset.
In the current problem we set y(=1) = &, y(0) = B, and y(1) =7, where «, 3, and v are
the values of the three highest samples,

a £ 20logy | X (ks — D
2 99 logq | X (k3)l
~ 2 20logo | X (ks + 1)l (Rl

-
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It has been found empirically that the frequencies

when dB magnitude is used rather than linear magnitude.

Solving for the parabola peak location p, we get

1 a-7
P=2a-20+7

then the estimate of the true peak location (in bins) is

.
k" =kpt+pi

and the peak frequency in Hz is f,k*/N. Using p, the
then

Wp) = B~ g(a =1

In the system, the magnitude spectrum is used o
separately for the real and imaginary parts of the co
valued peak estimate (magnitude and phase). The re
is a triad of the form T_A‘u},p) for every peak, where
peak, & the radian frequency, and ¢ the phase.

The success of the parabolic interpolation depends

5 3

47

tend to be about twice.as Q:u'rate :

T

N (3.12)

i (3.13)

peak height (magnitude) estimate is

p (3.14)

nly to find p, but y(p) is computed
mplex spectrum to yield a complex-
sult of the peak detection algorithm
A is the estimated amplitude of the

on the analysis window used. Among

all the windows the Gaussian is, in theory, particularly suited for parabolic interpolation.

This window, which is of the form
w(z) = .‘.'_(1"’IJIZ
transforms to a Gaussian window (Harris, 1978), and

Infw(z)] = —%zﬁ

(3.15)

its log is just a parabola,

(3.16)

Thus, parabolic interpolation in the dB spectrum is perfect for the Gaussian window. How-

ever, this window does not terminate and in practice

it is truncated, discarding the tails.

Then, the perfect interpolation is lost in part. A possible compromise is to taper the ends

of the window smoothly, with, for example, 2 Kaiser
charactenstics.

window, thus preserving some of the

It is important to normalize the amplitude values returned by the peak detection in
such a way that they correspond to the actual sinusoidal amplitudes. Then the synthesis
generates sinusoids which reproduce the amplitudes of the original sound. The amplitude
of the spectral peak is dependent on the analysis window used. In order to normalize it the

measured amplitude is multiplied by a scale factor,

2
o R e

W (0)

(3.17)
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where W(0) is the value of the window transform at time 0, which can be calculated in the g;'i
time domain by )fg
Mol 78
W(0) = z w(m) (3.18)
m=0

where w(n) is the time domain window and M is the window-length.

Figure 3.4 shows the result of the peak detection algorithm on a magnitude and 2 phase
spectrum.

SRR R B

3.6 Spectral Peak Continuation

The peak detection process returns the estimated magnitude, frequency, and phase of
the prominent peaksin a given frame sorted by frequency. The next step is to assign these
peaks to frequency trajectories using the peak continuation algorithm. If the number of
spectral peaks were constant with slowly changing amplitudes and frequencies, this task
would be straightforward. However, this is oot often the case.

Sl e ] 4 b e AN E S

syn ot
R

There are many possibilities for such a process. Here, we present a simple and general
method which is adequate for the analysis/synthesis system of this chapter. This algorithm
is used by McAulay and Quatiery in their sinusoidal representation (McAulay and Quatiery,
1986). A more complex algorithm is developed in Chapter 4 for a different type of system.

pady ety A b P

To describe the peak continuation process let us assume that the frequency trajectories
are initialized at frame 1 and that we are currently at frame n. Suppose that at frame n—1
the frequency values for the p track are fis f2reeoaSoo and that we want to match them to
the r peaks of frame n, with frequencies g1,92,-+dr-

Each trajectory looks for its peak in frame n by finding the one which is closest in
frequency to its current value. The ith trajectory claims frequency g; for which |fi —
g;| is minimum. The change in frequency must be less than a specified maximum ife,
which can be frequency-dependent (e.g., linear, corresponding to a relative frequency change
Jimit). The parameter controlling this valueis called mazimum-peak-deviation. The possible
situations are as follows:

et D0 et Gy A SIS Sy T

1. If a match is found inside the mazimum-pesk-deviation, the trajectory is continued
(unless thereis a conflict to resolve, as described below).

9. If no match is made, it is assumed that the trajectory with frequency f; must be
“yilled” entering frame n, aad fi is matched to itself with zero magnitude. Since the
track amplitudes are linearly ramped from one frame to the next, the terminating
trajectory ramps to zero over the duration of one hop size.
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Figure 3.4: Peak detection on a spectrum of 2 piano attack sound: (2) magnitude spec-

trum, (b) phase spectrum.
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Figure 3.5: Tlustration of the peak continuation process.

3. If a trajectory finds a match that has already been claimed by another one, we give
the peak to the trajectory which is closest in frequency, and the “loser” looks for
another match. If the current trajectory loses the conflict, it simply picks the best
available non-conflicting peak which is inside the allowable deviation. If the current
trajectory wins the conflict, it calls the assignment procedure recursively on behalf
of the dislodged trajectory. When the dislodged trajectory finds the same peak and
wants to claim it, it sees that there is a conflict which it loses and will move on. This
process is repeated for each trajectory, solving conflicts recursively, until all existing
tracks are matched or “killed.”

R A

O e o ] WH'f"ﬂFHMY‘W'ﬂ'\&!h‘

After each trajectory has extended itself forward in time, OT turned off, the peaks of
frame n which have not been used are considered to be new trajectories and a new trajectory
is “born” for each one of them up to the maximum pumber of tracks specified. The new
trajectories are started at frame n —1 with zero magnitude, and ramped to the correct
amplitude at the current frame n. A few frames of the peak-matching process aI¢ illustrated
by Fig. 3.5.
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3.7 Sinusoidal Synthesis

The peak continuation algorithm returns the values of the prominent peaks organized
into frequency trajectories. Each peakis a triad (A!,o], @) where [ is the frame number
and 7 the track number to which it belongs.

The synthesis process takes these trajectories, or their modification, and computes one
frame of the synthesized sound s(n) by

R! '
3"(m)zz,ﬂcos[mﬂ)i+¢i], m=012,...,5—-1

r=1

(3.19)

where R' is the number of trajectories present at frame ( and S is the length of the synthesis
frame.! The final sound s(n) results from the juxtaposition of all the synthesis frame (i.e.,
there is no overlap). To-avoid “clicks” at the frame boundaries, the parameters (AL @l 3)

are smoothly interpolated from frame to frame.

Let (figd” ,nbg_”.t,i‘yull) and (/i"r,uli,n,:':':.) denote the sets of parameters at frames [ — 1
and [ for the rth frequency trajectory (we will simplify the notation by omitting the subscript
r). These parameters are taken to represent the state of the signal at time 0 (the left
endpoint) of the frame.

The instantaneous amplitude A(m) is easily obtained by linear interpolation,

i i1
(A -4

A(m) = A=t 4+ 2=

(3.20)
where m =0,1,...,5 — 1 is the time sample into the [th frame.

Frequency and phase values are tied together (frequency is the phase derivative), and
both control the instantaneous phase §(m), defined as

§(m) = md + ¢ (3.21)
Given that four variables affect the instantaneous phase: oU=1 ) =1 g, and &,

we need three degrees of freedom for its control, but linear interpolation gives only one.
Therefore, we need a cubic polynomial as an interpolation function,

§(m) = ( +xm + nm? +um’ (3.22)

LA synthesis frame is § samples loag and does nat correspond Lo an analysis frame. Without time scaling
the synthesis frame [ goes {rom the middle of the analysis frame { — 1 to the middle of the analysis frame [,
i.e., corresponds to the analysis hop size.

]
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It is unnecessary to go into the details of solving this equation since they are described
by McAulay and Quatierl (McAulay and Quatieri, 1986). The result is

f(m) = oD + o Vm + pm? 4+ om® (3.29)

where 1 and ¢ are calculated using the end conditions at the frame boundaries,

3
n = '“53;:(‘;’: __(;of—!. _Qfﬁls_i_sz)_}S_(Qf_u}f—l)
2 1
L o= *—5'5(&—95{_1-‘£F15+'2?FM)+-S—?'(¢DI*‘:“{_I) (3.24)

This gives a set of interpolating functions depending on the value of M, among which we
select the maximally <mooth function. This is done by choosing M to be the integer closest

to £, where = is
1

Finally, the synthesis equation for frame | becomes

z

[({raf—l i L:J[_l £ - t.;)[) 1 _‘g_(b’_}f _ (:J!_I )] (325)

L @
slm) =Y Ar(m) cos[d (m)) (3.26)

r=1

which goes smoothly from frame to frame with each sinusoid accouuﬂting for both the rapid
phase changes (frequency) and the slowly varying phase changes (Fig:3.6).
N
{;. i’sk‘l

3.8 Represantation Modifications l -
S T i T

The possibilities that this analysis/synthesis system offers for sound transformations
have a number of musical applications. Quatier and McAulay (Quétie_ri and McAulay,
1986) indicate some useful modifications for speech applications and Smith and Serra (Smith
and Serra, 1987) discuss more musical applications. All the modifications are obtained by
scaling and/or resampling the amplitude and the frequency trajectories.

Time-scale modifications are accomplished by resampling the amplitude, frequency, and
phase trajectories. This is done by changing the synthesis frame-size, slowing down oOT
speeding up the sound while maintaining pitch and formant structure. A time-varying
frame-size gives a time-varying modification. However, due to the sinusoidal nature of the
representation, 2 considerable time stretchina “poisy” partof a sound, causes the individual
cine waves to be heard and the noise-like quality is lost.

Frequency transformations, with or without time scaling, are also possible. A simple ane
s to scale the fraquencies to alter pitch and formant structure together. A more powerful
class of spectral modifications comes about by decoupling the sinusoidal frequencies (which
convey pitch and inharmonicity information) from the spectral envelope (which conveys
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Figure 3.6: Example of the frame to frame interpolation used in the synthesis process. A,
f, and p are the amplitude frequency and phase values respectively.
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formant structure soimportant to speech perception and timbre). By measuring the formant
envelope of a harmonic spectrum (e.g., by drawing straight lines or splines across the tops

of the sinusoidal peaks in the spectrum and then smoothing), modifications are introduced
which alter only the pitch or only the formants.

3.9 Magnitude-Only Analysis/Synthesis

A traditional principle of sound perception is that the ear is mainly sensitive to the short-
time spectral magnitude and not to the phase, provided phase continuity is maintained.
Our experience has been that this depends on the sound and application. If the phase
information is discarded, the analysis, modification, and synthesis processes are simplified
enormously. Thus, it is better to use the maguitude-only option of the system whenever

auditory considerations permit.

In the peak-detection process, We calculate the magnitude and phase of each peak by
using the complex spectrum. Once we decide to discard the phase information, there is
no need for complex spectra, and the magnitude of the peak is calculated by doing the
parabolic interpolation directly on the log magnitude spectrum.

The synthesis also becomes easier; there is no need for a cubic function to interpolate
the instantaneous phase. The phase becomes 2 function of the instantaneous frequency, and
we only require phase continuity at the frame boundaries. Therefore, the frequency, like
the amplitude, can be linearly interpolated from frame to frame. Without phase matching
the synthesized waveform looks very different from the original (Fig. 3.7), but for many
applications the perceived sound quality is the same.

3.10 Summary of the Technique

To summarize the technique presented in this chapter let us enumerate the main steps
that are carried out. Figure 3.8 shows a block diagram. !

1. Perform a STET with spedific values for window-type, window-length, FFT-size, and
hop-size,
N-1 )
Xi(k) 2 S w(n)a(n + e, E=0 L2 (3.27)
n=0
where w(n) is the analysis window, | the frame number, and H the hop-size. The
result is a series of complex spectra.
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Figure 3.7: Sinusoidal synthesis example: (a) original cello sound, (b) synthesis using
phase information, (<) synthesis without phase information.
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Figure 3.8: Block diagram of the sinusoidal system.
2. Convert to polar coordinates,

w

:—4

Ai(k)
Oi(k)

| Xi()|
LXi(k) (radians) (3.28)

1o

Convert each magnitude spectrum to dB magnitude,

- Xy(k) = 20log;o Ai(k) (3.29)

. Find prominent spectral peaks by using the peak detection algorithm, given the

minimum-peak-height in dB, and the frequency and amplitude ranges.

Perform a parabolic interpolation to refine the peak location (frequency), the peak
height in the magnitude spectra (amplitude), and the phase value. This returns
amplitude, frequency, and phase estimates of the form (A,&, ).

Assign each peak to a frequency trajectory by matching the peaks of the previous
frame with the current one. These trajectories are “born,” or “killed” at any {rame
by ramping the amplitude from or toward 0.

Apply any desired modification to the analysis parameters before resynthesis.
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8. Generate a sine wave for each frequency trajectory, and sum them all,

: R!
si(m) = 3 AL(m)cos(f;(m)] (3.30)

r=1

The instantaneous araplitude, and phase for each sine wave are calculated by interpo-
lating the values from frame o frame. The length of the synthesis frame is equal to
the hop size A (unless time expansion or compression is desired), which is typically
come fraction of the window length M.

3.11 Examples

The sinusoidal analysis/synthesis system is more flexible than the STFT. The follow.ng
two examples show some of the possibilities of the sinusoidal representation, first on 2
complex musical excerpt and then on a more simple one.

3.11.1 Sound example 2

Excerpt from “El Amor Brujo” by Manuel de Falla. (sampling-rate = 34000, length
= 6.8 sec.)

Analysis parameters: window-type = Kaiser (8 = 2), window-length = 1601 samples
(.047 sec.), FFT-size = 2048 samples, hop-size = 400 samples (.012 sec.), local-d B-range
= 75dB, general-dB-range = 85dB, minimum-peak-height = .3dB, frequency-range = 30Hz-
16K Hz, mazimum-peak-deviation = 80Hz, number-trajectories = 230.

1. original sound
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2. synthesis with phase

3. synthesis without phase

4. synthesis with time expansion by factor of 1.68

5. synthesis with {requency transposition by factor of 1.4

6. synthesis with {requency transposition by factor of .3
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The synthesis has some modulation which is the result of not tracking enough peaks
(only 250). For a higher quality version many more trajectories are required.

The difference between the synthesis with phase and the one without phase is minimal.
It is more noticeable with sounds with a prominent noise component.

The sound transformations presented are quite successful, however bigger stretches or
more pronounced frequency transpositions result in noticeable problems. The most common
one is that the component sine waves do not fuse together.

311.2 Sound example 3

Guitar passage. (sampling-rate = 34000, length = 7.14 sec.)

Analysis parameters: window-type = Kaiser B = 2.8), window-length = 801 samples
(.024 sec.), FFT-size = 2048 samples, hop-size = 200 samples (.0059 sec.), local-dB-range
= 704 B, general-dB-range = 75dB, minimum-peak-height = 5dB, frequency-range = 30Hz-
16K Hz, mazimum-peak-deviation = 80Hz, number-trajectories = 150.

1. original sound’
9. synthesis with phase tracking
3. synthesis without phase tracking

4. synthesis with time expansion by a factor of 1.45

Due to the simplicity of the sound, compared with the previous example, the synthesis
is successful with only 130 sinusoids. However the attacks of the guitar sound are very
sensitive to transformation and very. easily the noise component present in it acquires &
tonal quality. '

3.12 Conclusions

In this chapter, an analysis/synthesis system based on a sinusoidal model has been
presented. The resulting representation is characterized by the amplitudes, frequencies, and
phases of the component sine waves. This system is more flexible than the one presented
in Chapter 2 and 2 wider variety of sound transformations can be performed. However
it is still not ideal, espedally for sounds with noise components. In the next chapter, &
modification to the sinusoidal system is made in order to accommodate noise.
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