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ABSTRACT

This paper introduces a constrained source/filter model for semi-
supervised speech separation based on non-negative matrix factor-
ization (NMF). The objective is to inform NMF with prior knowl-
edge about speech, providing a physically meaningful speech sep-
aration. To do so, a source/filter model (indicated as Instanta-
neous Mixture Model or IMM) is integrated in the NMF. Further-
more, constraints are added to the IMM-NMEF, in order to control
the NMF behaviour during separation, and to enforce its physi-
cal meaning. In particular, a speech specific constraint - based on
the source/filter coherence of speech - and a method for the auto-
matic adaptation of constraints’ weights during separation are pre-
sented. Also, the proposed source/filter model is semi-supervised:
during training, one filter basis is estimated for each phoneme of a
speaker; during separation, the estimated filter bases are then used in
the constrained source/filter model. An experimental evaluation for
speech separation was conducted on the TIMIT speakers database
mixed with various environmental background noises from the QUT-
NOISE database. This evaluation showed that the use of adap-
tive constraints increases the performance of the source/filter model
for speaker-dependent speech separation, and compares favorably to
fully-supervised speech separation.

Index Terms: speech separation, non-negative matrix factorization,
source/filter model, constraints.

1. INTRODUCTION

Speech separation consists in the separation of a speech signal from
a background environment, referred as noise, which is defined as
everything but the speaker of interest (i.e., environmental sounds
such as background non-speech sounds or background speech).
Speech separation is essential for further speech processing in real
speech technologies, such as speech recognition, speaker recogni-
tion, speaker localization, and audio multi-media technologies for
speech extraction and remixing. Audio source separation methods
have been recently introduced for speech separation, in which the
audio signal is described as the sum of two sources: a speech signal
and a background noise signal. In particular, the non-negative
matrix factorization (NMF) of an audio signal is extremely popular
for source separation, and is widely used in recent times for speech
separation [1, 2, 3, 4, 5, 6]. In the original formulation, the NMF
decomposition of an audio signal is strictly unsupervised [7]. In the
last decade, audio and speech separation has massively converged to
informed audio source separation, in order to provide prior knowl-
edge about the audio sources to be separated [8]. In the context
of speech separation, two main trends co-exist: semi-supervised
speech separation uses prior knowledge about speech only [5, 6],
and supervised speech separation adds prior knowledge about the

background environment [3, 9]. This latter case remains extremely
limited when the background environment is unknown, which is the
case of most real-world applications.

In this context, semi-supervised speech separation is the most
common approach. The main advantage of semi-supervised speech
separations is that robust prior knowledge about speech can be
exploited, while the integration of prior knowledge about the back-
ground environment is clearly not realistic, regarding the extreme
variability of the background environment. For semi-supervised
speech separation, the experience into speech processing and speech
recognition can be exploited: a source/filter model can be used
to inform NMF-based separation [1, 2]. Also, a universal speech
model (USM) has been proposed for speaker-independent speech
separation [3], in which a speaker can be represented by a combina-
tion of the most similar speakers bases. A real-time implementation
of the USM has been recently proposed for on-line background
noise estimation [4]. Furthermore, hidden Markov models (HMM)
has been added to NMF speech separation, in order to construct
a language model [5] and to use prior text information for speech
separation [6]. Finally, deep neural networks (DNN) has been
successfully introduced for speech separation [10], and deep-NMF
[11] has been proposed in order to integrate the advantages of DNN
within the NMF framework.

In this paper, we propose a constrained source/filter model for
semi-supervised and physically-motivated NMF-based speech sepa-
ration. To do so, a source/filter NMF model is described in Section
2. Then, constraints are added to this model in Section 3, in which
a specific speech constraint and a method for the automatic adapta-
tion of the constraints’ weights during separation are proposed. An
experiment is conducted in Section 4 in order to explore the use of
constraints within the source/filter model, with comparison to state-
of-the-art speech separation methods.

2. NMF AND SOURCE/FILTER MODEL

2.1. NMF principle

Let V' denotes our observation matrix, with only non-negative co-
efficients (for audio, usually the STFT magnitude of the observed
mixture signal); the NMF consists of finding the best approximation
given a chosen cost C:

V~~WH (@)
where W and H also contains only non-negative coefficients. W
represents a dictionary matrix and H is the activation matrix (it can
be seen as the gains of the projection of V' onto the space defined by
W). Afterwards, source separation can be made using Wiener filters
[12].



Fig. 1. Illustration of the source/filter decomposition for the IMM-NMEF described in (4).

In audio, usual costs are Kullback-Leiber (KL) and Itakura-Saito
(IS) divergence [13], which are both limit cases of the S-divergence
(respectively for 5 = 1 and 8 = 0). In this paper, we use the IS
divergence for its scale-invariance, which is an interesting property
for audio signals:
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with drs(zly) = 7 —log 7 — 1. Moreover, we use the artificial
noise floor introduced in [14] in order to control the noise robustness
of the IS-NMF.

The solution of the NMF problem, using S-divergence, can be
efficiently obtained by applying an iterative algorithm, derived from
a gradient step descent technique [13]. The ¢-th iteration is based on
the application, on both W and H, of the following multiplicative
rule:
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where © represents either W or H, ng andV _ ,, are the pos-
itive and negative parts of the gradient of the cost 8 with respect to
©9, ® denotes the Hadamard product, and the division is point-

wise.

2.2. A source/filter-NMF for speech

In order to provide an explicit representation of speech, we use the
source/filter model for NMF proposed in [2], in which a training
step is added to estimate the vocal filters. The NMF source/filter
decomposition of the STFT magnitude VS of a speech signal can be
expressed as:

VS = Ve ® Ve
(WexHeX) ® (W&Hé) (4)
N—— —_—

excitation
filter

where V' and V'? are respectively the magnitude STFT of the
excitation part and the filter part, W and H*®* are the standard
NMF decomposition for the speech excitations V' (where W
is a fixed dictionary, including periodic and noisy basis), and we
and H? are the standard NMF decomposition for the speech
fillers V'®. In order to ensure the smoothness of the speech filters
ﬁ\/"p, we further decompose W? as the product WPU?®, where
W? is a fixed dictionary of smooth “atomic” filters (here, Hann
windows) and U? is the coefficient matrix linearly combining those
elementary filters to form a speech filter. Figure 1 illustrates the
architecture of the source/filter model for NMFE.

For speech separation, the observed signal V' is assumed to be a
mixture of a speech signal V° and a background noise signal V'~
V' can be approximated by V' as follows:

Vev= (WH) ® (Wq’ﬁ“l’H‘l’) +WVHY  (5)

in which the background noise signal V' is expressed using a stan-
dard NMF decomposition. Following the denomination used in [2],
we will refer to this mixture decomposition as the “Instantaneous
Mixture Model for NMF”’ (IMM-NMF).

2.3. Semi-supervision of the IMM-NMF

In the IMM-NMEF, the speech filters W?ofa speaker are explicitly
represented by the coefficients matrix U?®. In [2], this matrix was
directly estimated from the observed signal V/, thus fully unsuper-
vised. Here, we propose to estimate the speech filters from clean
speech signals of a speaker. To do so, the speech filter matrice V'¥
is first estimated by a spectral envelope estimation algorithm [15],
which is then approximated by the NMF filter decomposition:

v~ W UH?” (6)
Furthermore, we used phonetic information in order to train

phonemes separately and to have one basis for each speech filter
(i.e. each phoneme).



3. SOURCE/FILTER MODEL UNDER CONSTRAINTS

3.1. Constrained-NMF

The main objective of this work is to inform NMF speech separa-
tion with a physical model of speech. For this purpose, we use con-
straints into the NMF to penalize solutions not respecting the speech
model. Accordingly, the cost C is modified with the addition of the
constraint penalty cost P:

C=Drs (V\ff) + uP (7)

with p a positive value determining the weight of the constraint. The
new multiplicative update for the ¢-th iteration will be of the form :
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for any non-fixed matrix ® in the model. In our method, we use
several constraints ans sum their values in order to obtain the total
penalty cost P.

3.2. State-of-the-art constraints

We used three constraints from the literature :

* the sparsity constraint described in [16] as the Column-
Normalized ¢1-norm, in order to promote the activation, at any
given time, of a single filter basis and a single excitation basis.

¢ the normalized decorrelation constraint, based on the correlation
measure proposed in [17], in order to penalize simultaneous acti-
vation between bases.

* a smoothness constraint proposed in [18] to prevent filter activa-
tion to jump from one phoneme to another between frames.

3.3. Source/filter coherence constraint

The first contribution of this paper consists in the elaboration of
a speech-specific source/filter coherence constraint for the IMM-
NME. This constraint is based on the fact that all phonemes corre-
sponds to a match between one excitation one corresponding filter:

* vocal filters corresponding to voiced phoneme will always be used
simultaneously with a periodic excitation;

* vocal filters corresponding to unvoiced phoneme will always be
used with a noisy excitation;

Because the IMM-NMF allows unreal combination leading to audi-
ble artefacts, we propose a source/filter coherence constraint which
aims to avoid unrealistic combinations between excitation and filter
(see Figure 2). This constraint is inspired by the normalized decor-
relation constraint, and is expressed as follow:

|:HexHQ>Ti| [HCXHq)T]
Pe= S it T .
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®

The left term of the sum is a measure of the correlation between
periodic excitation basis and filter basis corresponding to unvoiced
phoneme, normalized by their power; the right term is the same mea-
sure, but between noisy excitation basis and filter basis correspond-
ing to voiced phoneme.

Periodic Noisy

Amplitude (dB)
e
AN
X
x
-—
AN

Voiced (/i/) Unvoiced (/s/)

Frequency (Hz)

Fig. 2. Schematic example of realistic (green check marks) and un-
realistic (red crosses) combinations of speech excitations (top) and
speech filters (bottom).

3.4. Adaptation of constraints weights

One of the main limitations of constrained-NMF is the difficulty for
finding a good constraint weight for speech separation. A small
weight would conduct to a small or null effect of the constraint,
while a strong weight will over-consider the constraint over the re-
construction cost, thus lead to a wrong solution depending on the ini-
tialization (generally random). The second contribution of this paper
consists in adapting the constraint’s weight at each iteration during
speech separation: from small to strong depending on the evolu-
tion of the reconstruction (i.e. the evolution rate of the 5-divergence
value). At the i-th iteration, the constraint’s weight is updated as:

Drs (V|‘7<i*2>) — Dis (VW(H))

1Y = fiman (10)

Dis (V|‘7(i—2))

where (4 is initialized at O for the first two iterations, and after varies
in the interval [0 ftmaz], Where fimaq is a chosen value. The stronger
the S-divergence diminishes, the smaller the constraint; the smaller
it diminishes, the higher the constraint. Figure 3 shows an example
of the effect of this adaptive method on costs evolution.

Without adaptation

With adaptation

25
Iteration number

Fig. 3. Evolution of the reconstruction cost (in green), constraints
cost (in red) and total cost (in blue) with (right graphic) and with-
out (left graphic) the weight adaptation method, in function of the
iteration number.



Algorithms

References Proposed
ASNA [19]  V-IMM [2] #1 #2 #3 #4 #5 #6 #7
L Speech v v
Training Noise v
IMM-NMF v v v v v v v v
Constraints SoA  coherence all SoA  coherence all
Adaptation Without With
_6dB SDR 5.8 44 4.0 4.1 5.0 52 4.1 52 54
PESQ 2.00 1.22 1.91 1.91 1.94 192 191 2.01 2.01
+0dB SDR 10.7 7.8 9.1 9.2 9.0 8.9 9.2 9.8 9.8
PESQ 2.44 1.54 230 230 2.24 223 230 2.34 2.35
+6dB SDR 15.0 9.7 13.0 12.8 11.1 109  13.0 12.8 12.9
PESQ 2.85 1.82 2.62 261 2.46 244 2.62 2.59 2.62
Mean SDR 10.5 7.3 8.7 8.7 8.4 8.3 8.7 9.3 9.4
PESQ 2.43 1.52 228 227 221 220 228 231 2.33

Table 1. Results from the experimental evaluation. SoA refers to the state-of-the-art constraints (decorrelation, sparsity and smoothness),
coherence to the proposed source/filter coherence constraint and adaptation to the adaptive weight method.

4. EXPERIMENT

4.1. Experimental setups

An experiment was conducted to evaluate the performance of the
semi-supervised and constrained source/filter model for speech sep-
aration. The benchmark includes: the semi-supervised source/filter
model, with variants on the use of the constraints (with/without
constraints, state-of-the-art constraints vs. source/filter coherence
constraint, and with/without the constraint adaptation), with com-
parison to state-of-the-art unsupervised V-IMM source/filter model
[2] (originally developed for singing voice / music separation), and
the supervised ASNA algorithm [19] (see Table 1 for details).

The database used for the experiment is a mix of the TIMIT
speech database for clean speech [20] and the QUT-NOISE database
for environmental background noises [21]. We used 20 TIMIT
speakers (10 women and 10 men), with each 10 sentences: 2
sentences, shared among all the speakers, were used for training,
and the 8 remaining sentences, different for all speakers, were
used as the test set for speech separation. We mixed those 160 test
sentences with 4 different background noises from the QUT-NOISE
database (city street, home kitchen, car window, cafe) and white
noise, using 3 signal-to-noise-ratio (SNR) (—6 dB, 0 dB, +6 dB),
resulting in 2,400 mixture signals. For the training, the 2 shared
sentences were used for each speaker for the semi-supervised and
the supervised algorithms, and one 5 s. extract of the background
noise (different of the one used for mixing) was used for the
supervised algorithm. The performance of the speech separation
was measured based on the signal-to-distortion ratio (SDR) [22]
(in dB), and the perceptive evaluation of speech quality (PESQ) [23].

All benchmark speech separation algorithms were based on the
STFT magnitude of the audio signal, using a Hamming window of
64 ms and a hop size of 32 ms. For training, the filterbank dictionary
W was created with 50 Hann windows linearly spaced from 0 to
8000 Hz, and the excitation dictionary W was created with 250
periodic bases (spanning every twentieth of tone between 80 and 350
Hz) and 100 white noise bases. For testing, the maximum number of
iteration of the NMF was set to 100, and we used the IS divergence
with a noise floor of —60dB (see [14] for details). Various constraint
weights (from 10™2 to 10%) and number of background noise bases
(from 5 to 100, used for all algorithms) were tested.

4.2. Results and Discussion

Table 1 summarizes the scores obtained for the benchmark algo-
rithms, optimized for the state-of-the-art algorithms, and sharing the
same optimal setup for all of the proposed algorithms. Firstly, the
semi-supervised source/filter algorithm (# 1) improves the perfor-
mance over a standard unsupervised source/filter, which naturally
confirms the importance of training the filter dictionary for speech
separation. Secondly, the use of constraints in the source/filter model
without adaptation does not improves speech separation (# 1 vs. # 2,
# 3, and # 4) on the one side. On the other side, the use of constraints
with adaptation (# 5, # 6, and # 7) substantially improves speech sep-
aration. This shows the importance of the adaptation during speech
separation, by gradually increasing the importance of the constraints
depending on the convergence of the speech separation. This is es-
pecially true when using all constraints together (# 7). A comparison
of the constraints reveals that the state-of-the-art constraints (decor-
relation, sparsity and smoothness) have a small effect (# 5) whereas
the source/filter coherence constraint provides a strong effect, and
is more efficient for a high SNR (# 6). Finally, the semi-supervised
constrained source/filter algorithm shows encouraging performance,
compared to state-of-the-art algorithms. The semi-supervised algo-
rithm stands in between unsupervised algorithm (V-IMM) and the
supervised algorithm (ASNA). In particular, the semi-supervised
algorithm is close to the supervised algorithm, without any prior
knowledge about the nature the noise environment. This proves the
importance of using prior knowledge on speech for informed speech
separation.

5. CONCLUSION

In this paper, we presented a semi-supervised method for speech sep-
aration, based on a constrained source/filter model for NMF-based
speech separation, with the add of a speech specific constraint, and
the adaptive weighting of constraints during separation. An experi-
mental validation proved the efficiency of the constrains for speech
separation, and beyond indicates the importance of prior knowl-
edge about speech and physically-motivated speech separation. Fur-
ther research will focus on the integration of a source/filter model
for text-informed speech separation [5, 6], and speaker-independent
speech separation (Universal Speech Model [3]), and on the unsu-
pervised estimation of the background noise [4, 14].
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