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Abstract—We present an algorithm for sound analysis and
re-synthesis with local automatic adaptation of time-frequency
resolution. The reconstruction formula we propose is highly
efficient, and gives a good approximation of the original signal
from analyses with different time-varying resolutions within
complementary frequency bands: this is a typical case where
perfect reconstruction cannot in general be achieved with fast
algorithms, which provides an error to be minimized. We provide
a theoretical upper bound for the reconstruction error of our
method, and an example of automatic adaptive analysis and re-
synthesis of a music sound.

Index Terms—automatic adaptivity, Gabor frames, sparsity,
spectral processing.

I. INTRODUCTION

TYPICAL problems of time-frequency signal processing,
and in particular sound processing and computer music,

can be modeled in a formal mathematical framework. Given
a set of atomic functions in a Hilbert space, the related
decomposition operator is called analysis operator, while an
expansion one is the synthesis operator. They are the basic
tools for a complete scheme for the analysis, transformation,
and re-synthesis of a sound, which can be sketched as follows:
(1) a representation is obtained decomposing the sound by

means of a given set of atoms, the result being a set of
analysis coefficients;

(2) the analysis coefficients are interpreted to deduce infor-
mation about the original sound;

(3) the analysis coefficients are modified to transform specific
features of the representation;

(4) a new sound is constructed as an expansion of the
modified coefficients within a certain set of atoms, not
necessarily the same used for the analysis.

The four points of the scheme concern several different
applications: sound visualization processes deal just with the
first one, while feature extraction techniques exploit the first
two; more complicated processes, such as source separation
or vocal transformation, have to handle them all.

Traditional sound analysis methods, based on single sets of
atomic functions like Gabor window or wavelets, offer limited
possibilities concerning the flexibility of their time-frequency
precision. Moreover, fundamental analysis parameters have to
be set a priori, according to the signal characteristics and the
quality of the representation required. Analyses with a non-
optimal resolution lead to a blurring, or sometimes even a
loss of information about the original signal, which affects
every kind of later treatment. This problem concerns a large

part of the technical applications dealing with signals: visual
representation, feature extraction and processing among other;
the community working on these issues is a very broad one,
including telecommunications, sound and image processing as
well as applied mathematics and physics. Our main interest is
focused on sounds, and our questions principally rise from the
musical and voice domains. The mainstream industrial fields
more strictly related to this topic are signal transformation,
music production, speech processing, source separation and
music information retrieval, the latter covering a broad range
of applications from classification, to identification, feature
extraction and information handling about music: many of the
algorithms applied within these processes rely on a given time-
frequency representation of the signal, inheriting its qualities
and drawbacks, and would therefore benefit from adapted
analyses with optimized resolutions.

Our main assumption is that algorithms based on adaptive
representations will help to establish a generalization and sim-
plification for the application of signal processing methods that
today still require expert knowledge. In particular, the need to
provide manual low level configuration is a major limitation
for the use of advanced signal processing methods by large
communities. The possibility to dispose of an automatic time-
frequency resolution drastically limits the parameters to set,
without affecting, and even ameliorating, the treatment quality:
the result is an improvement of the user experience with high-
quality sound processing techniques, like transposition and
time-stretch.

The paper is organized as follows: Section II introduces
some related works, and summarize the contribution of this
article, while Section III gathers some definitions and symbols
used. Then, our first and fundamental objective (see Section
IV) is the formal definition of mathematical models whose
interpretation leads to theoretical and algorithmic methods
for adaptive analysis. The further objective is to make this
adaptation automatic (see Section V): we choose the best local
time-frequency resolution with the optimization of entropy-
based sparsity measures. Rényi entropies (see [1], [2] and [3]
for their properties) are considered, as they constitute a class
of different sparsity measures because of their dependence on
a parameter; a particular concept of sparsity is determined for
each value of the parameter, whose choice can be refined de-
pending on the specific application requirements, keeping the
framework unaltered. Then, spectral sound processing requires
the possibility of reconstructing a signal from its analysis
coefficients: thus we need an efficient way to find an inverse of
the adaptive decomposition operator, together with appropriate



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 2

methods to manage adaptive analyses in order to preserve
and improve the existing sound transformation techniques (see
Section VI). Section VII presents applications and properties
of the algorithms we have realized, and a perceptive test for
the validation of time-adapted sound dilatations is discussed
in Section VIII.

II. RELATED WORK

In time-frequency analysis, adaptivity is the possibility to
conceive representations and operators whose characteristics
can be modeled according to their input. In this work, we
look for methods providing a local variation of the time-
frequency resolution for sound analysis and re-synthesis. For
instance, the classical wavelet transform cannot be considered
adaptive in the sense just mentioned, because the resolution
varies according to a fixed rule. The limits about the fixed
resolution of standard analysis methods have been overcome
following different approaches. We consider in particular the
ones related to Gabor Frame theory, as this is the context
where this work is included; a further main point of view
concerns the direct design of adaptive adapted time-frequency
representation (see [4], [5] and the related bibliographies).

There are three main aspects we consider: first, the adaptiv-
ity as the possibility to deal with different resolutions locally
within a sound; then, a criterium to choose the best local
resolution which provides for the adapted representation; and
finally, the possibility to define a reconstruction method from
the adapted analysis. The concept of adaptivity is closely
related with the one of sparsity: an adaptive analysis must
give a sparse representation of the signal, according to specific
measures to be optimized, the optimal resolution being signal-
and application-dependent. This is a highly prolific approach,
largely exploited in various signal processing applications (see
[6], [7]). The idea of gathering a sparsity measure from infor-
mation measures, and Rényi entropies in particular, is detailed
in [8]. In [9] a local time-frequency adaptive framework is
presented exploiting this concept: automatic local adaptation
and reconstruction are both developed, the latter being realized
through a recursive algorithm whose general convergence is
not investigated.

The definition of multiple Gabor frames, which is compre-
hensively treated in [10], provides Gabor frames with analysis
techniques with multiple resolutions.The nonstationary Gabor
frames (see [11], [12] for their definition and implemen-
tation) are a further development in this sense; they fully
exploit theoretical properties of the analysis and synthesis
operator, and extend the painless case introduced in [13]:
if the analysis respect certain conditions, they provide for
a class of FFT-based algorithms for analysis adaptation, in
the time or frequency dimension separately, together with
perfect reconstruction formulas. The technique developed in
[14] belongs to this same class but presents several nov-
elties in the construction of the Gabor multi-frame, and in
the method for automatic local time-adaptation. In [15] a
time-frequency adaptive spectrogram is defined considering a
sparsity measure called energy smearing, without taking into

account the re-synthesis task. The concept of quilted frame,
recently introduced in [16], is a promising effort to establish
a unified mathematical model for all the various frameworks
cited above.

A. Contributions of this work to the state of the art

We detail here the main contributions of this work, con-
cerning the three aspects of adaptation, automatic choice of
the best resolution, and reconstruction from adapted analyses.
For the first two points, the strategy we adopt is the same
as the one in [9], exploiting new theoretical results that we
have proven in [17], extending the ones in [8]: in particular,
they concern the existence of Rényi entropy measures of
spectrograms in the continuous case, and the convergence of
discrete versions of these measures to their continuous one,
when the sampling grid becomes infinitely dense; we adopt
a particular normalization of the Rényi entropy (see Section
V-A and [17]), which is appropriate for the comparison of the
entropy of discrete finite time-frequency representations with
different dimensions.

Concerning the reconstruction from adapted analyses, in
Section IV we introduce a novel method allowing for an effi-
cient (in the sense of Remark 4.2) FFT-based implementation;
the resolution of the adapted analyses changes depending on
time and frequency, and our method gives an approximation
of the original signal whose reconstruction error is analyzed
by means of tests, and of a theoretical upper bound.

III. NOTATION

We will be working throughout the paper with the Hilbert
space of complex square integrable functions L2(R), with
inner product

〈f, g〉 =

∫
R
f(t)g(t) dt for all f, g ∈ L2(R)

where g denotes the complex conjugate of g. The norm
induced by this inner product is given by ‖f‖22 = 〈f, f〉; given
p > 0 , the Lp-norm (or pseudo-norm if 0 < p < 1) of f is
given by ‖f‖pp =

∫
R |f(t)|p dt.

The support of a function f ∈ L2(R) is the closure of
the set where f is non-zero, supp(f) = {t ∈ R : f(t) 6= 0} .
We say that f is ε-concentrated within an interval T ⊂ R if
the following integral condition over the complementary of T
holds for a sufficiently small ε,(∫

T c

|f(t)|2dt

) 1
2

≤ ε‖f‖2 ,

and we say that T is the essential support of f .
The Fourier transform of f ∈ L2(R) is defined as

f̂(ω) =

∫
R
f(t)e−2πiωt dt

and is also square integrable with ‖f̂‖2 = ‖f‖2. The con-
sideration about the essential support still holds for f̂ , in this
case we say that f̂ is ε-bandlimited within a certain frequency
interval.
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A main tool in our derivations are Gabor frames, which
we review in Section IV, (see [18] for a detailed survey). Two
important operators that play a central role in Gabor theory, are
the translation and modulation operators defined for x, ω ∈ R
as

Txf(t) := f(t− x) , Mωf(t) := e2πiωtf(t) ,

respectively. The composition Mω Txf(t) = e2πiωtf(t − x)
is called a time-frequency shift operator and gives rise to the
short-time Fourier transform. For a fixed window g ∈ L2(R),
the short time Fourier transform (STFT) of f ∈ L2(R) with
respect to g is defined as

Vgf(x, ω) := 〈f,MωTxg〉 .

IV. GABOR THEORY

We resume in this section the basics of Gabor frames theory,
and two generalizations of the stationary case in Subsection
IV-A and IV-B, which are exploited by our algorithm.

A collection G(g, a, b) = {gk,l(t) = Mbk Talg(t) ; k, l ∈ Z}
is a Gabor frame for L2(R) if there exist constants 0 < A ≤
B <∞ such that

A‖f‖2 ≤
∑
k,l∈Z

|〈f, gk,l〉|2 ≤ B‖f‖2

for all f ∈ L2(R). We will indicate such a frame as
stationary, since the window used for time-frequency shifts
does not change and the time-frequency shifts form a lat-
tice Λ = aZ × bZ (see Figure 1). To every collection
G(g, a, b) we associate the analysis operator Cg given by
Cgf = {〈f, gk,l〉 ; k, l ∈ Z}, synthesis operator Dg, where
Dgc =

∑
k,l∈Z ck,lgk,l and c ∈ `2 and the frame operator S

given by Sf = Dg Cgf .
If G(g, a, b) constitutes a frame for L2(R), then there exist

a function g̃ ∈ L2(R), such that every function f ∈ L2(R)
can be represented as

f =
∑
k,l∈Z
〈f, gk,l〉g̃k,l = Dg̃Cgf . (1)

The Gabor system G(g̃, a, b) is the dual frame to G(g, a, b).
Consequently, the window g̃ is referred to as the dual of
g. Generally, there is more than one dual window g̃. The
canonical dual is given by g̃ = S−1g. The spectogram PSgf =
|Vgf |2 is the time-frequency representation associated with
STFT.

We consider windows g that are members of so-called
Feichtinger algebra, denoted by S0 (see [19]). Such win-
dows guarantee that the synthesis and analysis mappings are
bounded and consequently result in stable reconstructions, and
that the dual window is in S0. Formally,

S0 := {f ∈ L2(R) ; ‖Vfϕ‖1 =

∫∫
R2

|Vfϕ(x, ω)|dxdω <∞} ,

where ϕ(t) = e−πt
2

. The norm in S0 is defined as ‖f‖S0
:=

‖Vfϕ‖1. Examples of functions in S0 are the Gaussian, B-
splines of positive order, raised cosine, and any L1(R) function
that is bandlimited or any L2(R) function that is compactly
supported in time with Fourier transform in L1(R). Note, that

Ω

t

b

a

Fig. 1. Time-frequency centers for a stationary Gabor frame G(g, a, b)
with time and frequency steps a and b, respectively.

the rectangular window is not a member of S0 since its Fourier
transform is not in L1(R).

We will be working with Gabor frames whose windows
are supported on some compact interval. The support of g
is denoted by supp(g). Such frames are often used in many
standard applications.

Theorem 4.1: Consider g ∈ L∞(R) with supp(g) ⊂
[−L2 ,

L
2 ]; if a ≤ L, b ≤ 1

L , then G(g, a, b) is a Gabor
frame, and the frame operator S is the following multiplication
operator,

Sf(t) =

(
b−1

∑
l∈Z
|g(t− al)|2

)
f(t) . (2)

The hypotheses of Theorem 4.1 define the painless case,
where the dual window g̃ is easy to calculate by means of
a multiplication of the original one,

g̃(t) = S−1g(t) =
g(t)

b−1
∑
l∈Z |g(t− al)|2

. (3)

Remark 4.2: Formula (1) shows that the atoms needed for
the reconstruction of f are the time-frequency shifts of g̃,
according to the lattice Λ. From the identity (3) which ex-
presses g̃ in the painless case, we have that in these conditions
the whole analysis-reconstruction scheme can be implemented
with fast FFT-based methods: the input for transform to take
is a short one, as both the analysis and reconstruction steps
are limited to the short-length support of the window g.
Throughout the work, we will indicate as fast or efficient those
algorithms whose computational order is due to the FFT of
short-length signals.

A. Nonstationary Gabor frames

A strategy to get an adaptive framework preserving a fast
reconstruction method, in the sense of Remark 4.2, is given
by nonstationary Gabor frames, (see [11], [12]): we consider
the so-called time case, where the starting point is a set
of different window functions. A unique analysis window
is chosen depending on the time location of the coefficient,
originating a globally irregular sampling set Λ, as depicted in
Figure 2: for each time index l, a window gl is chosen among
the different set considered, which is centered at time al;
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Fig. 2. Time-frequency centers for a nonstationary Gabor frame in the time
case, with variable time locations al and frequency steps bl, depending on
the time index l.

then gl is modulated according to a frequency step, indicated
with bl as it depends on the time index l, too; therefore,
Λ is irregular over time, with regular frequency sampling
at each time position. A typical strategy for the windows
choice, inspired by the wavelet approach, is to scale an original
window g as follows,

gl(t) =
1√
i
g

(
t

i

)
, (4)

where i depends on the index l and varies in a finite set
I of positive scaling factors. Referring to the time case, a
nonstationary Gabor frame is thus given by the atoms

gk,l(t) = gl(t) e2πikblt , (l, k) ∈ Z2 , (5)

where bl is the frequency step associated to the window gl.
For nonstationary Gabor frames there exist a painless case for
the calculation of the dual, whose conditions are detailed in
the following theorem ([11], Theorem 1).

Theorem 4.3: Suppose that the windows gl ∈ L2(R) have
compact support, supp(gl) ⊆ [cl, dl], and that the frequency
steps bl are chosen such that dl − cl ≤ 1

bl
; then the frame

operator S is the following multiplication operator,

Sf(t) =

(∑
l∈Z

1

bl
|gl(t)|2

)
f(t) . (6)

As a consequence, if
∑
l∈Z

1
bl
|gl(t)|2 ' 1, then the set (5) is

a frame whose dual frame is given by

g̃k,l(t) =
gl(t) e2πikblt∑
l∈Z

1
bl
|gl(t)|2

. (7)

Having an expression of the dual frame, it is now possible
to define a reconstruction formula; the compact form can still
be used,

f = Dg̃l
(Cgl

f) , (8)

appropriately considering the window and lattice variations at
each time location. The expression of the dual frame shows
that this formula can be implemented with a fast FFT-based
algorithm.

B. Gabor multipliers and weighted frames

Spectral processing techniques are based on analysis ma-
nipulations, which determine the desired effect in the re-
synthesized signal. Gabor multipliers (see [20] for a complete
survey) provide a mathematical model to manipulate the
analysis coefficients by means of multiplications, and to define
operators in the signal domain from a modeling in the analysis
domain. We consider the definition of Gabor multiplier in
L2(R), which can be generalized to the L2(Rd) general case.

Definition 4.4: Let g1, g2 be two functions in L2(R), Λ a
time-frequency lattice and m = (mλ)λ∈Λ a complex-valued
sequence; the Gabor multiplier Gg1,g2

m,Λ , with upper symbol
m, is given by

Gg1,g2

m,Λ (f) = Dg2(m · Cg1f) , (9)

where m·Cg1f is the pointwise multiplication of m and Cg1f .

In particular, if G(g, a, b) is a Gabor frame with Λ = aZ×
bZ, and m ∈ `∞(Λ), then the frame condition implies that
Gg,g̃

m,Λ is a bounded operator.
The definition of spectral manipulations can be also ap-

proached from the point of view of the decomposing atoms;
in [21], the concept of weighted frame is introduced.

Definition 4.5: Consider a set of atoms {gk,l =
MbkTalg}k,l∈Z, for some a, b > 0, in L2(R), and a sequence
{wk,l}k,l∈Z of complex numbers. The set {wk,lgk,l}k,l∈Z is
a weighted Gabor frame for L2(R) if there exist two positive
non zero constants A and B such that for all f ∈ L2(R),

A‖f‖2 ≤
∑
k,l∈Z

|〈f, wk,lgk,l〉|2 ≤ B‖f‖2 . (10)

We indicate such a frame with Gw(g, a, b).
Indicating with Cwg the analysis operator associated to

Gw(g, a, b) and considering m = (wk,l)k,l∈Z , we can write

Gg,g̃
m,Λf = Dg̃(Cwg f) , (11)

showing the relation between a Gabor multiplier and a
weighted Gabor frame.

V. ALGORITHM

We outline here the fundamental steps of the proposed algo-
rithm, detailing each of them later in the section. The strategy
we adopt to obtain a resolution varying in time and frequency
is to first select a fixed number of frequency bands; then,
the signal is processed with filters whose impulse responses
match the selected bands. The different filtered versions are
analyzed with nonstationary Gabor frames in the time case:
the resolutions of these frames are automatically time-adapted,
optimizing the entropy of several fixed-resolution analyses
performed with stationary frames (see Subsection V-A). A
unique analysis of the original signal is finally deduced by
the different nonstationary ones of its filtered versions: the
resolution of the final analysis changes depending on the fre-
quency band, and on the time location within each frequency
band.

Disposing of analyses with varying resolution, there are two
major problems to solve: the interpretation for the individual
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coefficients, and the definition of a reconstruction method. For
the former, we choose to develop our framework in the Gabor
analysis context to take advantage of the STFT interpretation
of the coefficients; but still, having analyses with varying
resolution requires changes of the standard spectral processing
techniques: if the lattice is irregular along frequency, for in-
stance, phase relations between different bins have to be inter-
preted, locally, considering their variable spacing. In this work,
we discuss the application of a common spectral processing
technique, called time-stretch (see Section VIII), dealing with
analyses with time-adapted resolution. In general, the analysis
and re-synthesis algorithms we develop are designed to allow
for extensions of existing processing methods, such the ones
available in the phase vocoder approach.

For the reconstruction task, two cases can be considered: if
the analysis window varies depending on time or frequency
individually, or if it depends on both time and frequency. For
the first case, nonstationary Gabor frames provide fast algo-
rithms for perfect reconstruction within the painless conditions
(see Subsection IV-A).

Even in cases where the resolution changes both depending
on time and frequency, if no information is lost, frame the-
ory provides synthesis methods with perfect reconstruction;
however, this is a typical case where the calculation of the
dual frame for the signal reconstruction cannot, in general,
be achieved with a fast algorithm: thus a choice must be done
between a slow analysis/re-synthesis method guaranteeing per-
fect reconstruction and a fast one giving an approximation with
a certain error. Our approach, denoted as filter bank, is focused
on a fast algorithm detailed in the following subsections;
Subsection V-C, in particular, introduces a variation of this
approach, which is implemented in our framework: instead of
filters, weight functions are applied to the STFT coefficients
of the original signal. This choice is motivated by the growing
popularity of spectral techniques in the development of user-
oriented sound processing software: thanks to the significant
power offered even by standard computers, which lowers the
latency introduced by FFT computations, spectral weighting
provides an intuitive and efficient tool for the visual-driven
design of a large variety of filters. This approach is investigated
with several experiments in Section VI and VII.

A. Best window selection and time-adapted analyses

We define here a procedure for the local adaptation of
the time-frequency resolution of the spectrogram, according
to an entropy-based sparsity criterium. The approach we
adopt (see [8] for the original formulation) takes into account
Rényi entropies, a generalization of the Shannon entropy:
the application to our problem is related to the concept that
minimizing the complexity, or information, of a set of time-
frequency representations of a same signal, is equivalent to
maximizing the concentration, peakiness, and therefore the
sparsity of the analysis. Thus we consider as best analysis
the sparsest one, according to the minimal entropy evaluation.

Given a finite set of index I , we consider different windows
gi of a same type, with varying time-support. We know that
each gi, together with an appropriate lattice Λi defined by a

Ω

t
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as

R

Fig. 3. Graphic representation of a step of the evaluation procedure: for a
given spectrogram PSif and a time-frequency shift of the rectangle R, the
Rényi entropy of the coefficients within R is calculated (see Section V-A).

time step ai and a frequency step bi, forms a frame for our
space of signals. Associating the analysis coefficients to the
points of the lattice, we can represent the discrete spectrogram
PSif by means of the lattice Λi. To evaluate the concentration
of the different spectrograms PSif , we use a normalization
of the Rényi entropies; we give the definition in the case of
discrete finite spectrograms, which is the one we use when
dealing with sounds in a digital format. Given an entropy order
α ≥ 0, α 6= 1 and mi, ni the numbers of rows an columns in
the matrix PSif , the normalized Rényi entropy is defined as
follows:

HR
α [PSif ] = (12)

1

1− α
log
∑
(l,k)

( PSif(l, k)∑
(l′,k′) PSif(l′, k′)

)α
+ log

aibi
mini

,

where l and k are the row and column indexes of the matrix
PSif which belong to R ⊆ Λi; as detailed in [17], this
class of measures is appropriate for the entropy comparison
of discrete analyses with different lattices, and we get a better
interpretation of the comparison when the analyses are realized
with the same time-frequency oversampling: that is, if the
product aibi is constant for every index i ∈ I .

The local evaluation (12) takes into account a certain subset
R of the analysis coefficients, depending on the envisaged
localization: when f is a sound of finite duration, its essen-
tial time-frequency support can be inscribed in a rectangle
R = supp(f)× [−Ω/2,Ω/2],Ω ∈ R+, whose horizontal side
is the support of f , and whose vertical side is the essential
support of f̂ . The localization we are interested in, is realized
by choosing a rectangle R ⊆ R, and a set of time-frequency
shifts of R which cover R; the area within a particular shift
of R corresponds to the analysis coefficients considered for
the sparsity evaluation, and thus for the adaptation procedure:
for each shift of R a best resolution is chosen and assigned
to that portion of plane (see Figure 3), as a solution of the
following optimization problem,

min
i∈I

HR
α [PSif ] . (13)

At each step of our algorithm, the rectangle R is shifted
in the time-frequency plane with a certain overlap with the
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signal f
adaptive
analysis

len1 , lenN : smallest and
largest window lengths

ANALYSIS PARAMETERS

N : number of
different windows d : frequency HFFT sizeL

spectrograms 8PSs f <s = 1,..., N

ADAPTATION PARAMETERS

Α : entropy order

R : time - frequency region

time - frequency step for the shifted R

WINDOW SIZES OVERSAMPLING

c : time Hhop sizeL

Fig. 4. Graphic representation of the main steps performed by the algorithm
for the automatic local adaptation of the spectrogram window size: the two
main blocks are depicted by means of their parameters, while the mid line
shows input and outputs (see Section V-A).

previous position. Within the area of the shifted R, the best
coefficients are defined as the ones which belong to the
optimal spectrogram PSif in the sense of problem (13);
in the overlapping regions, the decision is updated at each
step of the algorithm. The adaptive global analysis is thus
obtained as an union of the best local analyses selected by the
algorithm. The parameters and the essential steps performed
by the algorithm are represented in Figure 4. In the case of
time-adapted analyses, the entropy evaluation is recursively
performed on segments [t′, t′′] of the signal, taking into
account the whole frequency spectrum: the horizontal side
of the rectangle R is [t′, t′′] , while the vertical one is the
whole frequency dimension. The window gi associated to the
sparsest local analysis is assigned as best window to all the
points (t, ω) ∈ Λi∩R. The global time-adapted analysis of the
signal is finally realized considering the best windows selected
at each time location of the obtained composite lattice; as
G(gi, ai, bi) are Gabor frames for all i ∈ I , by appropriately
choosing the time shift factor the rectangle R, the selected
windows and the composite lattice form a nonstationary Gabor
frame in the time case.

The continuous extension of measure (12), where sums are
replaced by integrals and the second term in the right part
vanish, is given by

Hα(PSf) =
2α

1− α
log2

‖Vgf‖2α
‖Vgf‖2

(14)

The main advantage of using Rényi entropies emerges from
the comparison of this form with the Kurtosis-like measure
‖Vgf‖44/‖Vgf‖22 used in [4]: the norm applied to the spectral
coefficients at the numerator introduces a biasing depending
on the α parameter. Different values of α determine different
concepts of sparsity (see [22]), as the influence of weak
spectral coefficients (high partials, as well as noise) on the
entropy measure changes accordingly: if α >> 1 , only the
main spectral peaks are taken into account, while when α = 0 ,
there is no difference between large and small peaks. With
α = 0.3 , the measure has an analogy with the power law used

to map loudness levels in phons to perceived loudness in sones;
this value provides an appropriate measure for wide range of
vocal and music sounds, and has been used for all the examples
and tests proposed in Section VI and VII. The α parameter,
as well as the other adaptation parameters indicated in Figure
4, are not meant to be changed by the user: the designers of
a specific application have to set them, to tune the required
adaptivity; one could even imagine to include an expert user
mode, where certain resolutions are privileged among others,
but a refined control of these parameters requires a deep
knowledge of the entropy measures introduced.

B. Filter bank

We define here a novel approximation method based on
analyses with resolution changing in time and frequency,
indicating theoretical bounds for the reconstruction error. We
extend the results in [23] to the case of filtered signals,
obtaining the approach we indicate as filter bank in the case
of stationary Gabor frames (see Figure 5).

filtering

f � Ψ1

f
f � Ψ2

f � ΨP

�g1k,l�
�g2k,l�

�gPk,l�

�g�k,l1�
�g�k,l2�
�g�k,lP�

analysis coefficients
selection reconstruction

� frec

Fig. 5. Block diagram detailing the steps of the filter bank approach
(see Subsection V-B): the signal is first filtered with a bank of P band-pass
filters; the filtered signals are analyzed with P nonstationary Gabor frames;
the coefficients in the analyses are selected depending on the corresponding
frequency band; the filtered signal are approximated with expansions of the
selected coefficients with the corresponding dual frames; the reconstructed
signals are summed to give an approximation of the original signal.

In Subsection V-C, we define a different version of the
introduced approximation method: Gabor multipliers are used
instead of filters, leading to the analysis-weighting approach
implemented in our adaptive framework (See Section VI).

We consider here a finite duration signal f supported
on the interval [−β/2, β/2] , and εΩ-bandlimited to the
interval [−Ω/2,Ω/2], β,Ω ∈ R+, which is the case we
are interested in when working with music signals; this
implies that |f̂(ω)| < εΩ for every ω /∈ [−Ω/2,Ω/2]. We
first want to reconstruct f using different STFTs of a certain
number of its filtered versions; in particular, we use different
window functions for each different version, and compute the
reconstruction error based on the estimates in [23].

Given P ∈ N, consider the functions ψp, p = 1, ..., P ,
which are the impulse responses of P filters with finite time
supports [−Tp/2, Tp/2] , whose essential frequency supports
are [Ω1

p,Ω
2
p] and cover the essential bandwidth of f . We

assume also that at most two essential frequency supports of
ψ̂p overlap at the same time, and that they satisfy ψ̂1(ω) +
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...+ ψ̂P (ω) = 1 on [−Ω/2,Ω/2]. We consider P windows gp

compactly supported on [−Wp/2,Wp/2] such that ‖gp‖2 = 1
and the STFT of the signal f ,

Vpf(t, ω) =

∫
R
f(τ)gp(τ − t) e−2πiωτ dτ , (15)

using the compact form Vpf(t, ω) = 〈f,MωTtg
p〉. We denote

by fp a filtered version of f , fp = f ∗ ψp and f̂ =
∑
p f̂p on

[−Ω/2,Ω/2]. Each one of the fp filtered versions is a finite
duration signal, supported on the interval [−β/2−Tp/2, β/2+
Tp/2] , and εp-bandlimited to the interval [Ω1

p,Ω
2
p] . Now, if we

consider P stationary Gabor frames G(gp, ap, bp), we obtain
a sampling of Vpfp composed by the values

cpk,l = 〈fp,MbpkTaplg
p〉 , (k, l) ∈ Z2 ; (16)

here, the time step ap and the frequency step bp depend
on the window function, and are chosen in order for the
sampled analysis to be more redundant than the critical case,
apbp < 1 : the goal is to have a stable frame with well
concentrated windows, hence overcompleteness is necessary.
In these hypotheses, the estimates in [23] allow to approximate
fp with a finite expansion involving the sampled analysis
coefficients and the dual window. In particular, if we indicate
with g̃p the dual of gp, then for every ε > 0 there exist two
finite sets Kp, Lp ⊂ Z such that the truncated expansion f◦p ,
given by

f◦p =
∑
k∈Kp

∑
l∈Lp

cpk,lMbpkTaplg̃
p , (17)

verifies the following inequality,∥∥fp − f◦p∥∥2
≤ Cp(εp + ε)‖fp‖2 , (18)

where Cp = (1 + 1/ap)(1 + 1/bp)‖g̃p‖S0
‖gp‖S0

and ‖g‖S0
=

‖Vg0g‖1 with g0 Gaussian. The set Lp contains the time
positions lap for which support of fp overlaps with support of
gp shifted by lap; the set Kp contains the frequency positions
kbp for which essential support of f̂p overlaps with essential
support of ĝp shifted by kbp . Then the cardinality of Lp equals

|Lp| = 2

⌈
β + Tp +Wp

2ap

⌉
− 1 ; (19)

if gpc is a [−αp/2, αp/2]−bandlimited approximation of gp in
S0, meaning ‖gp − gpc‖S0 ≤ ε‖g‖S0 , then the cardinality of
Kp equals

|Kp| =

⌈
Ω2
p − Ω1

p + αp

bp

⌉
. (20)

Given these estimates, we want to approximate the original
signal summing the truncated expansions; therefore, the re-
construction error we obtain is bounded by the sum of the
error bounds for the filtered components. We indicate with CP
and εP the maxima over all Cp and εp, respectively. We can
thus determine an upper bound directly from equation (18):
for every ε > 0 , with the appropriate sets and constants we

have∥∥∥∥∥f −∑
p

f◦p

∥∥∥∥∥
2

≤

∥∥∥∥∥f −∑
p

fp

∥∥∥∥∥
2

+

∥∥∥∥∥∑
p

f −
∑
p

f◦p

∥∥∥∥∥
2

≤ εΩ‖f‖2 + CP (εP + ε)
∑
p

‖fp‖2 . (21)

We want to express the error as a function of ‖f‖2 : by
applying triangle inequality, we have that

∑
p ‖fp‖2 ≤ ‖f‖2 ·

P maxp ‖ψ̂p‖∞ ; so, writing Cψ = P ·maxp ‖ψ̂p‖∞ , we have∥∥∥∥∥f −∑
p

f◦p

∥∥∥∥∥
2

≤ (εΩ + CψCP (εP + ε)) ‖f‖2 . (22)

Remark 5.1: The choice of the ψp functions has an in-
fluence on the error we obtain: assuming to work with S0

windows (see [18]), that have ”nice” time-frequency properties
guaranteed, the εp constant, which concerns the essential
frequency support of f̂p , depends on the regularity of ψp :
the smoother it is, the faster f̂p decays of out of its essential
support, and then the smaller εp.

On the other hand, for chosen ε, the number of coefficients
used in the expansion (17) depends on the windows gp; the
better concentration of gp in frequency, the less frequency
coefficients are required to achieve ε accuracy. In this sense, an
interesting perspective is to implement an automatic method
to determine the number of coefficients needed to achieve a
desired precision, given the analysis parameters.

C. Filter bank approach with Gabor multipliers

Spectral processing techniques often avoid manipulations in
the signal domain, privileging modifications of the analysis
coefficients, followed by the re-synthesis. We look for an
estimate like the one in equation (21) when working with
Gabor multipliers instead of filters: considering the scheme
in FIgure 5, the variation we develop consists in inverting the
analysis and the filtering stage; then, filtering is performed
now by means of weight functions applied to the spectral
coefficients. In particular, we want to replace each filter ψp
with a Gabor multiplier Ggp,g̃p

mp,Λp
, whose symbol mp does not

depend on time, and matches the frequency response ψ̂p of the
filter, mp(t, ω) = ψ̂p(ω) . We thus obtain weighted versions
of the STFTs of the signal f ,

Wpf(t, ω) = Vpf(t, ω)mp(t, ω). (23)

Our aim is to replace Vpfp(t, ω) by the weighted analyses
Wpf(t, ω), and we write their sampling according to the
lattices Λp as follows, dpk,l = Wp(apl, bpk) ; indeed, if we
write g(τ − t) = gt(τ), then

Vpfp(t, ω) = ((f̂ · ψ̂p) ∗ ĝpt )(ω) , (24)

Wpf(t, ω) = (f̂ ∗ ĝpt )(ω) · ψ̂p(ω) ;

therefore, the difference depends on how similar multiplication
and convolution with the atoms are, if their roles are switched.
To quantify this difference, we need to clarify the relation
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between a time invariant filter and a Gabor multiplier. Hilbert-
Schmidt operators, as well as a larger class of operators called
underspread, can be well approximated by means of Gabor
multipliers (see [24], [25]): given an underspread operator H ,
its best approximation by a Gabor multiplier Gg1,g2

m,Λ can be
calculated, with an error depending on the spreading function
ηH of H and Vg1g2 . Time invariant convolution operators,
such as filters, are not underspread; but still, we envisage
that it is possible to estimate the error when approximating a
convolution operator A with a Gabor multiplier G of the type
we are considering. This result is the object of an ongoing
collaborative work: knowing that the Hilbert-Schmidt norm of
the difference ‖A − G‖HS is conveniently small, the aim is
to deduce a pointwise inequality for the sampled analyses we
work with, that is for each (k, l) ∈ Z2, the following inequality
must hold for a small ε∗p,

|cpk,l − d
p
k,l| ≤

ε∗p
PKL

, (25)

where KL is the number of coefficients in the expansion (17);
here, we assume this inequality to hold. Using the coefficients
dpk,l in the same expansion, we obtain

f∗p =
∑
k∈Kp

∑
l∈Lp

dpk,lMbpkTaplg̃
p , (26)

and

‖f◦p − f∗p ‖2 ≤
ε∗p
P
· ‖g̃p‖2 . (27)

We can thus estimate the further approximation error intro-
duced by considering the Gabor multiplier Ggp,g̃p

mp,Λp
instead

of the filter ψp,∥∥fp − f∗p∥∥2
≤ Cp(εp + ε)‖fp‖2 +

ε∗p
P
‖g̃p‖2 . (28)

Writing ε∗P = maxp ε
∗
p and ‖g̃P ‖2 = maxp ‖g̃p‖2 , we can

rewrite the estimate (22) as follows,∥∥∥∥∥f −∑
p

f∗p

∥∥∥∥∥
2

≤ CψCP (εP + ε)‖f‖2 + ε∗P ‖g̃P ‖2 . (29)

As we are working with Gabor frames in the painless case, we
can further precise the estimation without need to calculate the
dual, as we know that ‖g̃‖2 ≤ ‖g‖2Ap

, for each p, where Ap is
the lower frame bound. In Section VI, we provide examples
of the reconstruction error obtained for given choice of the
above functions.

As we have shown in [17], the estimate obtained in the
expansion (17) can be extended to the nonstationary case; a
similar extension for the estimate in (29) will be treated in a
separated contribution.

VI. RE-SYNTHESIS FROM ADAPTIVE ANALYSES

We focus here on the approximation method introduced, in
the Gabor multipliers case, considering two frequency bands,
so P = 2: given a signal f and a reconstruction frec obtained
with that method, we measure its accuracy by means of the
maximum of the absolute value of the error er peak = ‖f −

frec‖∞ , and the RMS (Root Mean Square) of the error, that
is

er rms =

√√√√∑L
n=1(f [n]− frec[n])2∑L

n=1 f [n]2
, (30)

where L is the signal length.
We first detail our approach in terms of stationary Gabor

frames, which is also the case which the estimates in Subsec-
tion V-C refer to. Then, we will extend the methods to the
nonstationary case, which is used in our framework.

A. A stationary Gabor frame for each frequency band

Using the notation introduced in Section IV, and Subsection
IV-B in particular, we consider two weight functions wp, de-
pending only on the frequency ω, such that w1(ω)+w2(ω) = 1
for every ω. Given two window functions g and h, we want to
associate the Gabor frame G(g, a1, b1) to the first frequency
band, and G(h, a2, b2) to the other. We do this by means of
the weight functions, whose supports have to coincide with the
two bands, possibly considering an overlap. The reconstruction
formula is thus given by

frec = Dg̃(Cw
g f) + Dh̃(Cw

h f) . (31)

Therefore, each weighted analysis is used in the expansion
with the original dual window, without calculating the exact
dual of the global composed frame.

To investigate the effects of the weighting technique, we
consider a basic signal whose energy is concentrated at the
frequency point where the two weights vanish: f is a sinusoid
with sinusoidal frequency modulation, sampled at 44.1kHz.
Then, we measure the reconstruction error obtained with
binary weights, as well as the reduction obtained allowing
the weights for an overlap. The sinusoid frequency starts at
350Hz, and the modulation varies between 130Hz and 570Hz
with a period of half a second.

For the weighting functions, the following frequencies are
given: Ωcut = 350Hz, Ω1 = 200Hz and Ω2 = 500Hz. We
first consider two binary masks, whose coefficients vanish,
respectively, at the frequencies above and below Ωcut; then,
two masks w1 and w2 with a linear crossfade are taken: having
Ny = 22.05kHz the Nyquist frequency,

w1(Ω) =


0 if 0 ≤ Ω ≤ Ω1
Ω−Ω1

Ω2−Ω1
if Ω1 ≤ Ω ≤ Ω2

1 if Ω2 ≤ Ω ≤ Ny

and w2 = 1−w1 . The windows g and h are Hanning windows
of size 512 and 4096 samples. The aim is to show that the
reconstruction error can be reduced, appropriately choosing
the overlap of the two masks, according to the signal spectral
energy.

Table I shows the errors obtained: with the overlap 200-
500Hz, which does not include the whole modulation range,
the error reduction obtained with the linear crossfade is
limited. This is due to the fact that, as a consequence of the
weighting, many coefficients are set to 0, and therefore are not
considered in the expansion (26); as too few coefficients are
considered for the reconstruction of the two individual bands,
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then the error on the global reconstruction is still considerable.
The last line of Table I shows, as expected, that increasing the

TABLE I
Reconstruction error when f is a sinusoid with sinusoidal modulation: the

masks are indicated on the left, together with their frequency significant
values (see Subsection VI-A).

Weight Parameters er_peak er_rms
method

Binary freqcut = 350Hz 0.5102 0.0967
mask

Linear freq1 = 200Hz 0.1856 0.0725
cross freq2 = 500Hz

Linear freq1 = 50Hz 0.0576 0.0262
cross freq2 = 650Hz

overlap of the weights we get a considerable reduction of the
error. In particular, if the weights are positive (overlap over the
all frequency dimension), then we have approximations with
er rms error lower than 10−5, depending on the absolute
maxima and minima of the weights. The drawback is that
analyses with such an overlap are hard to be interpreted, as
all the different atoms employed give contributions at every
time frequency point. In particular, it would be extremely hard
to conceive sound processing techniques dealing with all of the
different resolutions at the same time-frequency point.

Figure 6 shows the composed spectrogram obtained with
the binary masks, and the consequent reconstruction error.
The same, in Figure 7, for weights with linear crossfade 50-
650Hz. We thus see that the spectral energy of the error with
overlapping weights is lower, and more uniformly distributed.

B. A nonstationary Gabor frame for each frequency band

The test we have shown has been obtained with two station-
ary Gabor frames, each one associated to a frequency band.
In our framework, we extend this methods to nonstationary
Gabor frames. With the different scalings gi of a same window
function, and appropriate lattices Λi, we realize the analyses
Vgif and their weighted versions Vgif(t, ω)wp(ω). These
weighted analyses are used for the reconstruction, after the
automatic time-adaptation procedure detailed in Subsection
V-A: at the end of the automatic selection of the window,
the frequency band p is associated to the nonstationary Gabor
frame {gpk,l} of the best windows at the corresponding time-
frequency points: if we indicate with Cp and Dp the analysis
and synthesis operators associated to the p-th frame and its
canonical dual, then the analysis-weight method implemented
in our framework takes the following form,

frec = D1(Cw
1 f) + D2(Cw

2 f) . (32)

VII. TIME-FREQUENCY ADAPTATION AND MUSIC

When a music signal presents heterogeneous spectral com-
ponents, the choice of a fixed resolution, or even of a time-
dependent resolution, may not be sufficient to resolve them. As
an example, we consider a sound sample where a tabla is play-
ing, an Indian percussion instrument of the membranophone
family; at time 2.22” a sitar also plays, a plucked stringed
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Fig. 6. Composed spectrogram of a sinusoid with sinusoidal frequency
modulation: the signal is analyzed with two different windows, the spec-
trogram coefficients are weighted with two binary masks and then summed
together (see Subsection VI-A). On top, the reconstruction error obtained, and
its spectrogram. Times are indicated in seconds, frequencies in Hertz.
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Fig. 7. Composed spectrogram of a sinusoid with sinusoidal frequency mod-
ulation: the signal is analyzed with two different windows, the spectrogram
coefficients are weighted with the wp masks, with overlap 50-650Hz, and
then summed together (see Subsection VI-A). On top, the reconstruction error
obtained, and its spectrogram. Times are indicated in seconds, frequencies in
Hertz.
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instrument. The tabla presents, at once, fast transients and long
tones in the mid-low frequency range, even with fast frequency
modulations played by the thumb on the larger drum. Together
with the melody played on the metal strings of the sitar,
the music which is originated has a highly heterogeneous
spectrum: this is an example of the need for spectral processing
techniques with variable time-frequency resolution; a fixed
resolution, or a time-dependent resolution like the one we have
introduced in V-A, would not be appropriate within all the
frequency regions.

The right part of Figure 8 shows the adapted spectrogram
we obtain analyzing this sound with the following setup:

• N = 8 Hanning windows, whose length varies between
len1 = 1024 and lenN = 4096 points, which correspond
to about 23 milliseconds and 93 milliseconds, as the
sampling rate SR is 44.1kHz;

• c = 0.15 and d = 2, and for every window gs the analysis
is calculated with hop size c · lens and FFT size d · lens;

• the Rényi entropy order considered is α = 0.3;
• R covers all the frequency support, and includes 3 time

shifts of the largest window gN ; this corresponds to 6144
points and about 139 milliseconds;

• at each step of the algorithm, R is shifted in time, the
overlap with the previous position including 2 time shifts
of the window gN ; that is, 5120 points and about 116
milliseconds.

Then, all the spectrograms are weighted with a binary mask
setting to 0 the coefficients above 1kHz before the entropy
evaluation, and the consequent window selection. The chosen
mask rises a window choice adapted to the frequency area
where the first harmonics of the two instruments are predom-
inant. Nevertheless, within the parts where fast transients are
predominant, or exclusive, the best window selected is still
small, as required: this is a major advantage with respect
to analysis methods where different windows are a priori
associated to certain region depending on the frequency range.
The complementary analysis, where the window selection is
adapted to the coefficients below 1kHz, is shown in the left
part of Figure 8.

The overall profile remains the same, in particular on the
fast transients part at the beginning; but there are some
important differences; in particular, the frequency modulation
of the first sitar note, at time 2.5”. When high frequencies
are masked, the partials of the sitar taken into account are the
first ones, for which the modulation range is limited: a large
window is chosen, privileging the frequency precision, but still
guaranteeing the continuity of the modulation below 1kHz; but
as shown in the left spectrogram of Figure 8, the modulation
is highly blurred at the frequencies above. On the other hand,
the continuity of the modulation is conveniently provided
by the complementary analysis, where a small window is
chosen, as seen in the right spectrogram. Other differences
concern the way the transients are treated in the two cases,
providing a higher time or frequency precision depending
on the considered mask. The resulting composed analysis
with variable time-frequency resolution is shown in Figure 9.
Table II shows the reconstruction error obtained on this music

TABLE II
Reconstruction error when f is a sound sample with tabla and sitar: the

masks are indicated on the left, together with their significant values.

Weight Parameters er_peak er_rms
functions

Binary freqcut = 1kHz 4.7·10−3 4.4·10−3

mask

Linear freq1 = 750Hz 3.4·10−3 2.6·10−3

cross freq2 = 1.25kHz

Linear freq1 = 500Hz 3.7·10−3 2.2·10−3

cross freq2 = 1.5kHz

signal, with the analysis-weight method detailed in Section VI.
Here, even with a larger overlap, the reduction of the error is
soft, as the overlap is chosen regardless of the local spectral
energy: further developments of this framework should aim
to an efficient method to adaptively deal with overlaps; once
individuated a desired frequency band, the optimal limits
should be chosen, within a certain frequency range, in order to
minimize the signal spectral energy where the first coefficients
are set to 0. A further ongoing research project is focused
on a prior target to achieve, that is a strategy to reduce the
error by varying the weighting functions, once chosen their
overlap: this would lead to an effective control of the error by
an intuitive setting, closely related to filter design.

The reconstruction error and its spectrogram are shown
in Figure 10: comparing this figure with the ones of the
adapted analyses for the two different bands (Figures 8 left
and right), we see that the error energy is concentrated at the
time locations where the window choice differs within the two
bands, and within a frequency range determined by the overlap
of the two masks. As the aim of these representations is to
ameliorate sound processing algorithms, the perceived quality
of the reconstruction is determinant, beside the objective error
measure: some preliminary tests with expert listeners show
that, even when binary masks are used, the re-synthesized sig-
nal is perceived as identical to the original one. This allow to
argue that, even in the case of multiple bands, the error should
be perceptually masked by the relevant components. Further
investigations have to characterize the error, in particular when
applying processing techniques that may enhance the error.

Fig. 9. Adaptive analysis of a sound sample with tabla and sitar (see Section
VII); the frequency range is limited to enhance readability: the resolution is
adapted in time and in two frequency bands, above and below 1kHz. Times
are indicated in seconds, frequencies in Hertz.
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Fig. 8. Adaptive weighted analysis of a sound sample with tabla and sitar (see Section VII): the binary masks for the adaptation select alternatively the
coefficients below 1kHz (on the left) or above 1kHz (on the right); the frequency range is limited to enhance readability: on top, the best window selected
by the automatic algorithm is shown for each time location, in correspondence to the part of adaptive analysis that it determines (at the bottom). Times are
indicated in seconds, frequencies in Hertz, window sizes in number of points.
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Fig. 10. Spectrogram of the reconstruction error given by the analysis-
weight approach, on a sound sample with tabla and sitar (see Section VII);
the frequency range is limited around the overlap of the weighting masks,
from 750Hz to 1.25kHz. Times are indicated in seconds, frequencies in Hertz.

VIII. PERCEPTIVE EVALUATION OF ADAPTIVE
TIME-STRETCHING

We have realized a perceptive test1 to evaluate the quality
of spectral processing techniques based on analyses whose
resolution is adapted only in time (see Section V-A): the
listener is asked to compare three different time-stretches (the
duration of a sound is increased without changing its pitch)
of given sound samples. The three time-stretches are realized
with the extended phase vocoder SuperVP2: two of them use
constant windows, of lengths len1 = 1024 and len2 = 4096
samples, respectively (the sampling rate is 44.1kHz, all sounds
are in standard cd format); the third adopts a variable window,
computed with the algorithm detailed in Subsection V-A, with
8 windows whose length vary between len1 and len2. All the
methods use the advanced option for transients preservation
available in SuperVP.

The test has been performed on 43 listeners wearing head-
phones and declaring to be familiar with comparing sound
transformation examples: they are asked to evaluate how
natural the dilatation is, compared to the original sound, on
a scale going from 1 (inacceptable) to 5 (perfectly natural).

1see http://recherche.ircam.fr/equipes/analyse-synthese/liuni/form mp3.php
2see http://anasynth.ircam.fr/home/english/software/supervp

Figure 11 shows the results of the test: the left graph compares
the mean scores of the three methods, where the adapted
window surmounts the two constants ones, as the chosen sound
samples are complex and no constant window is appropriate
for all of them. In the right graph, the best score of the constant
window is taken for each sound, and the mean of these best
scores is calculated: the adapted window slightly surpasses
the best constant one, which proves that state-of-the-art time-
stretching methods with automatic adaptation of the window
have comparable performances with the ones obtained through
an accurate choice between two fixed windows.
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Fig. 11. Results of the perceptive test detailed in Section VIII: on the left,
mean opinion scores (MOS) of the three different methods; on the right, mean
score of the adaptive method versus the mean of the best fixed resolution ones.

IX. CONCLUSION

We introduced an algorithm for sound analysis and re-
synthesis with local automatic adaptation of time-frequency
resolution: our method is intended to provide a signal rep-
resentation with optimal local time-frequency information,
with a high quality of the analysis/re-synthesis process. The
computational order of the algorithm is determined by the
short-length FFT performed: this high efficiency is obtained at
the price of an error in the reconstruction, whose theoretical
bound is provided.

At present, there are no common sound processing tech-
niques dealing with time-frequency adapted analyses like the

http://recherche.ircam.fr/equipes/analyse-synthese/liuni/form_mp3.php
http://anasynth.ircam.fr/home/english/software/supervp
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ones we introduce: therefore, when varying the resolution
both depending on time and frequency, it is not possible to
give examples based on sound manipulations. Nevertheless,
our methods are conceived to allow for extensions of existing
algorithms: the processing should be done iteratively on the
different frequency bands, according to the weighted analyses,
the fundamental task being to conceive appropriate strategies
to treat the overlapping zones, depending on the specific
sound treatment. These aspects, together with the objective
and perceptual investigation of the reconstruction error, are
the core of the ongoing research of the authors on this topic.

Together with sound transformation, the optimal local time-
frequency resolution guarantees a solid ground to develop
adaptive high-quality applications: sound object localization
and separation with adapted time-frequency precision, as well
as information retrieval with optimal local resolution, among
several others.
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