@ Quasi-Newton Methods
o Conjugate Gradient Method

By B T

@ Quasi-Newton Methods
o Conjugate Gradient Method

By B T

A bit of history

[Nocedal, Wright, Numerical Optimization 06], Chapters 6-7

* in the 50s W.C. Davidon used "coodrdinate descent” method (GD on
coordinates)

* the computer would always crash before the simulation was finished

* Davidon decided to find a way of accelerating the optimization process: he
found one of the most creative ideas in nonlinear optimization

* Fletcher and Powell demonstrated that this algorithm was faster and more
reliable than existing methods at the time

* paradoxically, Davidon's paper was not accepted for publication. It remained a
technical report for more than thirty years until it appeared in SIAM Journal on
Optimization in 1991!

Beniamin BOGOSEL Computational Maths 2 3/39

Motivation

Recall the Variable Metric Method and replace A; " by S;:

Algorithm 1 (Generic Variable Metric method)

Choose the starting point xg
Iteration /:
e compute f(x;), VFf(x;) and eventually D*f(x;)
@ choose a symmetric positive-definite matrix S;: compute the new direction
d,' = 7S;Vf(X,')
o perform a line-search from x; in the direction d; giving a new iterate
Xit1 = X + tidi = x; — t;S;VI(x;).

* in the modified Newton method S; is computed as follows: find the Hessian
D?f(x;), modify it to make it "well positive definite”, then invert it or solve
S,'d,' = Vf(X,)

* in quasi-Newton method we try to skip all of this and compute S; recursively
with one objective: S; — (D?*f(x;))™t — 0

Beniamin BOGOSEL Computational Maths 2 4/39

Variable Metric method: quadratic case

* minimize f(x) = x7 Ax — b x with Steepest Descent line-search
* denote E(x;) = f(x;) — min f: error in terms of objective function
* Xit1 = Xi — topt SiVF(x;) is equivalent to a change of coordinates { = 51/2
* the step 7 in the VM method is just a Steepest-Descent step for the matrix

5,.1/2A5,.1/2. Therefore we have the estimate
oi1)
E(x; E(xi
(o) < (@r7) E00)
where @ is the condition number of 51/2A51/2

x if S is close to D?*f(x;)™! = A~1 then 5;1/2’4511/2 is close to the identity
matrix so Q is close to 1.

x Finally, if Q converges to 1, we eventually get that E(x;1)/E(x;) — 0, i.e.
super-linear convergence

Beniamin BOGOSEL Computational Maths 2 5/39

Basic rules for updating S;

* Taylor expansion formula tells us that
Vf(xiy1) — VF(x;) = D*f(x;)(xiz1 — xi)
* Therefore, it is reasonable to request that
Si+1(VF(xi+1) = VI(x)) = Xi41 — X;
called the secant relation (make parallel with the 1D case)

* With the notations g; = Vf(x;), pi = Xi+1 — Xi, §i = gi+1 — & we have
Sit19i = pi,

called the quasi-Newton equation

* this leaves us with infinitely many possibilities... another goal is that
Siv1— S;is as simple as possible!

* initialization? one may simply choose Sy = Id

Beniamin BOGOSEL Computational Maths 2

6/39

Small rank updates

* idea: find S;y1 = S; + B; where B; has low rank
* Rank 1 updates: B; = a,-v,-v,-T - one may find B; such that the quasi-Newton
relation holds

Siv1=Si+aiziz]
* the quasi-Newton relation p; = S;11q; implies

zj = wi(pi — 5qi)
* in the end we get

1
Siv1 = Si+ ———5—lpi — Sigillpi — Siai]”
+1 (o —Siq)7q P~ viaillpi = Sial

* not possible to guarantee that S; 1 is positive definite if S; is

Beniamin BOGOSEL Computational Maths 2 7/39

Rank 2 updates: DFP

* Davidon-Fletcher-Powell: historically, the first "good” quasi-Newton method
* use rank 2 updates: guarantee the positive-definiteness of S; 1 under
reasonable hypotheses

Proposition 1

Let S be a positive definite symmetric matrix and p and q be two vectors such
that pTq > 0. Then the matrix

1
S'=S+—=pp’ - Sqq’S
pTq™” T qTsqg” "

is symmetric positive definite and satisfies S'q = p.

* Proof: just compute S’qg and xS’'x and do a bit of linear algebra.

* How to get this idea? Just choose S;11 = S; + auu” + Bw T (rank 2 update)
* then choose u = p; and v = §;q;

Beniamin BOGOSEL Computational Maths 2 8/39

DFP method

* DFP update:

1
———S5:qiq/ Si
4/ Siqi

Sii1 =S+ Tl pip;

p;i qi j
x the condition g p; > 0 is equivalent to

(Vf(X,'_H) — Vf(X,)) : (Xi+1 - Xi) >0,

which is true if f is strictly convex: reasonable assumption near a minimum...
x when using Wolfe line-search we can guarantee that q; p; > 0.
* for the quadratic case DFP becomes the conjugate gradient method
* it turns out DFP is not the best method out there...

@ it does not "self-correct” when S; gets far from the inverse Hessian

Beniamin BOGOSEL Computational Maths 2 9/39

Duality: quasi-Newton relation

* any quasi-Newton update can generate another one:
e Siy1=S5;+ Bi(S;, pi, q;i) such that S;11q; = p;
e then g; = Silllp, where S,Jrll = (Si + B(Si, pi, qi)) 7 *
@ switching the roles of p; and g; we get a different update, called the dual

update
* how to get the dual of DFP: replace S; with 5-_1 and interchange p; and g;
1
S,_ 5 q] — 75 pip 5,_
e a’ pi pl S pi

* a direct computation or Sherman-Morrison's formula gives:

pia] Si + Siqip] (1 q,'TSiQi> pipi

— 7 tl|lt+t—=F T
pi qi P qi / p; qi

Siy1=S5i —

Beniamin BOGOSEL Computational Maths 2 10/39

The BFGS update

* BFGS: Broyden, Fletcher, Goldfarb, Shanno

Siv1=5i —

piq/ Si + Siqip (q,-TS,-q,-> pip
— |1+ T

P; qi P; qi P; qi
* widely used in most of the codes implemented today
* since BFGS is the dual of DFP, and a matrix is positive-definite if and only if
its inverse is positive-definite, the BFGS update maintains positive-definiteness if
p; qi > 0 (same hypothesis as for DFP to work...)
[Nocedal, Wright, Numerical Optimization 06], Chapters 6-7
* Local super-linear convergence: If an algorithm using BFGS with Wolfe's
line-search converges to x* where f is strongly convex with Lipschitz Hessian
then the convergence rate is super-linear
* BFGS can also be found by minimizing a certain distance between the inverse
Hessian and the rank 2 update S;;; among matrices verifying the secant
condition!
* BFGS has effective self-correcting properties

Beniamin BOGOSEL Computational Maths 2 11/39

Extreme cases

Dimension 1:

* the quasi-Newton relation is just S;y1 = pi and we get
qi
Xi — Xj—1
f/(X,') — f/(X,'_l)
which is the false position (or secant) method

f'(x;)

Xit1 = Xj —

Large dimension:

* same disadvantage as Newton methods - a n X n matrix may be too large to
store in memory
* it is possible to store only the update vectors and compute matrix - vector

products by doing only scalar - products

(uvTx = u(vTx) = (v x)u
* limited memory-BFGS (LBFGS): use only the last m vectors p;, g; in order to
compute S;11 - good behavior in practice despite being an approximation of

BFGS

Beniamin BOGOSEL Computational Maths 2

12/39

Computational cost per iteration

x after the function value, gradient and Hessian are computed (this is
non-negligible in some applications)

e GD: O(N)

e Newton: O(N3) in worst case (solving a linear system) - it all depends on
the structure of the Hessian

e BFGS, DFT: O(N?) - matrix vector products

e LBFGS: O(mN) where m is the fixed number of gradients to remember

Beniamin BOGOSEL Computational Maths 2 13/39

Practical example: the N-dimensional Rosenbrock

N—1
F3) = S [1000x1 — <2 + (1 x)]
i=1
with global minimum at x* = (1,1, ...,1).
2

* ill conditioning: the optimization process wants to achieve x;1; ~ x; rather
than minimizing (x; — 1)? and go towards the global minimum!

Comparison: Rosenbrock N=20

10*
10°
104
X
10-° H
1%
10~ J%
]
10-16 3
e |
. X
10-2 xig
X
1072 M
#®

1000 2000 3000 4000 5000

o

Beniamin BOGOSEL Computational Maths 2

14/39

Practical example: the N-dimensional Rosenbrock

) = 110003) + (1~)7

with global minimum at x* = (1,1, ...,1).

x ill conditioning: the optimization process wants to achieve x;11 &~ x? rather
than minimizing (x; — 1)? and go towards the global minimum!

Beniamin BOGOSEL

10-16
10-20

1072

Comparison: Rosenbrock N=20

Computational Maths 2

14/39

Practical example: the N-dimensional Rosenbrock

N—1
F3) = S [1000x1 — <2 + (1 x)]
i=1
with global minimum at x* = (1,1, ...,1).
2

* ill conditioning: the optimization process wants to achieve x;1; ~ x; rather
than minimizing (x; — 1)? and go towards the global minimum!

Comparison: Rosenbrock N=100

——

1022

27
10 x! g

0 1000 2000 3000 4000 5000

Beniamin BOGOSEL Computational Maths 2

14/39

Practical example: the N-dimensional Rosenbrock

N—1
F(x) = 311000k 1 — X2 + (1 — x;)]
i=1
with global minimum at x* = (1,1, ...,1).
x ill conditioning: the optimization process wants to achieve x;11 &~ x? rather
than minimizing (x; — 1)? and go towards the global minimum!

Comparison: Rosenbrock N=100

10-22 x Newton

x DFP {\

10274« BFGS H %
« LBFGS x : X
0 100 200 300 400 500 600

Beniamin BOGOSEL Computational Maths 2 14/39

Conclusion: quasi-Newton methods

@ equivalent of the Secant method in higher dimensions
@ achieve super-linear convergence without using the Hessian

o for extremely large n BFGS may be costly from a memory point of view: if
possible use L-BFGS instead

@ BFGS and LBFGS are often available in standard optimization libraries:
Example scipy.optimize.minimize

Beniamin BOGOSEL Computational Maths 2 15/39

@ Quasi-Newton Methods
@ Conjugate Gradient Method

By B R e

Motivation

* if A is symmetric, positive-definite then solving the system Ax = b is
equivalent to minimizing the quadratic function

1
f:x»—>§xTAx—b-x

* the gradient of this quadratic function is Vf(x) = Ax — b

* direct method: process details about the matrix A (factorization) and then
solve the system: complexity is between O(n?) and O(n?).

* in contrast to this, iterative algorithms produce an approximation of the
solution, which might be good enough for very large n

* for example: the gradient algorithm with Steepest-Descent will quickly
converge to the optimum, but we can do better

Number of iterations. = 10
2.0 T 4.0

I

-0.5

I

-1.0
-10 -05 00 05 1.0 15 20

Beniamin BOGOSEL Computational Maths 2 17/39

Conjugate directions

* A given symmetric positive-definite matrix A defines a scalar product
(x,y) =xT Ay

* Two (non-zero) directions d; and ds are called conjugate with respect to A if
they are orthogonal w.r.t. the above scalar product:

dy and ds are conjugate < d1Ad, =0
* we may also call two directions which are conjugate w.r.t. A as being
A-orthogonal
* why is this useful? suppose di, ..., dx are mutually A-orthogonal and we have
the decomposition

k
d=> o
j=1

Then, using the orthogonality property, we can find the coefficients «; explicitly:

_dlAd (d,d;)

- dTAd; (di, d))

* Consequence: If di, ..., dx are mutually orthogonal then they are linearly
independent! (for a proof, use the above formula to see that d =0 = «; = 0)

dTAd = a;dT Ad; = «;

Beniamin BOGOSEL Computational Maths 2

18/39

Why is this concept useful?

Proposition 2 (Solve a system using Conjugate Directions)

Let A be a symmetric positive-definite matrix and di, ..., d, a (complete) system
of n non-zero A-orthogonal vectors. Then the solution x* to the system Ax = b

is given by the formula
_ Z b7 d;
dT Ad; 9

* An equivalent formulation:

Alb = Z b4, zn:#d-cﬂ b
d Ad 4= = d/Ad; ™

which gives us the explicit inverse of A

n

1
—1 Z T
A dTAd; 99

j=1 J

Beniamin BOGOSEL Computational Maths 2 19/39

Why is this concept useful?

Proposition 2 (Solve a system using Conjugate Directions)

Let A be a symmetric positive-definite matrix and di, ..., d, a (complete) system
of n non-zero A-orthogonal vectors. Then the solution x* to the system Ax = b

is given by the formula
B Z b d;
dTAd %

* An equivalent formulation:

n n 1
-1 T
b= ——dd' | b
Z dTAd J Jz:; dJTAdJ J=J

which gives us the explicit inverse of A
n

1
-1 _ T
AT =D dTAd,

j=1 " J
* All this is good when we know a complete family of A-orthogonal directions!

Beniamin BOGOSEL Computational Maths 2 19/39

Conjugate Directions: quadratic case

Algorithm 2 (Conjugate Directions method)

Let A be a n X n symmetric positive-definite matrix, b a vector and
f(x) = xTAx — bT x the quad. form associated to A and b.

Let dy, ..,d,_1 be a system of A-orthogonal vectors and xg a starting point.
Then, with the notation g; = Vf(x;) = Ax; — b, the iterative process
d;Tgi .
T Ad’ i=1,...n

I 1

converges to the unique minimizer x* of f in n steps.

Xit1 = Xi + vidi, ¥i =

* The step ~; is optimal in the direction d;: define g(t) = f(x + td) then
q(t)=Vf(x+td)-d=d-VFf(x)+td"Ad

* Proof: just look at x, and see that it gives exactly the formula for x*.

* Important idea: dixA(xk — x0) =0 for any k >0

Beniamin BOGOSEL Computational Maths 2

20/39

Conjugate Directions: quadratic case

Algorithm 2 (Conjugate Directions method)

Let A be a n X n symmetric positive-definite matrix, b a vector and
f(x) = 1xTAx — b7 x the quad. form associated to A and b.

Let dy, ..,d,_1 be a system of A-orthogonal vectors and xqy a starting point.
Then, with the notation g; = Vf(x;) = Ax; — b, the iterative process

d;Tgi .
T Ad i=1,...,n

i 1
converges to the unique minimizer x* of f in n steps.

Xiy1 = X; +7idi, Y =

* The step ; is optimal in the direction d;: define g(t) = f(x + td) then
q(t)=Vf(x+td)-d=d-VFf(x)+td"Ad

* Proof: just look at x, and see that it gives exactly the formula for x*.

* Important idea: dxA(xxk — x9) = 0 for any k >0

* Again: all this is good when we know a complete family of A-orthogonal

directions!

Beniamin BOGOSEL Computational Maths 2 20/39

Properties of the Conjugate Directions Method

* define for each i > 1 the linear space B;_; = Span{dp, ..., d;i_1}
* if we define the affine subspaces M; = xg + B;_1 then
{xt=MycM C..CcM,=R"
* the Conjugate Directions method generate the minimizers of f in each of the
affine spaces M;

Proposition 3

For every 1 < i < n the vector x; is the minimizer of f on the affine subspace
M; = xo + Bi_1. In particular, as shown previously, x; minimizes f on the line
{X,'_l +tdi_q:te R}

Proof: x Compute the gradient g; = Vf(x;) = Ax; — b and note that g; is
orthogonal to dy, ..., d;j_1.

* Then obtain that (Vf(x;),x — x;) =0 for x € xo + Bi_1.

* f is strictly convex so Euler's inequality tells us that x; is indeed the minimizer
of finxp+ B;_1.

Beniamin BOGOSEL Computational Maths 2 21/39

Build a basis of conjugated directions

* recall the Gram-Schmidt procedure
* define the A-projection of v on u:
. {(u, v) uT Av
roj,(v) = =——u
proj,(v) (u, u) uT Au

Algorithm 3 (Gram-Schmidt)

0. Take a basis (v;) of R": e.g. the canonical basis.
1. u =wv

2. up = v — proj, (v2)

3. u3 = vz — proj, (v3) — proj,,(vs)

n. U, = vy — proj, (vp) — ... — proj, _,(va)

In the end normalize the vectors: d; = ——~—u;
\ul Auj

* in this form the process is not numerically stable: due to rounding errors the

vectors u, may not be exactly orthogonal...

Beniamin BOGOSEL Computational Maths 2

22/39

Conjugate Gradient Method

* we can compute the family of A-orthogonal directions during the optimization
algorithm

Algorithm 4 (Conjugate Gradient)

Choose arbitrary initialization point xo and set dy = —go = —Vf(x) = b — Axg
Loopon: i =0,....,.n—1

e if Vf(x;) = 0 then stop.

: d'Tgi
@ Xip1 = X; + vid; with ;i = ——
* dT Ad;
o Compute new gradient gi+1 = Vf(xj41) = Axiy1 — b
T .
. . . g,'+1Ad:
o Compute new direction di11 = —gi1 + Bid; with B; = 47 Ad

* as before ; is the optimal step in the direction d;

* the parameter 3; is chosen such that d,-THAd,- =0

* the new direction d;1; is given by the projection of the anti-gradient direction
—gi+1 on the previous direction

Beniamin BOGOSEL Computational Maths 2 23/39

Main properties of CG

Proposition 4 (CG is a Conjugate Direction method)

If the algorithm does not terminate at step i then:
@ the gradients gy, ...,gi—1 at xg, ..., X;_1 are non-zero and
Span{go; &1, - &i—1} = Span{go, Ago, .-, A" 'go}
@ The directions dy, ..., d;_1 are non-zero and
Span{dy, di, ..., d;_1} = Span{go, Ago, .-, A" 1go}
@ The directions dy, ...,d;_1 are A orthogonal
o Alternative formulas for ~y; and f3;:

T T
8 8i 8i+18i+1
Vi = and B = ————.
d] Ad; &' &i

* A sequence of the type gy, Ago, A%go, ... is called a Krylov sequence

Beniamin BOGOSEL Computational Maths 2 24/39

Consequences and convergence

* x; is the minimizer of f in the affine subspace

Xo + Span{dy, ..., di_1} = xo + Span{go, Ago, ..., A 1gp}
* X; is the minimizer of f in the affine subspace generated by xp and polynomials
of A of degree at most i — 1 times gy (denote this polynomial space by P;_1)

x0 + {p(A)go : Z piz

* error in terms of the objective function: E(x) = f(x) —minf = 3(x—x")TA(x — x*)

Proposition 5 (Error for CG)

E(x;)) = min —(xo—x JA(ld —Ap(A))2(x0—x*)

PEPi—1

* Proof: write x; = xp + p(A)go and recall that Vf(x;) = A(x; — x*)

Beniamin BOGOSEL Computational Maths 2 25/39

Error in terms of the spectrum of A

Corollary

Let ¥ be the spectrum of A. Then

i) <
E(xi) < E(Xo)prggl L 2(\),

where P is the set of polynomials p of degree at most i such that p(0) = 1.

Another estimate is

2
E(x) <= |x Xo| m7|;1 Tea%)\p (M),

* Proof: use an orthonormal basis made of eigenvectors of A
* denote by @ the condition number of A. Then there exists a polynomial

q € P; such that
— 2s
max gs(\)? < 4 (Q- 1)
AET VQ+1

Beniamin BOGOSEL Computational Maths 2

26/39

Error estimate in terms of the condition number

* for the Conjugate Gradient algorithm we have
2N
-1
E(xy) < 4 <\/5) E(x0),
VQ+1
where Q is the condition number of A.
* compare this with the error estimate for the Steepest-Descent

E(a) < (g;i)w E()

x in order to reduce the initial error by a factor of € one needs to do O(Q) steps

with Steepest Descent compared to O(y/Q) steps with CG. This is a big

difference!

* CG is supposed to converge in n iterations, however rounding errors may

prevent the convergence!

* moreover, if A has k < n distinct eigenvalues then CG converges in k

iterations!

* Often, for n large, the process is stopped before reaching n iterations, when

the error estimate is small enough

Beniamin BOGOSEL Computational Maths 2

27/39

Example: Hilbert matrices

A= (1/(i+j—1))i<ij<n, ill conditioned

* below you can see a comparison between GD with optimal step and CG. The
residual |Ax — b| is plotted at every iteration

* the residual decreases slowly for GD: the algorithm tends to go multiple times
in the same direction! CG optimizes once and for all in the current direction.

* small residual does not mean that x is close to x*: Ax — b= A(x — x*)!

GD vs CG: Hilbert matrix N=4 Q=1.6e+04

GD

1077 « CG
104
1077
10-10 4
10713,
10-16

[25 50 75 100 125 150 175 200

Beniamin BOGOSEL Computational Maths 2 28/39

Example: Hilbert matrices

A= (1/(i+j—1))i<ij<n, ill conditioned

* below you can see a comparison between GD with optimal step and CG. The
residual |Ax — b| is plotted at every iteration

* the residual decreases slowly for GD: the algorithm tends to go multiple times
in the same direction! CG optimizes once and for all in the current direction.

* small residual does not mean that x is close to x*: Ax — b= A(x — x*)!

GD vs CG: Hilbert matrix N=6 Q=1.5e+07

10t o
10714 *° . CG‘
1073
10-%
10-7
10°?
10711_
10713,
10715,
[25 50 75 00 125 150 175 200

Beniamin BOGOSEL Computational Maths 2 28/39

Example: Hilbert matrices

A= (1/(i+j—1))i<ij<n, ill conditioned

* below you can see a comparison between GD with optimal step and CG. The
residual |Ax — b| is plotted at every iteration

* the residual decreases slowly for GD: the algorithm tends to go multiple times
in the same direction! CG optimizes once and for all in the current direction.

* small residual does not mean that x is close to x*: Ax — b= A(x — x*)!

GD vs CG: Hilbert matrix N=8 Q=1.5e+10

H
5
2
x X

GD‘

-10
10 %

x

X

10712 4)&;
X

10714 4 =

10716 T T T T T T T T T
o 25 50 75 100 125 150 175 200

Beniamin BOGOSEL Computational Maths 2 28/39

Example: Hilbert matrices

A= (1/(i+j—1))i<ij<n, ill conditioned

* below you can see a comparison between GD with optimal step and CG. The
residual |Ax — b| is plotted at every iteration

* the residual decreases slowly for GD: the algorithm tends to go multiple times
in the same direction! CG optimizes once and for all in the current direction.

* small residual does not mean that x is close to x*: Ax — b= A(x — x*)!

GD vs CG: Hilbert matrix N=10 Q=1.6e+13

10t
GD
.
1071 4 « CG
F
1073
10°°
1077
¢ .
1079 .
L1
.
10711 ope
107134 :
10715 4
0 25 50 75 100 125 150 175 200

Beniamin BOGOSEL Computational Maths 2 28/39

Important application: approximate solution of PDEs

o Consider Laplace’s equation

Find u € H}(D) such that { _AZ - f inD

0 ondD

where f € L?(D) is a given source.

@ It is possible to associate to this a variational formulation:

Find u € V such that Vv € V we have a(u, v) = {(v))

where

o The Hilbert space V is a Sobolev space Hg(D)
e a(-,-) is a bilinear form on V given by a(u,v) = [, Vu - Vvdx
o /(-) is a linear form on V given by £(v) = [, fvdx

@ Lax-Milgram's theorem assures us that such a problem has a solution on V.

Beniamin BOGOSEL Computational Maths 2 29/39

Finite element method

@ The finite element method proposes to search for an approximation uy in a
finite dimension subspace V), C V.

@ the variational formulation is replaced by:

Find uj, € V}, such that Vv, € V}, we have a(up, vi) = £(vy) J

@ Advantage : V), being of finite dimension, we can choose a basis
B = {p;}Y, and the variational formulation becomes a linear system
Al = b with
A= (alpi, 1)), b= (lei))
where i are the coordinates of uj, in the basis B.

@ The choice of the basis is important: one objective is to have a system
given by a sparse matrix

Beniamin BoGOSEL Computational Maths 2 30/39

which consists of a partitions

31/39

Computational Maths 2

TSTEALIRRS
ORISR

Construct a finite element space

@ The domain D is discretized using a mesh 7,

in triangles in 2D or tetrahedra in 3D.

@ The parameter h which indicates the convergence of the method is typically

related to the size of the mesh elements.

Beniamin BOGOSEL

Construct a finite element space (2)

A basis {1, ..., pn, } of finite element functions is introduced on the mesh 7y
Example

@ N is the number of vertices aj, ..., an, of the mesh

@ For each i =1,..., Ny, ; is affine on each triangle T € T, and
vi(aj) =1 et pi(aj) = 0 pour i # j

Beniamin BOGOSEL Computational Maths 2 32/39

Formulation of a matrix system

Decompose the solution uy, in the basis of finite elements

Ny
=3 Ui
i=1
and the variational problem becomes a linear system of size Ny x N
KU="f
where

o U= : is the vector of coefficients
UN,,
e K is the rigidity matrix given by Kj; = a(¢i, ¢))
o F is the vector F = (¢(¢i))i=1....N,-
* The matrix K will be symmetric and positive-definite so we are in the good
framework where CG works!
x when Nj, is large (a few tens of thousands of elements) direct methods will fail

to work (computation time, memory limitations)
* CG will work well even for Nj, > 10°

Beniamin BOGOSEL Computational Maths 2 33/39

Some results

sy |

bt A
PR A
AR K]
e T S|
RS A

ROSK o

£
X

f

S N N S SRS
20
o
5

SRR
S5
ER

PAREDRRKT

£
RUKEDRY
RRPSARRES
DORKPIRRS
RRERNRN

4
PRRRPRKRRG

KRS

]
N A AT S|
OO RN
KRR KR

N KRS
PEELES
S

i
oo

o
v

ATTATAPAPAPATA A S AT
X

N

o

8

N

]

£ sy
e (LR
sz P
FIREKE |
BN v danal
(RS e
SRR Az
FADETER e
RN S |
RN DRI KIS R SRS
e N e e
T Th TN e AT AT N A AP A A TATA S A s A A e
RS AR KRR KR B Ceeed]

TR0
PREOiA
SRR

Yoy,
Ve,
P
L A
S
Yok

AYAVaVg!

Y
dis,
S
i

SIS
XK

XRK]

Varavvs

F.
SEERERRG
s

o
TR
o

e
LR

KA
5N
LT

K
E

Computational Maths 2 34/39

Beniamin BOGOSEL

CG for general functions

Algorithm 5 (Fletcher-Reeves CG on R")

Choose a starting point xp. Set cycle counter k = 1.
Cycle k: Initialization of the cycle: Given xo compute go = Vf(xp),do = —g0
Inner Loop: fori=0,...,n—1

o if g = 0 terminate, otherwise set x; 11 as the minimizer of f(x; + td;)
e compute gi11 = Vf(xit1)

-
_ &i118i+1

@ set diy1 = —giy1 + Bid; with 3; = =

When the loop is finished replace xg with x, and restart.

v

* note that in the inner loop we have a Steepest Descent line-search: this is not
applicable in general. A line-search procedure should be used instead!
* It can be proved that in the non-degenerate case the convergence is quadratic
in the number of cycles i.e.

‘Xk+1 _X*l < C|Xk _X*|2

where x¥ is the sequence of starting points for cycles

Beniamin BOGOSEL Computational Maths 2 35/39

Comparison with previous methods

* again on the Rosenbrock function for N = 100
* in general nonlinear-CG converges faster than GD but not necessarily faster
than quasi-Newton methods

Comparison: Rosenbrock N=100

bi x Newton

102 4
x DFP
o .+ BFGS
X « LBFGS
CG
10764
]
10201 [
10714 %
Ed
1071 |
10-22 x

0 200 400 600 800

Beniamin BOGOSEL Computational Maths 2 36/39

Conclusion on Conjugate Gradient method

@ when a complete system of A-orthogonal directions is known everything is
explicit

@ it can be made into an iterative algorithm with a convergence ratio way
better than Steepest Descent

@ it converges in n iterations (theoretically). In practice, for large n, we
usually stop the process once the error estimate

E(xy) < 4 (\/\/g:)m E(x0)

is satisfying.
@ cost of a step in CG:
O(n) + cost of a matrix-vector multiplication d — Ad.
This is particularly efficient when A is sparse (has few non-zero elements)

@ Disadvantage: sensitivity to the condition number!

Beniamin BOGOSEL Computational Maths 2 37/39

Conclusions: unconstrained optimization in ND

@ Gradient Descent algorithms: sensitive to conditioning!

@ Newton methods: fast convergence under right hypotheses. Major practical
inconveniences:

e compute Hessian matrix and (possibly) store it
o doesn’t necessarily decrease the function value
e solve a linear system at every iteration

@ variable metric methods: compute an approximation of the inverse Hessian

e BFGS: rank 2 updates, standard in available implementations
o even better for large n: L-BFGS - limit memory by using only information
from the previous m iterations

e Conjugate Gradient methods: less sensitive to conditioning than Steepest
Descent

@ Newton-Gauss: non-linear least squares

@ Nedler-Mead: gradient free method

Beniamin BOGOSEL Computational Maths 2 38/39

Practical discussion

* get used to the structure of algorithms which are already implemented: in the
practical session you will play with tools from scipy.optimize

* keep in mind to minimize the number of function evaluations in your codes:
not all functions to be optimized are computed in a cheap way

@ when the value of a function or its gradient are used multiple times store
them in some variables

@ in some computations involving physical simulations the gradient can often
be computed using existing information from the solution given by the
model: there is no point computing it multiple times

Beniamin BOGOSEL Computational Maths 2 39/39

	Optimization in higher dimensions
	Quasi-Newton Methods
	Conjugate Gradient Method

