Optimization in higher dimensions

- Quasi-Newton Methods
- Conjugate Gradient Method

Optimization in higher dimensions

- Quasi-Newton Methods
- Conjugate Gradient Method

A bit of history

[Nocedal, Wright, Numerical Optimization 06], Chapters 6-7
\star in the 50s W.C. Davidon used "coodrdinate descent" method (GD on coordinates)

* the computer would always crash before the simulation was finished
\star Davidon decided to find a way of accelerating the optimization process: he found one of the most creative ideas in nonlinear optimization
* Fletcher and Powell demonstrated that this algorithm was faster and more reliable than existing methods at the time
* paradoxically, Davidon's paper was not accepted for publication. It remained a technical report for more than thirty years until it appeared in SIAM Journal on Optimization in 1991!

Motivation

Recall the Variable Metric Method and replace A_{i}^{-1} by S_{i} :

Algorithm 1 (Generic Variable Metric method)

Choose the starting point x_{0}
Iteration i :

- compute $f\left(x_{i}\right), \nabla f\left(x_{i}\right)$ and eventually $D^{2} f\left(x_{i}\right)$
- choose a symmetric positive-definite matrix S_{i} : compute the new direction

$$
d_{i}=-S_{i} \nabla f\left(x_{i}\right)
$$

- perform a line-search from x_{i} in the direction d_{i} giving a new iterate

$$
x_{i+1}=x_{i}+t_{i} d_{i}=x_{i}-t_{i} S_{i} \nabla f\left(x_{i}\right)
$$

\star in the modified Newton method S_{i} is computed as follows: find the Hessian $D^{2} f\left(x_{i}\right)$, modify it to make it "well positive definite", then invert it or solve $S_{i} d_{i}=\nabla f\left(x_{i}\right)$

* in quasi-Newton method we try to skip all of this and compute S_{i} recursively with one objective: $S_{i}-\left(D^{2} f\left(x_{i}\right)\right)^{-1} \rightarrow 0$
\star minimize $f(x)=\frac{1}{2} x^{T} A x-b^{T} x$ with Steepest Descent line-search \star denote $E\left(x_{i}\right)=f\left(x_{i}\right)-\min f$: error in terms of objective function $\star x_{i+1}=x_{i}-t_{\text {opt }} S_{i} \nabla f\left(x_{i}\right)$ is equivalent to a change of coordinates $\xi=S_{i}^{1 / 2} x$ \star the step i in the VM method is just a Steepest-Descent step for the matrix $S_{i}^{1 / 2} A S_{i}^{1 / 2}$. Therefore we have the estimate

$$
E\left(x_{i+1}\right) \leq\left(\frac{Q-1}{Q+1}\right)^{2} E\left(x_{i}\right)
$$

where Q is the condition number of $S_{i}^{1 / 2} A S_{i}^{1 / 2}$
\star if S_{i} is close to $D^{2} f\left(x_{i}\right)^{-1}=A^{-1}$ then $S_{i}^{1 / 2} A S_{i}^{1 / 2}$ is close to the identity matrix so Q is close to 1 .
\star Finally, if Q converges to 1 , we eventually get that $E\left(x_{i+1}\right) / E\left(x_{i}\right) \rightarrow 0$, i.e. super-linear convergence

Basic rules for updating S_{i}

\star Taylor expansion formula tells us that

$$
\nabla f\left(x_{i+1}\right)-\nabla f\left(x_{i}\right) \approx D^{2} f\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)
$$

\star Therefore, it is reasonable to request that

$$
S_{i+1}\left(\nabla f\left(x_{i+1}\right)-\nabla f\left(x_{i}\right)\right)=x_{i+1}-x_{i}
$$

called the secant relation (make parallel with the 1D case)
\star With the notations $g_{i}=\nabla f\left(x_{i}\right), p_{i}=x_{i+1}-x_{i}, q_{i}=g_{i+1}-g_{i}$ we have

$$
S_{i+1} q_{i}=p_{i},
$$

called the quasi-Newton equation

* this leaves us with infinitely many possibilities... another goal is that

$$
S_{i+1}-S_{i} \text { is as simple as possible! }
$$

* initialization? one may simply choose $S_{0}=\mathrm{Id}$
* idea: find $S_{i+1}=S_{i}+B_{i}$ where B_{i} has low rank
\star Rank 1 updates: $B_{i}=\alpha_{i} v_{i} v_{i}^{T}$ - one may find B_{i} such that the quasi-Newton relation holds

$$
S_{i+1}=S_{i}+\alpha_{i} z_{i} z_{i}^{T}
$$

\star the quasi-Newton relation $p_{i}=S_{i+1} q_{i}$ implies

$$
z_{i}=\omega_{i}\left(p_{i}-S q_{i}\right)
$$

\star in the end we get

$$
S_{i+1}=S_{i}+\frac{1}{\left(p_{i}-S_{i} q_{i}\right)^{T} q_{i}}\left[p_{i}-S_{i} q_{i}\right]\left[p_{i}-S_{i} q_{i}\right]^{T}
$$

\star not possible to guarantee that S_{i+1} is positive definite if S_{i} is

Rank 2 updates: DFP

夫 Davidon-Fletcher-Powell: historically, the first "good" quasi-Newton method \star use rank 2 updates: guarantee the positive-definiteness of S_{i+1} under reasonable hypotheses

Proposition 1

Let S be a positive definite symmetric matrix and p and q be two vectors such that $p^{T} q>0$. Then the matrix

$$
S^{\prime}=S+\frac{1}{p^{T} q} p p^{T}-\frac{1}{q^{T} S q} S q q^{T} S
$$

is symmetric positive definite and satisfies $S^{\prime} q=p$.

* Proof: just compute $S^{\prime} q$ and $x S^{\prime} x$ and do a bit of linear algebra.
\star How to get this idea? Just choose $S_{i+1}=S_{i}+\alpha u u^{T}+\beta v v^{\top}$ (rank 2 update)
\star then choose $u=p_{i}$ and $v=S_{i} q_{i}$
* DFP update:

$$
S_{i+1}=S_{i}+\frac{1}{p_{i}^{T} q_{i}} p_{i} p_{i}^{T}-\frac{1}{q_{i}^{T} S_{i} q_{i}} S_{i} q_{i} q_{i}^{T} S_{i}
$$

\star the condition $q_{i}^{T} p_{i}>0$ is equivalent to

$$
\left(\nabla f\left(x_{i+1}\right)-\nabla f\left(x_{i}\right)\right) \cdot\left(x_{i+1}-x_{i}\right)>0,
$$

which is true if f is strictly convex: reasonable assumption near a minimum... \star when using Wolfe line-search we can guarantee that $q_{i}^{\top} p_{i}>0$.
\star for the quadratic case DFP becomes the conjugate gradient method \star it turns out DFP is not the best method out there...

- it does not "self-correct" when S_{i} gets far from the inverse Hessian

Duality: quasi-Newton relation

\star any quasi-Newton update can generate another one:

- $S_{i+1}=S_{i}+B_{i}\left(S_{i}, p_{i}, q_{i}\right)$ such that $S_{i+1} q_{i}=p_{i}$
- then $q_{i}=S_{i+1}^{-1} p_{i}$ where $S_{i+1}^{-1}=\left(S_{i}+B\left(S_{i}, p_{i}, q_{i}\right)\right)^{-1}$
- switching the roles of p_{i} and q_{i} we get a different update, called the dual update
\star how to get the dual of DFP: replace S_{i} with S_{i}^{-1} and interchange p_{i} and q_{i}

$$
S_{i+1}^{-1}=S_{i}^{-1}+\frac{1}{q_{i}^{T} p_{i}} q_{i} q_{i}^{T}-\frac{1}{p_{i}^{T} S_{i}^{-1} p_{i}} S_{i}^{-1} p_{i} p_{i}^{T} S_{i}^{-1}
$$

* a direct computation or Sherman-Morrison's formula gives:

$$
S_{i+1}=S_{i}-\frac{p_{i} q_{i}^{T} S_{i}+S_{i} q_{i} p_{i}^{T}}{p_{i}^{T} q_{i}}+\left(1+\frac{q_{i}^{T} S_{i} q_{i}}{p_{i}^{T} q_{i}}\right) \frac{p_{i} p_{i}^{T}}{p_{i}^{T} q_{i}}
$$

The BFGS update

^ BFGS: Broyden, Fletcher, Goldfarb, Shanno

$$
S_{i+1}=S_{i}-\frac{p_{i} q_{i}^{T} S_{i}+S_{i} q_{i} p_{i}^{T}}{p_{i}^{T} q_{i}}+\left(1+\frac{q_{i}^{T} S_{i} q_{i}}{p_{i}^{T} q_{i}}\right) \frac{p_{i} p_{i}^{T}}{p_{i}^{T} q_{i}}
$$

* widely used in most of the codes implemented today
* since BFGS is the dual of DFP, and a matrix is positive-definite if and only if its inverse is positive-definite, the BFGS update maintains positive-definiteness if $p_{i}^{T} q_{i}>0$ (same hypothesis as for DFP to work...)
[Nocedal, Wright, Numerical Optimization 06], Chapters 6-7
* Local super-linear convergence: If an algorithm using BFGS with Wolfe's line-search converges to x^{*} where f is strongly convex with Lipschitz Hessian then the convergence rate is super-linear
\star BFGS can also be found by minimizing a certain distance between the inverse Hessian and the rank 2 update S_{i+1} among matrices verifying the secant condition!
* BFGS has effective self-correcting properties

Extreme cases

Dimension 1:

* the quasi-Newton relation is just $S_{i+1}=\frac{p_{i}}{q_{i}}$ and we get

$$
x_{i+1}=x_{i}-\frac{x_{i}-x_{i-1}}{f^{\prime}\left(x_{i}\right)-f^{\prime}\left(x_{i-1}\right)} f^{\prime}\left(x_{i}\right)
$$

which is the false position (or secant) method

Large dimension:
\star same disadvantage as Newton methods - a $n \times n$ matrix may be too large to store in memory

* it is possible to store only the update vectors and compute matrix - vector products by doing only scalar - products

$$
\left(u v^{\top}\right) x=u\left(v^{\top} x\right)=\left(v^{\top} x\right) u
$$

\star limited memory-BFGS (LBFGS): use only the last m vectors p_{i}, q_{i} in order to compute S_{i+1} - good behavior in practice despite being an approximation of BFGS

Computational cost per iteration

* after the function value, gradient and Hessian are computed (this is non-negligible in some applications)
- GD: $O(N)$
- Newton: $O\left(N^{3}\right)$ in worst case (solving a linear system) - it all depends on the structure of the Hessian
- BFGS, DFT: $O\left(N^{2}\right)$ - matrix vector products
- LBFGS: $O(m N)$ where m is the fixed number of gradients to remember

Practical example: the N-dimensional Rosenbrock

$$
f(x)=\sum_{i=1}^{N-1}\left[100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right]
$$

with global minimum at $x^{*}=(1,1, \ldots, 1)$.
\star ill conditioning: the optimization process wants to achieve $x_{i+1} \approx x_{i}^{2}$ rather than minimizing $\left(x_{i}-1\right)^{2}$ and go towards the global minimum!

Practical example: the N-dimensional Rosenbrock

$$
f(x)=\sum_{i=1}^{N-1}\left[100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right]
$$

with global minimum at $x^{*}=(1,1, \ldots, 1)$.
\star ill conditioning: the optimization process wants to achieve $x_{i+1} \approx x_{i}^{2}$ rather than minimizing $\left(x_{i}-1\right)^{2}$ and go towards the global minimum!

Practical example: the N-dimensional Rosenbrock

$$
f(x)=\sum_{i=1}^{N-1}\left[100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right]
$$

with global minimum at $x^{*}=(1,1, \ldots, 1)$.
\star ill conditioning: the optimization process wants to achieve $x_{i+1} \approx x_{i}^{2}$ rather than minimizing $\left(x_{i}-1\right)^{2}$ and go towards the global minimum!

Practical example: the N-dimensional Rosenbrock

$$
f(x)=\sum_{i=1}^{N-1}\left[100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right]
$$

with global minimum at $x^{*}=(1,1, \ldots, 1)$.
\star ill conditioning: the optimization process wants to achieve $x_{i+1} \approx x_{i}^{2}$ rather than minimizing $\left(x_{i}-1\right)^{2}$ and go towards the global minimum!

Conclusion: quasi-Newton methods

- equivalent of the Secant method in higher dimensions
- achieve super-linear convergence without using the Hessian
- for extremely large n BFGS may be costly from a memory point of view: if possible use L-BFGS instead
- BFGS and LBFGS are often available in standard optimization libraries: Example scipy.optimize.minimize

Optimization in higher dimensions

- Quasi-Newton Methods
- Conjugate Gradient Method

Motivation

\star if A is symmetric, positive-definite then solving the system $A x=b$ is equivalent to minimizing the quadratic function

$$
f: x \mapsto \frac{1}{2} x^{\top} A x-b \cdot x
$$

\star the gradient of this quadratic function is $\nabla f(x)=A x-b$
\star direct method: process details about the matrix A (factorization) and then solve the system: complexity is between $O\left(n^{2}\right)$ and $O\left(n^{3}\right)$.
\star in contrast to this, iterative algorithms produce an approximation of the solution, which might be good enough for very large n

* for example: the gradient algorithm with Steepest-Descent will quickly converge to the optimum, but we can do better

Conjugate directions

* A given symmetric positive-definite matrix A defines a scalar product

$$
\langle x, y\rangle=x^{\top} A y
$$

\star Two (non-zero) directions d_{1} and d_{2} are called conjugate with respect to A if they are orthogonal w.r.t. the above scalar product:

$$
d_{1} \text { and } d_{2} \text { are conjugate } \Longleftrightarrow d_{1} A d_{2}=0
$$

\star we may also call two directions which are conjugate w.r.t. A as being A-orthogonal
\star why is this useful? suppose d_{1}, \ldots, d_{k} are mutually A-orthogonal and we have the decomposition

$$
d=\sum_{j=1}^{k} \alpha_{j} d_{j}
$$

Then, using the orthogonality property, we can find the coefficients α_{i} explicitly:

$$
d_{i}^{T} A d=\alpha_{i} d_{i}^{T} A d_{i} \Rightarrow \alpha_{i}=\frac{d_{i}^{T} A d}{d_{i}^{T} A d_{i}}=\frac{\left\langle d, d_{i}\right\rangle}{\left\langle d_{i}, d_{i}\right\rangle}
$$

\star Consequence: If d_{1}, \ldots, d_{k} are mutually orthogonal then they are linearly independent! (for a proof, use the above formula to see that $d=0 \Rightarrow \alpha_{i}=0$)

Why is this concept useful?

Proposition 2 (Solve a system using Conjugate Directions)

Let A be a symmetric positive-definite matrix and d_{1}, \ldots, d_{n} a (complete) system of n non-zero A-orthogonal vectors. Then the solution x^{*} to the system $A x=b$ is given by the formula

$$
x^{*}=\sum_{j=1}^{n} \frac{b^{T} d_{j}}{d_{j}^{T} A d_{j}} d_{j}
$$

* An equivalent formulation:

$$
x^{*}=A^{-1} b=\sum_{j=1}^{n} \frac{b^{T} d_{j}}{d_{j}^{T} A d_{j}} d_{j}=\left(\sum_{j=1}^{n} \frac{1}{d_{j}^{T} A d_{j}} d_{j} d_{j}^{T}\right) b
$$

which gives us the explicit inverse of A

$$
A^{-1}=\sum_{j=1}^{n} \frac{1}{d_{j}^{T} A d_{j}} d_{j} d_{j}^{T}
$$

Why is this concept useful?

Proposition 2 (Solve a system using Conjugate Directions)

Let A be a symmetric positive-definite matrix and d_{1}, \ldots, d_{n} a (complete) system of n non-zero A-orthogonal vectors. Then the solution x^{*} to the system $A x=b$ is given by the formula

$$
x^{*}=\sum_{j=1}^{n} \frac{b^{T} d_{j}}{d_{j}^{T} A d_{j}} d_{j}
$$

* An equivalent formulation:

$$
x^{*}=A^{-1} b=\sum_{j=1}^{n} \frac{b^{T} d_{j}}{d_{j}^{T} A d_{j}} d_{j}=\left(\sum_{j=1}^{n} \frac{1}{d_{j}^{T} A d_{j}} d_{j} d_{j}^{T}\right) b
$$

which gives us the explicit inverse of A

$$
A^{-1}=\sum_{j=1}^{n} \frac{1}{d_{j}^{T} A d_{j}} d_{j} d_{j}^{T}
$$

\star All this is good when we know a complete family of A-orthogonal directions!

Conjugate Directions: quadratic case

Algorithm 2 (Conjugate Directions method)

Let A be a $n \times n$ symmetric positive-definite matrix, b a vector and $f(x)=\frac{1}{2} x^{\top} A x-b^{T} x$ the quad. form associated to A and b.

Let $d_{0}, . ., d_{n-1}$ be a system of A-orthogonal vectors and x_{0} a starting point.
Then, with the notation $g_{i}=\nabla f\left(x_{i}\right)=A x_{i}-b$, the iterative process

$$
x_{i+1}=x_{i}+\gamma_{i} d_{i}, \gamma_{i}=-\frac{d_{i}^{T} g_{i}}{d_{i}^{\top} A d_{i}}, i=1, \ldots, n
$$

converges to the unique minimizer x^{*} of f in n steps.

* The step γ_{i} is optimal in the direction d_{i} : define $q(t)=f(x+t d)$ then

$$
q^{\prime}(t)=\nabla f(x+t d) \cdot d=d \cdot \nabla f(x)+t d^{\top} A d
$$

\star Proof: just look at x_{n} and see that it gives exactly the formula for x^{*}.
\star Important idea: $d_{k} A\left(x_{k}-x_{0}\right)=0$ for any $k \geq 0$

Conjugate Directions: quadratic case

Algorithm 2 (Conjugate Directions method)

Let A be a $n \times n$ symmetric positive-definite matrix, b a vector and $f(x)=\frac{1}{2} x^{T} A x-b^{T} x$ the quad. form associated to A and b.

Let $d_{0}, . ., d_{n-1}$ be a system of A-orthogonal vectors and x_{0} a starting point.
Then, with the notation $g_{i}=\nabla f\left(x_{i}\right)=A x_{i}-b$, the iterative process

$$
x_{i+1}=x_{i}+\gamma_{i} d_{i}, \gamma_{i}=-\frac{d_{i}^{T} g_{i}}{d_{i}^{T} A d_{i}}, i=1, \ldots, n
$$

converges to the unique minimizer x^{*} of f in n steps.
\star The step γ_{i} is optimal in the direction d_{i} : define $q(t)=f(x+t d)$ then

$$
q^{\prime}(t)=\nabla f(x+t d) \cdot d=d \cdot \nabla f(x)+t d^{T} A d
$$

\star Proof: just look at x_{n} and see that it gives exactly the formula for x^{*}.
\star Important idea: $d_{k} A\left(x_{k}-x_{0}\right)=0$ for any $k \geq 0$
\star Again: all this is good when we know a complete family of A-orthogonal directions!

Properties of the Conjugate Directions Method

\star define for each $i \geq 1$ the linear space $\mathcal{B}_{i-1}=\operatorname{Span}\left\{d_{0}, \ldots, d_{i-1}\right\}$
\star if we define the affine subspaces $M_{i}=x_{0}+\mathcal{B}_{i-1}$ then

$$
\left\{x_{0}\right\}=M_{0} \subset M_{1} \subset \ldots \subset M_{n}=\mathbb{R}^{n}
$$

* the Conjugate Directions method generate the minimizers of f in each of the affine spaces M_{i}

Proposition 3

For every $1 \leq i \leq n$ the vector x_{i} is the minimizer of f on the affine subspace $M_{i}=x_{0}+\mathcal{B}_{i-1}$. In particular, as shown previously, x_{i} minimizes f on the line $\left\{x_{i-1}+t d_{i-1}: t \in \mathbb{R}\right\}$.

Proof: \star Compute the gradient $g_{i}=\nabla f\left(x_{i}\right)=A x_{i}-b$ and note that g_{i} is orthogonal to d_{0}, \ldots, d_{i-1}.
\star Then obtain that $\left\langle\nabla f\left(x_{i}\right), x-x_{i}\right\rangle=0$ for $x \in x_{0}+\mathcal{B}_{i-1}$.
$\star f$ is strictly convex so Euler's inequality tells us that x_{i} is indeed the minimizer of f in $x_{0}+\mathcal{B}_{i-1}$.

Build a basis of conjugated directions

* recall the Gram-Schmidt procedure
\star define the A-projection of v on u :

$$
\operatorname{proj}_{u}(v)=\frac{\langle u, v\rangle}{\langle u, u\rangle} u=\frac{u^{T} A v}{u^{T} A u} u
$$

Algorithm 3 (Gram-Schmidt)

0. Take a basis $\left(v_{i}\right)$ of \mathbb{R}^{n} : e.g. the canonical basis.
1. $u_{1}=v_{1}$
2. $u_{2}=v_{2}-\operatorname{proj}_{u_{1}}\left(v_{2}\right)$
3. $u_{3}=v_{3}-\operatorname{proj}_{u_{1}}\left(v_{3}\right)-\operatorname{proj}_{u_{2}}\left(v_{3}\right)$
n. $u_{n}=v_{n}-\operatorname{proj}_{u_{1}}\left(v_{n}\right)-\ldots-\operatorname{proj}_{u_{n-1}}\left(v_{n}\right)$

In the end normalize the vectors: $d_{i}=\frac{1}{\sqrt{u_{i}^{T} A u_{i}}} u_{i}$
\star in this form the process is not numerically stable: due to rounding errors the vectors u_{k} may not be exactly orthogonal...

Conjugate Gradient Method

\star we can compute the family of A-orthogonal directions during the optimization algorithm

Algorithm 4 (Conjugate Gradient)

Choose arbitrary initialization point x_{0} and set $d_{0}=-g_{0}=-\nabla f\left(x_{0}\right)=b-A x_{0}$
Loop on: $i=0, \ldots, n-1$

- if $\nabla f\left(x_{i}\right)=0$ then stop.
- $x_{i+1}=x_{i}+\gamma_{i} d_{i}$ with $\gamma_{i}=-\frac{d_{i}^{T} g_{i}}{d_{i}^{\top} A d_{i}}$
- Compute new gradient $g_{i+1}=\nabla f\left(x_{i+1}\right)=A x_{i+1}-b$
- Compute new direction $d_{i+1}=-g_{i+1}+\beta_{i} d_{i}$ with $\beta_{i}=\frac{g_{i+1}^{T} A d_{i}}{d_{i}^{T} A d_{i}}$
\star as before γ_{i} is the optimal step in the direction d_{i}
\star the parameter β_{i} is chosen such that $d_{i+1}^{T} A d_{i}=0$
\star the new direction d_{i+1} is given by the projection of the anti-gradient direction
$-g_{i+1}$ on the previous direction

Proposition 4 (CG is a Conjugate Direction method)

If the algorithm does not terminate at step i then:

- the gradients g_{0}, \ldots, g_{i-1} at x_{0}, \ldots, x_{i-1} are non-zero and $\operatorname{Span}\left\{g_{0}, g_{1}, \ldots, g_{i-1}\right\}=\operatorname{Span}\left\{g_{0}, A g_{0}, \ldots, A^{i-1} g_{0}\right\}$
- The directions d_{0}, \ldots, d_{i-1} are non-zero and $\operatorname{Span}\left\{d_{0}, d_{1}, \ldots, d_{i-1}\right\}=\operatorname{Span}\left\{g_{0}, A g_{0}, \ldots, A^{i-1} g_{0}\right\}$
- The directions d_{0}, \ldots, d_{i-1} are A orthogonal
- Alternative formulas for γ_{i} and β_{i} :

$$
\gamma_{i}=\frac{g_{i}^{T} g_{i}}{d_{i}^{T} A d_{i}} \text { and } \beta_{i}=\frac{g_{i+1}^{T} g_{i+1}}{g_{i}^{T} g_{i}} .
$$

\star A sequence of the type $g_{0}, A g_{0}, A^{2} g_{0}, \ldots$ is called a Krylov sequence

Consequences and convergence

$\star x_{i}$ is the minimizer of f in the affine subspace

$$
x_{0}+\operatorname{Span}\left\{d_{0}, \ldots, d_{i-1}\right\}=x_{0}+\operatorname{Span}\left\{g_{0}, A g_{0}, \ldots, A^{i-1} g_{0}\right\}
$$

$\star x_{i}$ is the minimizer of f in the affine subspace generated by x_{0} and polynomials of A of degree at most $i-1$ times g_{0} (denote this polynomial space by \mathcal{P}_{i-1})

$$
x_{0}+\left\{p(A) g_{0}: p(z)=\sum_{i=0}^{i-1} p_{i} z^{i}\right\}
$$

\star error in terms of the objective function: $E(x)=f(x)-\min f=\frac{1}{2}\left(x-x^{*}\right)^{\top} A\left(x-x^{*}\right)$

Proposition 5 (Error for CG)

$$
E\left(x_{i}\right)=\min _{p \in \mathcal{P}_{i-1}} \frac{1}{2}\left(x_{0}-x^{*}\right) A(\operatorname{ld}-A p(A))^{2}\left(x_{0}-x^{*}\right)
$$

\star Proof: write $x_{i}=x_{0}+p(A) g_{0}$ and recall that $\nabla f\left(x_{i}\right)=A\left(x_{i}-x^{*}\right)$

Corollary

Let Σ be the spectrum of A. Then

$$
E\left(x_{i}\right) \leq E\left(x_{0}\right) \min _{p \in \mathcal{P}_{i}^{*}} \max _{\lambda \in \Sigma} p^{2}(\lambda),
$$

where \mathcal{P}_{i}^{*} is the set of polynomials p of degree at most i such that $p(0)=1$.
Another estimate is

$$
E\left(x_{i}\right) \leq \frac{1}{2}\left|x^{*}-x_{0}\right|^{2} \min _{p \in \mathcal{P}_{i}^{*}} \max _{\lambda \in \Sigma} \lambda p^{2}(\lambda),
$$

* Proof: use an orthonormal basis made of eigenvectors of A
\star denote by Q the condition number of A. Then there exists a polynomial $q \in \mathcal{P}_{s}^{*}$ such that

$$
\max _{\lambda \in \Sigma} q_{s}(\lambda)^{2} \leq 4\left(\frac{\sqrt{Q}-1}{\sqrt{Q}+1}\right)^{2 s}
$$

Error estimate in terms of the condition number

* for the Conjugate Gradient algorithm we have

$$
E\left(x_{N}\right) \leq 4\left(\frac{\sqrt{Q}-1}{\sqrt{Q}+1}\right)^{2 N} E\left(x_{0}\right)
$$

where Q is the condition number of A.
\star compare this with the error estimate for the Steepest-Descent

$$
E\left(x_{N}\right) \leq\left(\frac{Q-1}{Q+1}\right)^{2 N} E\left(x_{0}\right)
$$

* in order to reduce the initial error by a factor of ε one needs to do $O(Q)$ steps with Steepest Descent compared to $O(\sqrt{Q})$ steps with CG. This is a big difference!
\star CG is supposed to converge in n iterations, however rounding errors may prevent the convergence!
\star moreover, if A has $k \leq n$ distinct eigenvalues then CG converges in k iterations!
* Often, for n large, the process is stopped before reaching n iterations, when the error estimate is small enough

Example: Hilbert matrices

$A=(1 /(i+j-1))_{1 \leq i, j \leq n}$, ill conditioned

* below you can see a comparison between GD with optimal step and CG. The residual $|A x-b|$ is plotted at every iteration
\star the residual decreases slowly for GD: the algorithm tends to go multiple times in the same direction! CG optimizes once and for all in the current direction.
\star small residual does not mean that x is close to $x^{*}: A x-b=A\left(x-x^{*}\right)$!

GD vs CG: Hilbert matrix $N=4 Q=1.6 e+04$

Example: Hilbert matrices

$A=(1 /(i+j-1))_{1 \leq i, j \leq n}$, ill conditioned

* below you can see a comparison between GD with optimal step and CG. The residual $|A x-b|$ is plotted at every iteration
\star the residual decreases slowly for GD: the algorithm tends to go multiple times in the same direction! CG optimizes once and for all in the current direction.
\star small residual does not mean that x is close to $x^{*}: A x-b=A\left(x-x^{*}\right)$!

Example: Hilbert matrices

$A=(1 /(i+j-1))_{1 \leq i, j \leq n}$, ill conditioned

* below you can see a comparison between GD with optimal step and CG. The residual $|A x-b|$ is plotted at every iteration
\star the residual decreases slowly for GD: the algorithm tends to go multiple times in the same direction! CG optimizes once and for all in the current direction.
\star small residual does not mean that x is close to $x^{*}: A x-b=A\left(x-x^{*}\right)$!

Example: Hilbert matrices

$A=(1 /(i+j-1))_{1 \leq i, j \leq n}$, ill conditioned

* below you can see a comparison between GD with optimal step and CG. The residual $|A x-b|$ is plotted at every iteration
\star the residual decreases slowly for GD: the algorithm tends to go multiple times in the same direction! CG optimizes once and for all in the current direction.
* small residual does not mean that x is close to $x^{*}: A x-b=A\left(x-x^{*}\right)$!

- Consider Laplace's equation

$$
\text { Find } u \in H_{0}^{1}(D) \text { such that }\left\{\begin{array}{rll}
-\Delta u & =f & \text { in } D \\
u & =0 & \text { on } \partial D
\end{array}\right.
$$

where $f \in L^{2}(D)$ is a given source.

- It is possible to associate to this a variational formulation:

Find $u \in V$ such that $\forall v \in V$ we have $a(u, v)=\ell(v)$
where

- The Hilbert space V is a Sobolev space $H_{0}^{1}(D)$
- $a(\cdot, \cdot)$ is a bilinear form on V given by $a(u, v)=\int_{D} \nabla u \cdot \nabla v d x$
- $\ell(\cdot)$ is a linear form on V given by $\ell(v)=\int_{D} f v d x$
- Lax-Milgram's theorem assures us that such a problem has a solution on V.
- The finite element method proposes to search for an approximation u_{h} in a finite dimension subspace $V_{h} \subset V$.
- the variational formulation is replaced by:

Find $u_{h} \in V_{h}$ such that $\forall v_{h} \in V_{h}$ we have $a\left(u_{h}, v_{h}\right)=\ell\left(v_{h}\right)$

- Advantage : V_{h} being of finite dimension, we can choose a basis $\mathcal{B}=\left\{\varphi_{i}\right\}_{i=1}^{N}$ and the variational formulation becomes a linear system $A \bar{u}=b$ with

$$
A=\left(a\left(\varphi_{i}, \varphi_{j}\right)\right), b=\left(\ell\left(\varphi_{i}\right)\right)
$$

where \bar{u} are the coordinates of u_{h} in the basis \mathcal{B}.

- The choice of the basis is important: one objective is to have a system given by a sparse matrix

Construct a finite element space

- The domain D is discretized using a mesh \mathcal{T}_{h} which consists of a partitions in triangles in 2D or tetrahedra in 3D.
- The parameter h which indicates the convergence of the method is typically related to the size of the mesh elements.

Construct a finite element space (2)

A basis $\left\{\varphi_{1}, \ldots, \varphi_{N_{h}}\right\}$ of finite element functions is introduced on the mesh \mathcal{T}_{h} Example

- N_{h} is the number of vertices $a_{1}, \ldots, a_{N_{h}}$ of the mesh
- For each $i=1, \ldots, N_{h}, \varphi_{i}$ is affine on each triangle $T \in \mathcal{T}_{h}$ and

$$
\varphi_{i}\left(a_{j}\right)=1 \text { et } \varphi_{i}\left(a_{j}\right)=0 \text { pour } i \neq j
$$

Formulation of a matrix system

Decompose the solution u_{h} in the basis of finite elements

$$
u_{h}=\sum_{i=1}^{N_{h}} u_{j} \varphi_{i}
$$

and the variational problem becomes a linear system of size $N_{h} \times N_{h}$

$$
K U=f
$$

where

- $U=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{N_{h}}\end{array}\right)$ is the vector of coefficients
- K is the rigidity matrix given by $K_{i j}=a\left(\varphi_{i}, \varphi_{j}\right)$
- F is the vector $F=\left(\ell\left(\varphi_{i}\right)\right)_{i=1, \ldots, N_{h}}$.
\star The matrix K will be symmetric and positive-definite so we are in the good framework where CG works!
* when N_{h} is large (a few tens of thousands of elements) direct methods will fail to work (computation time, memory limitations)
\star CG will work well even for $N_{h}>10^{5}$

Some results

CG for general functions

Algorithm 5 (Fletcher-Reeves CG on \mathbb{R}^{n})

Choose a starting point x_{0}. Set cycle counter $k=1$.
Cycle k : Initialization of the cycle: Given x_{0} compute $g_{0}=\nabla f\left(x_{0}\right), d_{0}=-g_{0}$ Inner Loop: for $i=0, \ldots, n-1$

- if $g_{i}=0$ terminate, otherwise set x_{i+1} as the minimizer of $f\left(x_{i}+t d_{i}\right)$
- compute $g_{i+1}=\nabla f\left(x_{i+1}\right)$
- set $d_{i+1}=-g_{i+1}+\beta_{i} d_{i}$ with $\beta_{i}=\frac{g_{i+1}^{T} g_{i+1}}{g_{i}^{T} g_{i}}$

When the loop is finished replace x_{0} with x_{n} and restart.

* note that in the inner loop we have a Steepest Descent line-search: this is not applicable in general. A line-search procedure should be used instead! \star It can be proved that in the non-degenerate case the convergence is quadratic in the number of cycles i.e.

$$
\left|x^{k+1}-x^{*}\right| \leq C\left|x^{k}-x^{*}\right|^{2}
$$

where x^{k} is the sequence of starting points for cycles

Comparison with previous methods

\star again on the Rosenbrock function for $N=100$

* in general nonlinear-CG converges faster than GD but not necessarily faster than quasi-Newton methods

Conclusion on Conjugate Gradient method

- when a complete system of A-orthogonal directions is known everything is explicit
- it can be made into an iterative algorithm with a convergence ratio way better than Steepest Descent
- it converges in n iterations (theoretically). In practice, for large n, we usually stop the process once the error estimate

$$
E\left(x_{N}\right) \leq 4\left(\frac{\sqrt{Q}-1}{\sqrt{Q}+1}\right)^{2 N} E\left(x_{0}\right)
$$

is satisfying.

- cost of a step in CG:

$$
O(n)+\text { cost of a matrix-vector multiplication } d \rightarrow A d
$$

This is particularly efficient when A is sparse (has few non-zero elements)

- Disadvantage: sensitivity to the condition number!

Conclusions: unconstrained optimization in ND

- Gradient Descent algorithms: sensitive to conditioning!
- Newton methods: fast convergence under right hypotheses. Major practical inconveniences:
- compute Hessian matrix and (possibly) store it
- doesn't necessarily decrease the function value
- solve a linear system at every iteration
- variable metric methods: compute an approximation of the inverse Hessian
- BFGS: rank 2 updates, standard in available implementations
- even better for large n : L-BFGS - limit memory by using only information from the previous m iterations
- Conjugate Gradient methods: less sensitive to conditioning than Steepest Descent
- Newton-Gauss: non-linear least squares
- Nedler-Mead: gradient free method
* get used to the structure of algorithms which are already implemented: in the practical session you will play with tools from scipy.optimize
* keep in mind to minimize the number of function evaluations in your codes: not all functions to be optimized are computed in a cheap way
- when the value of a function or its gradient are used multiple times store them in some variables
- in some computations involving physical simulations the gradient can often be computed using existing information from the solution given by the model: there is no point computing it multiple times

