Optimization in higher dimensions

- Quasi-Newton Methods
- Conjugate Gradient Method

Optimization in higher dimensions

• Quasi-Newton Methods

• Conjugate Gradient Method

[Nocedal, Wright, Numerical Optimization 06], Chapters 6-7

 \star in the 50s W.C. Davidon used "coodrdinate descent" method (GD on coordinates)

the computer would always crash before the simulation was finished
Davidon decided to find a way of accelerating the optimization process: he found one of the most creative ideas in nonlinear optimization

 \star Fletcher and Powell demonstrated that this algorithm was faster and more reliable than existing methods at the time

* paradoxically, Davidon's paper was not accepted for publication. It remained a technical report for more than thirty years until it appeared in *SIAM Journal on Optimization* in 1991!

Recall the Variable Metric Method and replace A_i^{-1} by S_i :

Algorithm 1 (Generic Variable Metric method)

Choose the starting point x_0 **Iteration** *i*:

- compute $f(x_i)$, $\nabla f(x_i)$ and eventually $D^2 f(x_i)$
- choose a symmetric positive-definite matrix S_i : compute the new direction $d_i = -S_i \nabla f(x_i)$

• perform a line-search from x_i in the direction d_i giving a new iterate

$$x_{i+1} = x_i + t_i d_i = x_i - t_i S_i \nabla f(x_i).$$

* in the modified Newton method S_i is computed as follows: find the Hessian $D^2 f(x_i)$, modify it to make it "well positive definite", then invert it or solve $S_i d_i = \nabla f(x_i)$ * in quasi-Newton method we try to skip all of this and compute S_i recursively

with one objective: $S_i - (D^2 f(x_i))^{-1} \rightarrow 0$

* minimize $f(x) = \frac{1}{2}x^T Ax - b^T x$ with Steepest Descent line-search * denote $E(x_i) = f(x_i) - \min f$: error in terms of objective function * $x_{i+1} = x_i - t_{opt}S_i\nabla f(x_i)$ is equivalent to a change of coordinates $\xi = S_i^{1/2}x$ * the step *i* in the VM method is just a Steepest-Descent step for the matrix $S_i^{1/2}AS_i^{1/2}$. Therefore we have the estimate

$$E(x_{i+1}) \leq \left(\frac{Q-1}{Q+1}\right)^2 E(x_i)$$

where Q is the condition number of $S_i^{1/2}AS_i^{1/2}$ \star if S_i is close to $D^2f(x_i)^{-1} = A^{-1}$ then $S_i^{1/2}AS_i^{1/2}$ is close to the identity matrix so Q is close to 1. \star Finally, if Q converges to 1, we eventually get that $E(x_{i+1})/E(x_i) \to 0$, i.e. super-linear convergence

Basic rules for updating S_i

 \star Taylor expansion formula tells us that

$$\nabla f(x_{i+1}) - \nabla f(x_i) \approx D^2 f(x_i)(x_{i+1} - x_i)$$

 \star Therefore, it is reasonable to request that

$$S_{i+1}(\nabla f(x_{i+1}) - \nabla f(x_i)) = x_{i+1} - x_i$$

called the secant relation (make parallel with the 1D case)

 \star With the notations $g_i = \nabla f(x_i), \; p_i = x_{i+1} - x_i, \; q_i = g_{i+1} - g_i$ we have $S_{i+1}q_i = p_i,$

called the quasi-Newton equation

 \star this leaves us with infinitely many possibilities... another goal is that $S_{i+1}-S_i \text{ is as simple as possible!}$

 \star initialization? one may simply choose ${\it S}_0={\rm Id}$

* idea: find $S_{i+1} = S_i + B_i$ where B_i has low rank * Rank 1 updates: $B_i = \alpha_i v_i v_i^T$ - one may find B_i such that the quasi-Newton relation holds

$$S_{i+1} = S_i + \alpha_i z_i z_i^T$$

 \star the quasi-Newton relation $p_i = S_{i+1}q_i$ implies

$$z_i = \omega_i (p_i - Sq_i)$$

 \star in the end we get

$$S_{i+1} = S_i + \frac{1}{(p_i - S_i q_i)^T q_i} [p_i - S_i q_i] [p_i - S_i q_i]^T$$

 \star not possible to guarantee that S_{i+1} is positive definite if S_i is

* Davidon-Fletcher-Powell: historically, the first "good" quasi-Newton method * use rank 2 updates: guarantee the positive-definiteness of S_{i+1} under reasonable hypotheses

Proposition 1

Let S be a positive definite symmetric matrix and p and q be two vectors such that $p^T q > 0$. Then the matrix

$$S' = S + \frac{1}{p^{T}q}pp^{T} - \frac{1}{q^{T}Sq}Sqq^{T}S$$

is symmetric positive definite and satisfies S'q = p.

* Proof: just compute S'q and xS'x and do a bit of linear algebra.

* How to get this idea? Just choose $S_{i+1} = S_i + \alpha u u^T + \beta v v^T$ (rank 2 update) * then choose $u = p_i$ and $v = S_i q_i$ * DFP update:

$$S_{i+1} = S_i + \frac{1}{p_i^T q_i} p_i p_i^T - \frac{1}{q_i^T S_i q_i} S_i q_i q_i^T S_i$$

* the condition $q_i^T p_i > 0$ is equivalent to

$$(\nabla f(x_{i+1}) - \nabla f(x_i)) \cdot (x_{i+1} - x_i) > 0,$$

which is true if f is strictly convex: reasonable assumption near a minimum... \star when using Wolfe line-search we can guarantee that $q_i^T p_i > 0$. \star for the quadratic case DFP becomes the conjugate gradient method \star it turns out DFP is not the best method out there...

• it does not "self-correct" when S_i gets far from the inverse Hessian

 \star any quasi-Newton update can generate another one:

•
$$S_{i+1} = S_i + B_i(S_i, p_i, q_i)$$
 such that $S_{i+1}q_i = p_i$

• then
$$q_i = S_{i+1}^{-1} p_i$$
 where $S_{i+1}^{-1} = (S_i + B(S_i, p_i, q_i))^{-1}$

switching the roles of p_i and q_i we get a different update, called the dual update

* how to get the dual of DFP: replace S_i with S_i^{-1} and interchange p_i and q_i

$$S_{i+1}^{-1} = S_i^{-1} + \frac{1}{q_i^T p_i} q_i q_i^T - \frac{1}{p_i^T S_i^{-1} p_i} S_i^{-1} p_i p_i^T S_i^{-1}$$

* a direct computation or Sherman-Morrison's formula gives:

$$S_{i+1} = S_i - \frac{p_i q_i^T S_i + S_i q_i p_i^T}{p_i^T q_i} + \left(1 + \frac{q_i^T S_i q_i}{p_i^T q_i}\right) \frac{p_i p_i^T}{p_i^T q_i}$$

* BFGS: Broyden, Fletcher, Goldfarb, Shanno

$$S_{i+1} = S_i - \frac{p_i q_i^T S_i + S_i q_i p_i^T}{p_i^T q_i} + \left(1 + \frac{q_i^T S_i q_i}{p_i^T q_i}\right) \frac{p_i p_i^T}{p_i^T q_i}$$

* widely used in most of the codes implemented today

* since BFGS is the dual of DFP, and a matrix is positive-definite if and only if its inverse is positive-definite, the BFGS update maintains positive-definiteness if $p_i^T q_i > 0$ (same hypothesis as for DFP to work...)

[Nocedal, Wright, Numerical Optimization 06], Chapters 6-7

* Local super-linear convergence: If an algorithm using BFGS with Wolfe's line-search converges to x^* where f is strongly convex with Lipschitz Hessian then the convergence rate is super-linear

* BFGS can also be found by minimizing a certain distance between the inverse Hessian and the rank 2 update S_{i+1} among matrices verifying the secant condition!

* BFGS has effective self-correcting properties

Dimension 1:

* the quasi-Newton relation is just $S_{i+1} = \frac{p_i}{q_i}$ and we get

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f'(x_i) - f'(x_{i-1})}f'(x_i)$$

which is the false position (or secant) method

Large dimension:

 \star same disadvantage as Newton methods - a $n \times n$ matrix may be too large to store in memory

 \star it is possible to store only the update vectors and compute matrix - vector products by doing only scalar - products

$$(uv^{T})x = u(v^{T}x) = (v^{T}x)u$$

* limited memory-BFGS (LBFGS): use only the last *m* vectors p_i, q_i in order to compute S_{i+1} - good behavior in practice despite being an approximation of BFGS

 \star after the function value, gradient and Hessian are computed (this is non-negligible in some applications)

- GD: *O*(*N*)
- Newton: $O(N^3)$ in worst case (solving a linear system) it all depends on the structure of the Hessian
- BFGS, DFT: $O(N^2)$ matrix vector products
- LBFGS: O(mN) where m is the fixed number of gradients to remember

$$f(x) = \sum_{i=1}^{N-1} [100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2]$$

with global minimum at $x^* = (1, 1, ..., 1)$.

$$f(x) = \sum_{i=1}^{N-1} [100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2]$$

with global minimum at $x^* = (1, 1, ..., 1)$.

$$f(x) = \sum_{i=1}^{N-1} [100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2]$$

with global minimum at $x^* = (1, 1, ..., 1)$.

$$f(x) = \sum_{i=1}^{N-1} [100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2]$$

with global minimum at $x^* = (1, 1, ..., 1)$.

- equivalent of the Secant method in higher dimensions
- achieve super-linear convergence without using the Hessian
- for extremely large *n* BFGS may be costly from a memory point of view: if possible use L-BFGS instead
- BFGS and LBFGS are often available in standard optimization libraries: Example scipy.optimize.minimize

Optimization in higher dimensions

- Quasi-Newton Methods
- Conjugate Gradient Method

Motivation

 \star if A is symmetric, positive-definite then solving the system Ax = b is equivalent to minimizing the quadratic function

$$f: x \mapsto \frac{1}{2}x^T A x - b \cdot x$$

* the gradient of this quadratic function is $\nabla f(x) = Ax - b$

* direct method: process details about the matrix A (factorization) and then solve the system: complexity is between $O(n^2)$ and $O(n^3)$.

 \star in contrast to this, iterative algorithms produce an approximation of the solution, which might be good enough for very large *n* \star for example: the gradient algorithm with Steepest-Descent will quickly converge to the optimum, but we can do better

Conjugate directions

* A given symmetric positive-definite matrix A defines a scalar product

$$\langle x, y \rangle = x^T A y$$

* Two (non-zero) directions d_1 and d_2 are called conjugate with respect to A if they are orthogonal w.r.t. the above scalar product:

$$d_1$$
 and d_2 are conjugate $\iff d_1Ad_2 = 0$

 \star we may also call two directions which are conjugate w.r.t. A as being A-orthogonal

 \star why is this useful? suppose $d_1,...,d_k$ are mutually A-orthogonal and we have the decomposition

$$d = \sum_{j=1}^k \alpha_j d_j$$

Then, using the orthogonality property, we can find the coefficients α_i explicitly:

$$d_i^T A d = \alpha_i d_i^T A d_i \Rightarrow \alpha_i = \frac{d_i^T A d}{d_i^T A d_i} = \frac{\langle d, d_i \rangle}{\langle d_i, d_i \rangle}$$

* **Consequence:** If $d_1, ..., d_k$ are mutually orthogonal then they are linearly independent! (for a proof, use the above formula to see that $d = 0 \Rightarrow \alpha_i = 0$)

Proposition 2 (Solve a system using Conjugate Directions)

Let A be a symmetric positive-definite matrix and $d_1, ..., d_n$ a (complete) system of n non-zero A-orthogonal vectors. Then the solution x^* to the system Ax = bis given by the formula

$$\mathbf{x}^* = \sum_{j=1}^n rac{b^{ op} d_j}{d_j^{ op} A d_j} d_j$$

* An equivalent formulation:

$$x^* = A^{-1}b = \sum_{j=1}^n rac{b^{\mathsf{T}}d_j}{d_j^{\mathsf{T}} A d_j} d_j = \left(\sum_{j=1}^n rac{1}{d_j^{\mathsf{T}} A d_j} d_j d_j^{\mathsf{T}}
ight) b_j$$

which gives us the explicit inverse of A

$$A^{-1} = \sum_{j=1}^n \frac{1}{d_j^T A d_j} d_j d_j^T$$

Proposition 2 (Solve a system using Conjugate Directions)

Let A be a symmetric positive-definite matrix and $d_1, ..., d_n$ a (complete) system of n non-zero A-orthogonal vectors. Then the solution x^* to the system Ax = bis given by the formula

$$\mathbf{x}^* = \sum_{j=1}^n rac{b^T d_j}{d_j^T A d_j} d_j$$

* An equivalent formulation:

$$x^* = A^{-1}b = \sum_{j=1}^n \frac{b^T d_j}{d_j^T A d_j} d_j = \left(\sum_{j=1}^n \frac{1}{d_j^T A d_j} d_j d_j^T\right) b$$

which gives us the explicit inverse of A

$$A^{-1} = \sum_{j=1}^{n} \frac{1}{d_j^{\mathsf{T}} A d_j} d_j d_j^{\mathsf{T}}$$

* All this is good when we know a complete family of A-orthogonal directions!

Algorithm 2 (Conjugate Directions method)

Let A be a $n \times n$ symmetric positive-definite matrix, b a vector and $f(x) = \frac{1}{2}x^TAx - b^Tx$ the quad. form associated to A and b. Let $d_0, ..., d_{n-1}$ be a system of A-orthogonal vectors and x_0 a starting point. Then, with the notation $g_i = \nabla f(x_i) = Ax_i - b$, the iterative process

$$x_{i+1} = x_i + \gamma_i d_i, \gamma_i = -\frac{d_i^T g_i}{d_i^T A d_i}, i = 1, ..., n$$

converges to the unique minimizer x^* of f in n steps.

* The step γ_i is optimal in the direction d_i : define q(t) = f(x + td) then $q'(t) = \nabla f(x + td) \cdot d = d \cdot \nabla f(x) + td^T Ad$

* Proof: just look at x_n and see that it gives exactly the formula for x^* . * Important idea: $d_k A(x_k - x_0) = 0$ for any $k \ge 0$

Algorithm 2 (Conjugate Directions method)

Let A be a $n \times n$ symmetric positive-definite matrix, b a vector and $f(x) = \frac{1}{2}x^TAx - b^Tx$ the quad. form associated to A and b. Let $d_0, ..., d_{n-1}$ be a system of A-orthogonal vectors and x_0 a starting point. Then, with the notation $g_i = \nabla f(x_i) = Ax_i - b$, the iterative process

$$x_{i+1} = x_i + \gamma_i d_i, \gamma_i = -\frac{d_i^T g_i}{d_i^T A d_i}, \ i = 1, ..., n$$

converges to the unique minimizer x^* of f in n steps.

* The step γ_i is optimal in the direction d_i : define q(t) = f(x + td) then $q'(t) = \nabla f(x + td) \cdot d = d \cdot \nabla f(x) + td^T Ad$

* Proof: just look at x_n and see that it gives exactly the formula for x^* . * Important idea: $d_k A(x_k - x_0) = 0$ for any $k \ge 0$

 \star Again: all this is good when we know a complete family of A-orthogonal directions!

Properties of the Conjugate Directions Method

* define for each $i \ge 1$ the linear space $\mathcal{B}_{i-1} = \text{Span}\{d_0, ..., d_{i-1}\}$ * if we define the affine subspaces $M_i = x_0 + \mathcal{B}_{i-1}$ then

$$\{x_0\} = M_0 \subset M_1 \subset ... \subset M_n = \mathbb{R}^n$$

 \star the Conjugate Directions method generate the minimizers of f in each of the affine spaces M_i

Proposition 3

For every $1 \le i \le n$ the vector x_i is the minimizer of f on the affine subspace $M_i = x_0 + \mathcal{B}_{i-1}$. In particular, as shown previously, x_i minimizes f on the line $\{x_{i-1} + td_{i-1} : t \in \mathbb{R}\}$.

Proof: * Compute the gradient $g_i = \nabla f(x_i) = Ax_i - b$ and note that g_i is orthogonal to $d_0, ..., d_{i-1}$.

* Then obtain that $\langle \nabla f(x_i), x - x_i \rangle = 0$ for $x \in x_0 + \mathcal{B}_{i-1}$.

* *f* is strictly convex so Euler's inequality tells us that x_i is indeed the minimizer of *f* in $x_0 + B_{i-1}$.

Build a basis of conjugated directions

* recall the Gram-Schmidt procedure * define the A-projection of v on u:

$$\operatorname{proj}_{u}(v) = \frac{\langle u, v \rangle}{\langle u, u \rangle} u = \frac{u^{T} A v}{u^{T} A u} u$$

Algorithm 3 (Gram-Schmidt)

0. Take a basis (v_i) of \mathbb{R}^n : e.g. the canonical basis. 1. $u_1 = v_1$ 2. $u_2 = v_2 - \text{proj}_{u_1}(v_2)$ 3. $u_3 = v_3 - \text{proj}_{u_1}(v_3) - \text{proj}_{u_2}(v_3)$... n. $u_n = v_n - \text{proj}_{u_1}(v_n) - \dots - \text{proj}_{u_{n-1}}(v_n)$ In the end normalize the vectors: $d_i = \frac{1}{\sqrt{u_i^T A u_i}} u_i$

 \star in this form the process is not numerically stable: due to rounding errors the vectors u_k may not be exactly orthogonal...

Conjugate Gradient Method

 \star we can compute the family of A-orthogonal directions during the optimization algorithm

Algorithm 4 (Conjugate Gradient)

Choose arbitrary initialization point x_0 and set $d_0 = -g_0 = -\nabla f(x_0) = b - Ax_0$ Loop on: i = 0, ..., n - 1

• if $\nabla f(x_i) = 0$ then stop.

•
$$x_{i+1} = x_i + \gamma_i d_i$$
 with $\gamma_i = -\frac{d_i' g_i}{d_i^T A d_i}$

• Compute new gradient $g_{i+1} = \nabla f(x_{i+1}) = Ax_{i+1} - b$

• Compute new direction $d_{i+1} = -g_{i+1} + \beta_i d_i$ with $\beta_i = \frac{g_{i+1}^I A d_i}{d_i^T A d_i}$

-

* as before γ_i is the optimal step in the direction d_i * the parameter β_i is chosen such that $d_{i+1}^T A d_i = 0$ * the new direction d_{i+1} is given by the projection of the anti-gradient direction $-g_{i+1}$ on the previous direction

Proposition 4 (CG is a Conjugate Direction method)

If the algorithm does not terminate at step i then:

- the gradients g₀, ..., g_{i-1} at x₀, ..., x_{i-1} are non-zero and Span{g₀, g₁, ..., g_{i-1}} = Span{g₀, Ag₀, ..., Aⁱ⁻¹g₀}
- The directions $d_0, ..., d_{i-1}$ are non-zero and Span $\{d_0, d_1, ..., d_{i-1}\} = Span\{g_0, Ag_0, ..., A^{i-1}g_0\}$
- The directions $d_0, ..., d_{i-1}$ are A orthogonal

• Alternative formulas for γ_i and β_i :

$$\gamma_i = \frac{g_i^T g_i}{d_i^T A d_i}$$
 and $\beta_i = \frac{g_{i+1}^T g_{i+1}}{g_i^T g_i}$

* A sequence of the type $g_0, Ag_0, A^2g_0, ...$ is called a Krylov sequence

 $\star x_i$ is the minimizer of f in the affine subspace

$$x_0 + \text{Span}\{d_0, ..., d_{i-1}\} = x_0 + \text{Span}\{g_0, Ag_0, ..., A^{i-1}g_0\}$$

* x_i is the minimizer of f in the affine subspace generated by x_0 and polynomials of A of degree at most i - 1 times g_0 (denote this polynomial space by \mathcal{P}_{i-1})

$$x_0 + \{p(A)g_0 : p(z) = \sum_{i=0}^{i-1} p_i z^i\}$$

* error in terms of the objective function: $E(x) = f(x) - \min f = \frac{1}{2}(x - x^*)^T A(x - x^*)$

Proposition 5 (Error for CG)

$$E(x_i) = \min_{p \in \mathcal{P}_{i-1}} \frac{1}{2} (x_0 - x^*) A (\operatorname{Id} - Ap(A))^2 (x_0 - x^*)$$

* Proof: write $x_i = x_0 + p(A)g_0$ and recall that $\nabla f(x_i) = A(x_i - x^*)$

Corollary

Let Σ be the spectrum of A. Then

$$E(x_i) \leq E(x_0) \min_{p \in \mathcal{P}_i^*} \max_{\lambda \in \Sigma} p^2(\lambda),$$

where \mathcal{P}_i^* is the set of polynomials p of degree at most i such that p(0) = 1. Another estimate is

$$E(x_i) \leq rac{1}{2} |x^* - x_0|^2 \min_{p \in \mathcal{P}_i^*} \max_{\lambda \in \Sigma} \lambda p^2(\lambda),$$

* Proof: use an orthonormal basis made of eigenvectors of A* denote by Q the condition number of A. Then there exists a polynomial $q \in \mathcal{P}_s^*$ such that

$$\max_{\lambda\in\Sigma} q_s(\lambda)^2 \leq 4\left(rac{\sqrt{Q}-1}{\sqrt{Q}+1}
ight)^{2s}$$

Error estimate in terms of the condition number

 \star for the Conjugate Gradient algorithm we have

$$E(x_N) \leq 4\left(\frac{\sqrt{Q}-1}{\sqrt{Q}+1}\right)^{2N}E(x_0),$$

where Q is the condition number of A.

 \star compare this with the error estimate for the Steepest-Descent

$$E(x_N) \leq \left(\frac{Q-1}{Q+1}\right)^{2N} E(x_0)$$

* in order to reduce the initial error by a factor of ε one needs to do O(Q) steps with Steepest Descent compared to $O(\sqrt{Q})$ steps with CG. This is a big difference!

 \star CG is supposed to converge in *n* iterations, however rounding errors may prevent the convergence!

 \star moreover, if A has $k \leq n$ distinct eigenvalues then CG converges in k iterations!

 \star Often, for *n* large, the process is stopped before reaching *n* iterations, when the error estimate is small enough

 $A = (1/(i+j-1))_{1 \le i,j \le n}$, ill conditioned

* below you can see a comparison between GD with optimal step and CG. The residual |Ax - b| is plotted at every iteration * the residual decreases slowly for GD: the algorithm tends to go multiple times in the same direction! CG optimizes once and for all in the current direction. * small residual does not mean that x is close to x^* : $Ax - b = A(x - x^*)!$

 $A = (1/(i+j-1))_{1 \le i,j \le n}$, ill conditioned

* below you can see a comparison between GD with optimal step and CG. The residual |Ax - b| is plotted at every iteration * the residual decreases slowly for GD: the algorithm tends to go multiple times in the same direction! CG optimizes once and for all in the current direction. * small residual does not mean that x is close to x^* : $Ax - b = A(x - x^*)!$

 $A = (1/(i+j-1))_{1 \le i,j \le n}$, ill conditioned

* below you can see a comparison between GD with optimal step and CG. The residual |Ax - b| is plotted at every iteration * the residual decreases slowly for GD: the algorithm tends to go multiple times in the same direction! CG optimizes once and for all in the current direction. * small residual does not mean that x is close to x^* : $Ax - b = A(x - x^*)!$

> GD vs CG: Hilbert matrix N=8 Q=1.5e+10 100 GD CG × 10^{-2} 10^{-4} 10-6 10^{-8} 10^{-10} 10^{-12} 10^{-14} 10^{-16} Ó 25 50 75 100 125 150 175 200

 $A = (1/(i+j-1))_{1 \le i,j \le n}$, ill conditioned

* below you can see a comparison between GD with optimal step and CG. The residual |Ax - b| is plotted at every iteration * the residual decreases slowly for GD: the algorithm tends to go multiple times in the same direction! CG optimizes once and for all in the current direction.

* small residual does not mean that x is close to x^* : $Ax - b = A(x - x^*)!$

Important application: approximate solution of PDEs

• Consider Laplace's equation

Find
$$u \in H_0^1(D)$$
 such that
$$\begin{cases} -\Delta u = f & \text{in } D \\ u = 0 & \text{on } \partial D \end{cases}$$

where $f \in L^2(D)$ is a given source.

• It is possible to associate to this a variational formulation:

Find $u \in V$ such that $\forall v \in V$ we have $a(u, v) = \ell(v)$

where

- The Hilbert space V is a Sobolev space $H_0^1(D)$
- $a(\cdot, \cdot)$ is a bilinear form on V given by $a(u, v) = \int_D \nabla u \cdot \nabla v dx$
- $\ell(\cdot)$ is a linear form on V given by $\ell(v) = \int_D f v dx$

• Lax-Milgram's theorem assures us that such a problem has a solution on V.

- The finite element method proposes to search for an approximation u_h in a finite dimension subspace $V_h \subset V$.
- the variational formulation is replaced by:

Find $u_h \in V_h$ such that $\forall v_h \in V_h$ we have $a(u_h, v_h) = \ell(v_h)$

• Advantage : V_h being of finite dimension, we can choose a basis $\mathcal{B} = \{\varphi_i\}_{i=1}^N$ and the variational formulation becomes a linear system $A\bar{u} = b$ with

$$A = (a(\varphi_i, \varphi_j)), \ b = (\ell(\varphi_i))$$

where \bar{u} are the coordinates of u_h in the basis \mathcal{B} .

• The choice of the basis is important: one objective is to have a system given by a sparse matrix

Construct a finite element space

- The domain D is discretized using a mesh T_h which consists of a partitions in triangles in 2D or tetrahedra in 3D.
- The parameter *h* which indicates the convergence of the method is typically related to the size of the mesh elements.

Construct a finite element space (2)

A basis $\{\varphi_1, ..., \varphi_{N_h}\}$ of finite element functions is introduced on the mesh \mathcal{T}_h Example

- N_h is the number of vertices $a_1, ..., a_{N_h}$ of the mesh
- For each $i = 1, ..., N_h$, φ_i is affine on each triangle $T \in T_h$ and $\varphi_i(a_j) = 1$ et $\varphi_i(a_j) = 0$ pour $i \neq j$

Formulation of a matrix system

Decompose the solution u_h in the basis of finite elements

$$u_h = \sum_{i=1}^{N_h} u_j \varphi_i$$

and the variational problem becomes a linear system of size $N_h \times N_h$

$$KU = f$$

where

•
$$U = \begin{pmatrix} u_1 \\ \vdots \\ u_{N_h} \end{pmatrix}$$
 is the vector of coefficients

- K is the rigidity matrix given by $K_{ij} = a(\varphi_i, \varphi_j)$
- F is the vector $F = (\ell(\varphi_i))_{i=1,...,N_h}$.

 \star The matrix K will be symmetric and positive-definite so we are in the good framework where CG works!

* when N_h is large (a few tens of thousands of elements) direct methods will fail to work (computation time, memory limitations) * CG will work well even for $N_h > 10^5$

Algorithm 5 (Fletcher-Reeves CG on \mathbb{R}^n)

Choose a starting point x_0 . Set cycle counter k = 1. Cycle k: Initialization of the cycle: Given x_0 compute $g_0 = \nabla f(x_0), d_0 = -g_0$ Inner Loop: for i = 0, ..., n - 1

- if $g_i = 0$ terminate, otherwise set x_{i+1} as the minimizer of $f(x_i + td_i)$
- compute $g_{i+1} = \nabla f(x_{i+1})$

• set
$$d_{i+1} = -g_{i+1} + \beta_i d_i$$
 with $\beta_i = \frac{g'_{i+1}g_{i+1}}{g_i^T g_i}$

When the loop is finished replace x_0 with x_n and restart.

* note that in the inner loop we have a Steepest Descent line-search: this is not applicable in general. A line-search procedure should be used instead!
* It can be proved that in the non-degenerate case the convergence is quadratic in the number of cycles i.e.

$$|x^{k+1} - x^*| \le C |x^k - x^*|^2$$

where x^k is the sequence of starting points for cycles

Comparison with previous methods

 \star again on the Rosenbrock function for N=100

 \star in general nonlinear-CG converges faster than GD but not necessarily faster than quasi-Newton methods

Conclusion on Conjugate Gradient method

- when a complete system of A-orthogonal directions is known everything is explicit
- it can be made into an iterative algorithm with a convergence ratio way better than Steepest Descent
- it converges in *n* iterations (theoretically). In practice, for large *n*, we usually stop the process once the error estimate

$$E(x_N) \leq 4\left(\frac{\sqrt{Q}-1}{\sqrt{Q}+1}\right)^{2N} E(x_0)$$

is satisfying.

• cost of a step in CG:

 $O(n) + \text{ cost of a matrix-vector multiplication } d \rightarrow Ad.$ This is particularly efficient when A is sparse (has few non-zero elements)

• Disadvantage: sensitivity to the condition number!

Conclusions: unconstrained optimization in ND

- Gradient Descent algorithms: sensitive to conditioning!
- Newton methods: fast convergence under right hypotheses. Major practical inconveniences:
 - compute Hessian matrix and (possibly) store it
 - doesn't necessarily decrease the function value
 - solve a linear system at every iteration
- variable metric methods: compute an approximation of the inverse Hessian
 - BFGS: rank 2 updates, standard in available implementations
 - even better for large *n*: L-BFGS limit memory by using only information from the previous *m* iterations
- Conjugate Gradient methods: less sensitive to conditioning than Steepest Descent
- Newton-Gauss: non-linear least squares
- Nedler-Mead: gradient free method

 \star get used to the structure of algorithms which are already implemented: in the practical session you will play with tools from <code>scipy.optimize</code>

 \star keep in mind to minimize the number of function evaluations in your codes: not all functions to be optimized are computed in a cheap way

- when the value of a function or its gradient are used multiple times store them in some variables
- in some computations involving physical simulations the gradient can often be computed using existing information from the solution given by the model: there is no point computing it multiple times