Constrained optimization

- General theoretical and practical aspects
- A quick intro to linear programming

Constrained optimization

• General theoretical and practical aspects

• A quick intro to linear programming

* all algorithms presented before dealt with unconstrained optimization
 * Advantage in the unconstrained case: when looking for the next iterate you can search in any direction you want!

 \star In practice it may not be possible to include all information in the objective function!

 \star Sometimes, a minimization problem does not have non-trivial examples if no constraints are imposed!

 \star constraints are necessary and useful in practice: what are the implications from the theoretical point of view?

* how to deduce what are the relevant optimality conditions and how to solve practically optimization problems under constraints?

Source: http://people.brunel.ac.uk/~mastjjb/jeb/or/morelp.html

A company makes two products (X and Y) using two machines (A and B). Each unit of X that is produced requires 50 minutes processing time on machine A and 30 minutes processing time on machine B. Each unit of Y that is produced requires 24 minutes processing time on machine A and 33 minutes processing time on machine B.

At the start of the current week there are 30 units of X and 90 units of Y in stock. Available processing time on machine A is forecast to be 40 hours and on machine B is forecast to be 35 hours.

The demand for X in the current week is forecast to be 75 units and for Y is forecast to be 95 units. Company policy is to maximise the combined sum of the units of X and the units of Y in stock at the end of the week.

Getting the constraints and objective function...

- $50x + 24y \le 40 \times 60$
- $30x + 33y \le 35 \times 60$

Maximize: x + y - 50

- x ≥ 45
- y ≥ 5

Optimal can

For an aluminum can one can infer that its production cost may be proportional to its surface area. On the other hand, the can must hold a certain volume c of juice. Supposing that the can has a cylindrical shape, what are its optimal dimensions?

* we have two parameters: the height h and the radius r. * Area of the can (to be minimized): $A(h,r) = 2\pi r^2 + 2\pi rh$ * Volume of the can (constraint): $V(h,r) = \pi r^2 h$ * finally we obtain the problem

 $\min_{V(h,r)\geq c}A(h,r).$

Suppose a person (M) in a large field trying to get to a cow (C) as fast as possible. Before milking the cow the bucket needs to be cleaned in a river nearby defined by the equation g(x, y) = 0. What is the optimal point P on the river such that the total distance traveled MP + PC is minimal?

If $M(x_0, y_0)$ is the initial position and $C(x_C, y_C)$ is the position of the cow then the problem becomes

$$\min_{g(P)=0} MP + PC.$$

General formulation

* given functions $f, h_1, ..., h_m, g_1, ..., g_k : \mathbb{R}^n \to \mathbb{R}$ we may consider problems like (P) min f(x)s.t $h_i(x) = 0, i = 1, ..., m$ $g_j(x) \le 0, j = 1, ..., k$

 \star in the following we assume that functions f, h_i, g_j are at least C^1 (even more regular if necessary)

* the cases where the constraints define a convex set are nice!

 \star we are interested in finding necessary and sufficient (when possible) optimality conditions

* a feasible solution to (P) is any point which verifies all the constraints * the feasible set is the family of all feasible solutions * if among feasible solutions of (P) there exists one x^* such that $f(x^*) \le f(x)$ for all x which are feasible then we found an optimal solution of (P)

* inequality constraints can be turned into equality constraints by introducing some slack variables: this increases the dimension of the problem...
* keeping the inequality constraints is good in the convex case!

 \star is good to picture the geometry given by the constraints and only then go to the analysis results

Intuitive Example

* Minimize $f(x, y) = 2x^2 + y^2$ under the constraint $h(x, y) = \sqrt{(x-1)^2 + (y-1)^2} - 0.5 = 0$ * Do the optimization and trace the gradients of f and h at the minimum:

* Looks like the gradients are colinear! Why?

What happens if the gradients are not collinear?

 \star the gradient ∇f has a non-zero component along the tangent line to the constraint

* **Consequence:** it should be possible to further decrease the value of f by moving tangentially to the constraint!

* the gradient $\nabla f(x^*)$ should be orthogonal to the tangent plane to the constraint set $h(x^*) = 0$, otherwise following the non-zero tangential part we could still decrease the value of f

Questions:

* definition of tangent space: look at the first order Taylor expansion!

The linearization of the constraint h_i around x s.t. $h_i(x) = 0$ is given by $\ell_i(y) = h_i(x) + \nabla h_i(x) \cdot (y - x) = \nabla h_i(x) \cdot (y - x)$ If h(x) = 0 then the tangent plane at x is defined by $T_x = \{y : (y - x) \cdot \nabla h_i(x) = 0, i = 1, ..., m\}.$

 \star existence of well-defined tangent spaces: the function h should be regular around the minimizer

Examples

 \star $h(x)=x_1^2+x_2^2-1$ around the point $p=(\sqrt{2}/2,\sqrt{2}/2)$: we have $\nabla h(p)=2(x_1,x_2)$ so the tangent plane is

$$T_p = \{y : (y - p) \cdot (x_1, x_2) = 0\},\$$

which a well defined 1-dimensional line

* $h(x) = x_1^2 - x_2^2$ at the point p = (0, 0): we have $\nabla f(x) = (2x_1, -2x_2)$ so $\nabla f(p) = 0$. Using the same definition we have $T_p = \{y : (y - p) \cdot 0 = 0\} = \mathbb{R}^2$.

which is weird.

Goal: *m* equality constraints should give rise to a tangent space of dimension k = n - m! The gradient should be in the orthogonal to the tangent plane at the optimum: this has dimension equal to the rank of $Dh(x^*)$. Two situations occur:

- rank of Dh(x*) is strictly less than m: ∇f(x*) might not be representable as a linear combination of ∇h_i(x*)!
- rank of $Dh(x^*)$ is exactly equal to m

Further Examples

 \star intersect two spheres in \mathbb{R}^3 : you may end up with a point which is not a set of dimension 1

* intersect a sphere and a right cylinder: $h_1(x) = x_1^2 + x_2^2 + x_3^2 - 1$, $h_2(x) = x_1^2 + x_2^2 - x_2$. The gradients are $\nabla h_1(x) = 2(x_1, x_2, x_3)$ and $\nabla h_2(x) = (2x_1, 2x_2 - 1, 0)$ and they are linearly dependent at (0, 1, 0).

We expect an intersection made of a 1D curve, but there are points where the tangent is not unique!

Definition 1 (Regular points)

Given a family $h_1, ..., h_m$ of C^1 functions, $m \le n$, a solution x_0 of the system $h_i(x) = 0, i = 1, ..., m$

is called regular if the gradient vectors $(\nabla h_i(x_0))_{i=1}^m$ are linearly independent. Equivalently, the $m \times n$ matrix having $\nabla h_i(x_0)$ as rows has full rank m.

* the implicit function theorem implies that around regular points the system $h_i(x) = 0$ defines a C^1 surface of dimension k = n - m!* moreover, you can pick some k = n - m coordinates and express the set $h_i(x)$ in parametric form in terms of these coordinates * at regular points we can define the notion of tangent space which coincides with the one given by linearizing the constraints.

Proposition 2

Let S be given by $h_i(x) = 0, i = 1, ..., m$ where h_i are C^2 functions and $x \in S$ be a regular solutions. Then the plane T_x defined by $T_x = \{(y - x)Dh(x) = 0\}$ is the tangent plane to S at x. Furthermore, there exists a constant C such that (1) for every $x' \in S$ there exists $y' \in T_x$ s.t. $|x' - y'| \le C|x' - x|^2$ and (2) for every $y' \in T_x$ there exists $x' \in S$ s.t. $|x' - y'| \le C|y' - x|^2$

* Just look at the Taylor expansion of h_i and the linearization ℓ_i around x! They coincide up to the second order.

* the statement (2) is false if x is not a regular point: the tangent space defined by T_x is larger than the real tangent space!

* if Dh(x) is of rank *m* then the linear system Dh(x)y = 0 can be solved in terms of k = n - m parameters: e.g. $y_{m+1}, ..., y_n$:

$$\overline{y}_i = \ell_i(y_{m+1}, ..., y_n), \ i = 1, ..., m.$$

* implicit function theorem: there exist k = n - m coordinates (say $y_{m+1}, ..., y_n$) such that there exist C^1 functions φ_i s.t.

$$y_i = \varphi_i(y_{m+1}, ..., y_n), \ i = 1, ..., m$$

* The gradients of φ_i are given by ℓ_i !

* Finally, the difference between the surface h(x) = 0 and the linearization contains only second order terms!

$$y_i - \overline{y}_i = O(|x - y|^2).$$

First order optimality conditions

* suppose that x^* is a local minimum of f under the constraints h(x) = 0* suppose also that x^* is regular so that the tangent space T_x to the constraint gives a good approximation of h(x) = 0.

* it is reasonable to assume that x^* also minimizes the linearization of f: $\overline{f}(y) = f(x^*) + (y - x^*)\nabla f(x^*)$ on this tangent plane defined by $Dh(x^*)(y - x^*) = 0$. * this would imply that $\nabla f(x^*)$ is orthogonal to $(y - x^*)$ for every y such that $Dh(x)(y - x^*) = 0$.

★ in usual notations we have $\nabla f(x^*) \in (\ker Dh(x^*))^{\perp}$ ★ recall an important linear algebra result:

$$(\ker A)^{\perp} = \operatorname{Im} A^{T}.$$

 \star finally, we obtain that there exists some $\lambda \in \mathbb{R}^m$ s.t.

$$\nabla f(x^*) = Dh(x^*)\lambda$$

which translates to the classical relation

$$\nabla f(x^*) = \sum_{i=1}^m \lambda_i \nabla h_i(x^*).$$

Theorem 3

Let x^* be a local minimizer for the equality constrained problem

 $\min_{h(x)=0} f(x)$

and suppose that x^* is a regular point for the system of equality constraints. Then the following two equivalent facts take place

- The directional derivative of f in every direction along the space $\{y : Dh(x^*)(y x^*) = 0\}$ tangent to the constraint at x^* is zero: $Dh(x^*)d = 0 \Longrightarrow \nabla f(x^*) \cdot d = 0$
- There exist a uniquely defined vector of Lagrange multipliers λ_i^* , i = 1, ..., m such that

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0.$$

Proof:

- S denotes the set h(x) = 0.
- suppose that there exist a direction parallel to the tangent plane Dh(x*)δ = 0 which is not orthogonal to ∇f(x*)
- by eventually replacing it with $-\delta$ we may assume $\delta \cdot \nabla f(x^*) = -\alpha < 0$.
- denote $y_t = x^* + t\delta$. For small enough t we have $f(y_t) \le f(x^*) t\alpha/2$
- since x^* is regular, for every t small there exists a point $x_t \in S$ such that $|y_t x_t| \le C |y_t x^*|^2 = C_1 t^2$
- f is C^1 and therefore Lipschitz around x^* so $|f(x_t) - f(y_t)| \le C_2 |x_t - y_t| \le C_1 C_2 t^2.$
- Finally we get that $f(x_t) \le f(x^*) \alpha t/2 + C_1 C_2 t^2 < f(x^*)$ for t > 0 small enough, contradicting the optimality of x^*
- * the second points comes from $(\ker A)^{\perp} = \operatorname{Im} A^{\mathsf{T}}!$

Counterexample: Minimize the function $f(x_1, x_2, x_3) = x_2$ under the constraints

$$0 = h_1(x) = x_1^6 - x_3, \ 0 = h_2(x) = x_2^3 - x_3.$$

* the constraints define the curve $\gamma(x) = (x, x^2, x^6)$. * the minimum of f is attained at (0, 0, 0)* We have $\nabla f(0) = (0, 1, 0)$ * on the other hand $\nabla h_1(0) = \nabla h_2(0) = (0, 0, -1)$ * it is clear that $\nabla f(0)$ is not a linear combination of $\nabla h_1(0)$ and $\nabla h_2(0)$ * come back to the intersection between the sphere and the cylinder: $h_1(x) = x_1^2 + x_2^2 + x_3^2 - 1$, $h_2(x) = x_1^2 + x_2^2 - x_2$. The gradients are $\nabla h_1(x) = 2(x_1, x_2, x_3)$ and $\nabla h_2(x) = (2x_1, 2x_2 - 1, 0)$ and they are linearly dependent at (0, 1, 0).

 \star we can obtain that $x_1^2 = x_3^2 - x_3^4$ and $x_2 = 1 - x_3^2$ so the curve representing the intersection between h_1 and h_2 has the parametrization

$$(\pm \sqrt{x_3^2 - x_3^4, 1 - x_3^2, x_3})$$

* choose now the function $f(x_1, x_2, x_3) = x_1 + x_3 = x_3 \pm \sqrt{x_3^2 - x_3^4}$. This function has the minimum value 0 for $x_3 = 0$ associated to the point (0, 1, 0). * the gradient of f at the minimum is $\nabla f(0, 1, 0) = (1, 0, 1)$

 \star again, the conclusion of the theorem is not satisfied since the gradients of the constraints are not linearly independent at the optimum.

* min(3x + 2y + 6z) such that $x^2 + y^2 + z^2 = 1$ * obviously, there exists a solution, since $x^2 + y^2 + z^2 = 1$ is closed and bounded * write the optimality conditions: there exists λ such that $\nabla f(x^*) + \lambda \nabla h(x^*) = 0$

$$(3,2,6) = \lambda(2x,2y,2z).$$

 \star this immediately gives x,y,z in terms of λ

* plug these expression in the constraint to get λ , and therefore x, y, z

 \star in this case we get two values of λ : one corresponding to the minimum, the other corresponding to the maximum!

Order one optimality conditions do not indicate whether we are at a minimum or at a maximum!

The milkmaid problem

 $\min_{g(x)=0} d(P,x) + d(x,Q).$

 \star suppose that g is a nice curve in the plane with non-zero gradient \star the gradient of the distance function:

$$\nabla_{x}d(P,x)=\frac{x-P}{d(P,x)},$$

is the unit vector that points from *P* to the variable point *x*. \star the optimality condition says that there exists λ such that

$$\nabla_{x}d(P,x) + \nabla_{x}d(Q,x) + \lambda\nabla g(x) = 0$$

* what does this mean geometrically? The normal vector $\nabla g(x)$ to g(x) = 0 cuts the angle PxQ in half

* we obtain the classical reflection condition using Lagrange multipliers!

What is the curve which has the maximum area for a given perimeter?

 \star suppose we have a 2D curve parametrized by (x(t), y(t)) in a counter-clockwise direction.

- the perimeter is $L = \int \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2}$
- the area is $A = \int \frac{1}{2}(x(t)\dot{y}(t) y(t)\dot{x}(t))$

Problem

Maximize A with the constraint L = p.

* L = L(x, y), A = A(x, y) are functions for which variables are other functions. Sometimes the term functionals is employed! * how to compute the gradient in such cases? when in doubt just come back to the one dimensional case using directional derivatives * the integrals are taken over a whole period of the parametrization

Derivatives of A and L

* pick two directions u and v and $t \in \mathbb{R}$. Then compute the derivative of

$$t \mapsto L(x + tu, y + tv)$$
 at $t = 0$.

 \star it is useful to take all derivatives off u and v to get the linear form

$$L'(x,y)(u,v) = -\int \left[\left(\frac{\dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right)' u + \left(\frac{\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right)' v \right]$$

 \star do the same for A(x, y) to get

$$A'(x,y)(u,v) = \int (\dot{y}u - \dot{x}v)$$

 \star in the end we get

$$\nabla L(x,y) = \left(\left(\frac{\dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right)', \left(\frac{\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right)' \right), \nabla A(x,y) = (\dot{y}, -\dot{x}).$$

Optimality condition and conclusion

 \star when maximizing A under the constraint L = p the solution should verify the optimality condition

$$abla A(x,y) + \lambda
abla P(x,y) = 0, \ \lambda \in \mathbb{R}$$

 \star plugging the derivatives found previously we get

$$\begin{cases} \dot{y} - \lambda \left(\frac{\dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right)' = 0\\ -\dot{x} - \lambda \left(\frac{\dot{y}}{\dot{x}^2 + \dot{y}^2} \right)' = 0 \end{cases}$$

 \star integrating we obtain

$$\begin{cases} y - \lambda \frac{\dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = b\\ x + \lambda \frac{\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = a \end{cases}$$

 \star in the end we have

$$(x-a)^{2}+(y-b)^{2}=\lambda^{2},$$

so the solution should be a circle.

The Lagrangian

 \star the optimality conditions obtained involve the gradient of the objective function and the constraints.

* the optimality condition can be written as the gradient of a function combining the objective and the constraints called the Lagrangian: $\mathcal{L} : \mathbb{R}^n \times \mathbb{R}^m$

$$\mathcal{L}(x,\lambda) = f(x) + \sum_{i=1}^m \lambda_i h_i(x) = f(x) + \lambda \cdot h(x).$$

* if x^* is a local minimum of f on the set $\{h(x) = 0\}$ then the optimality condition tells us that there exists $\lambda^* \in \mathbb{R}^m$ such that

$$\frac{\partial \mathcal{L}}{\partial x}(x^*,\lambda^*) = 0 \text{ and } \frac{\partial \mathcal{L}}{\partial \lambda}(x^*,\lambda^*) = 0$$

* moreover, $\sup_{\lambda \in \mathbb{R}^n} \mathcal{L}(x,\lambda) = \begin{cases} f(x) & \text{if } h(x) = 0\\ +\infty & \text{if } h(x) \neq 0 \end{cases}$ which gives
 $\min_{h(x)=0} f(x) = \min_{x \in \mathbb{R}^n} \sup_{\lambda \in \mathbb{R}^m} \mathcal{L}(x,\lambda).$

 \star the minimizer of f becomes a saddle point for the Lagrangian

Another point of view

 \star for $c_i \in \mathbb{R}, i = 1, ..., m$ consider the problem $\min_{h_i(x) = c_i} f(x)$

* considering the Lagrangian

$$\mathcal{L}(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i (c_i - h_i(x))$$

we see that $\frac{\partial L}{\partial c_i} = \lambda_i$ so the Lagrange multipliers represent the rate of change of the quantity being optimized as a function of the constraint parameter. \star denote by $x^*(c), \lambda^*(c)$ the optimizer and the Lagrange multipliers as a function of c. Then

$$egin{aligned} rac{\partial f(x^*(c))}{\partial c_i} &= rac{\partial \mathcal{L}(x^*(c),\lambda^*)}{\partial c_i} \ &= rac{\partial \mathcal{L}}{\partial x}(x^*(c),\lambda^*)rac{\partial x^*(c)}{c_i} + rac{\partial \mathcal{L}}{\partial c_i}(x^*(c),\lambda^*) \ &= \lambda_i^* \end{aligned}$$

* how to compute derivatives under constraints?

Example: Compute the derivative of $x \mapsto f$ under the constraint $f^2 = x$. \star write the Lagrangian: $L(x, f, p) = f + (f^2 - x)p$ \star if $f = \sqrt{x}$ then L(x, f, p) = f.

 \star compute the derivative of f directly from above:

$$f'(x) = \frac{\partial L}{\partial x}(x, f, p) + \frac{\partial L}{\partial f}(x, f, p)\frac{df}{dx} + \frac{\partial L}{\partial p}(x, f, p)\frac{dp}{dx}$$

 \star cancel the terms which you don't know using the Lagrangian:

$$\frac{\partial L}{\partial p} = f^2 - x = 0, \frac{\partial L}{\partial f} = 1 + 2fp = 0.$$

* what remains is $f'(x) = \frac{\partial L}{\partial x}(x, f, -1/(2f)) = \frac{1}{2f} = \frac{1}{2\sqrt{x}}.$

 \star we recover the classical result. This technique is known as the adjoint method and is useful for computing derivatives in complicated spaces: shape derivatives, control theory, etc.

 \star minimize f(x) such that $g_1(x) \leq 0, ..., g_k(x) \leq 0$.

* not all inequality constraints play the same role: at the point x the constraint i is said to be active if $g_i(x) = 0$.

* if a constraint g_i (where g_i is C^1) is inactive at a minimizer x^* then $g_i(x) < 0$ in a neighborhood of x^*

* if x^* is a minimizer of f(x) under the constraints g_i and $g_i(x^*) < 0$ then g_i does not impose any restriction on f locally: ignoring it produces the same result (locally)

* equality constraints generally produced surfaces while inequality constraints can just give bunded regions of \mathbb{R}^n .

* denote by $I(x) = \{i \in \{1, ..., k\} : g_i(x) = 0\}$ be the indices of active constraints at x * we say that the constraints are qualified at x if the gradients $(\nabla g_i(x))_{i \in I(x)}$ are linearly independent! * geometrically, as in the equality constraints case, if the constraints are qualified at x then we may define a proper tangent space using the family $(\nabla g_i(x))_{i \in I(x)}$

* **Special case:** if all g_i are affine constraints then they are automatically qualified. Why?

- in this case the constraints also define the tangent space themselves
- the linear independence of the gradients at a point x is equivalent to the removal of redundant constraints

Theorem 4

Let x^* be a local minimizer for the inequality constrained problem $\min_{g(x) \le 0} f(x)$ and suppose that the constraints are qualified at x^* . Then the follow

and suppose that the constraints are qualified at x^* . Then the following affirmations are true:

• There exists a uniquely defined vector of Lagrange multipliers $\lambda_i^* \ge 0, \ i = 1, ..., k$ such that

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) = 0.$$

Moreover, if g_i(x*) < 0 then λ_i = 0, also called the complementary slackness relations. Equivalent formulation: λ_ig_i(x*) = 0.

* why are Lagrange multipliers non-negative in this case? x^* would like to "get out of the constraints" to increase the value of f* if x^* is an interior point for $g(x) \le 0$ then simply $\nabla f(x^*) = 0$ Consider the set

 $k = \{x = (x_1, x_2) \in \mathbb{R}^2 : -x_1 \le 0, \ -x_2 \le 0, \ -(1 - x_1)^3 + x_2 \le 0\}.$

* Maximize $J(x) = x_1 + x_2$ for $x \in K$.

 \star making a drawing we find that immediately that the solutions are (0, 1) and (1, 0).

 \star let's check if we can write the optimality condition at the two points:

- (1,0): constraints not qualified: unable to write the opt. cond
- (0,1): constraints qualified: the optimality condition can be written!

The Lagrangian - inequality case

 \star the optimality conditions obtained involve the gradient of the objective function and the constraints.

* the optimality condition can be written as the gradient of a function combining the objective and the constraints called the Lagrangian: $\mathcal{L} : \mathbb{R}^n \times \mathbb{R}^m_+$

$$\mathcal{L}(x,\lambda) = f(x) + \sum_{i=1}^{k} \lambda_i g_i(x) = f(x) + \lambda \cdot g(x).$$

* if x^* is a local minimum of f on the set $\{g(x) \le 0\}$ then the optimality condition tells us that there exists $\lambda^* \in \mathbb{R}^m_+$ such that

$$\begin{aligned} &\frac{\partial \mathcal{L}}{\partial x}(x^*,\lambda^*) = 0 \text{ and } \frac{\partial \mathcal{L}}{\partial \lambda}(x^*,\lambda^*) = 0 \\ \star \text{ moreover, } \sup_{\lambda \in \mathbb{R}^m_+} \mathcal{L}(x,\lambda) = \begin{cases} f(x) & \text{ if } g(x) \leq 0 \\ +\infty & \text{ otherwise} \end{cases} \text{ which gives} \\ &\min_{g(x) \leq 0} f(x) = \min_{x \in \mathbb{R}^n} \sup_{\lambda \in \mathbb{R}^m_+} \mathcal{L}(x,\lambda). \end{aligned}$$

 \star the minimizer of f becomes a saddle point for the Lagrangian

* Area of the can (to be minimized): $A(h, r) = 2\pi r^2 + 2\pi rh$ * Volume of the can (constraint): $V(h, r) = \pi r^2 h$ * finally we obtain the problem

$$\min_{\mathcal{V}(h,r)\geq c}A(h,r).$$

* the constraint will be active!

 \star write the optimality condition: find r and h in terms of λ and finish!

 \star in the end we find that the optimal can will have the height *h* equal to two times its radius *r*.

* find now the optimal cup: only one of the two ends is filled with material!

Definition 5

We say that $(u, p) \in U \times P$ is a saddle point of \mathcal{L} on $U \times P$ if $\forall q \in P \quad \mathcal{L}(u, q) \leq \mathcal{L}(u, p) \leq \mathcal{L}(v, p) \quad \forall v \in U$

* when fixing $p: v \mapsto \mathcal{L}(b, p)$ is minimal for v = u* when fixing $u: q \mapsto \mathcal{L}(u, q)$ is minimal for q = p

 \star If J is the objective function and F defines the constraint set K (equality or inequality) then a saddle point (u, p) for the Lagrangian

$$\mathcal{L}(v,q) = J(v) + q \cdot F(v)$$

verifies that u is a minimum of J on K.

 \star moreover, if the Lagrangian is defined on an open neighborhood U of the constraint set K then we also recover the optimality condition

$$\nabla J(u) + \sum_{i=1}^{m} p_i \nabla F_i(u) = 0.$$

* two options: go to the second order or use convexity
* it is not enough to look at the second order approximation of f on the tangent space! The curvature of the constraint can also play a role.
* the correct way is to look at the Hessian of the Lagrangian with respect to x, reduced to the tangent space!

* in the convex case, for inequality constraints things are a little bit easier!

 \star why only for inequality constraints? Imagine that equality constraints can produce curved surfaces and the only way to have convexity there is if they are flat!

* why the choice $g_i(x) \le 0$ as the definition of inequality constraints? Because if all g_i are convex functions then

$$K = \{x : g_i(x) \le 0, i = 1, ..., k\}$$
 is a convex set.

Theorem 6 (Kuhn-Tucker)

Suppose that the functions $f, g_i, i = 1, ..., k$ are C^1 and convex. Define K as the set $K = \{x : g_i(x) \le 0\}$ and introduce the Lagrangian

 $\mathcal{L}(v,q) = f(v) + q \cdot g(v), \ v \in \mathbb{R}^n, q \in \mathbb{R}^k_+.$

Let x^* be a point of K where the constraints are qualified. Then the following are equivalent:

- x^* is a global minimum of f on K
- there exists $\lambda^* \in \mathbb{R}^m$ such that (x^*, λ^*) is a saddle point for the Lagrangian

•
$$g(x^*) \leq 0$$
, $\lambda^* \geq 0$, $\lambda^* \cdot F(x^*) = 0$, $\nabla f(x^*) + \sum_{i=1}^k \lambda_i^* \nabla g_i(x^*) = 0$.

 \star why the reverse implication works? When $q \geq 0$ the Lagrangian

$$\mathcal{L}(v,q)=f(v)+q\cdot g(v),\,\,v\in\mathbb{R}^n,q\in\mathbb{R}^k_+$$

is convex when f and $g = (g_i)$ are convex! * particular case: affine equalities! convex and qualified!

Handle the constraints numerically

 \star we already saw two methods:

• projected gradient algorithm:

$$x_{i+1} = \operatorname{Proj}_{K}(x_{i} - t\nabla f(x_{i}))$$

• penalization: include the constraint $\{g = 0\}$ in the objective

$$\min f(x) + \frac{1}{\varepsilon}g(x)^2$$

 \star we saw that the projection is not explicit in most cases! In the meantime we learned how to solve non-linear equations. Imagine the following algorithm:

- Compute x_i and the projection d_i of −∇f(x_i) on the tangent space (orthogonal of (∇g_j(x_i)))
- advance in the direction of d_i : $x_{i+1} = x_i + \gamma_i d_i$
- project x_{i+1} on the set of constraints using the Newton method

- we may obtain necessary optimality conditions involving equality and inequality constraints: the gradient of *f* is a linear combination of the gradients of the constraints
- the gradients of the constraints need to be linearly independent at the optimum: proper definition of the tangent space!
- for inequality constraints only the active constraints come into play in the optimality condition
- sufficient conditions can be found in the convex case: Kuhn-Tucker theorem
- the theory gives new ways to handle constraints numerically

Constrained optimization

- General theoretical and practical aspects
- A quick intro to linear programming

* maximizing or minimizing a linear function subject to linear constraints!
* Example:

$$\max(x_1 + x_2)$$

such that $x_1 \ge 0, x_2 \ge 0$ and

* we have some non-negativity constraints and the main constraints

Geometric solution

 \star in dimension 2 we can solve the problem by plotting the objective function on the admissible set determined by the constraints!

 \star observe that in this case the solution is situated at the intersection of the lines $5x_1+2x_2=11 \text{ and } x_1+2x_2=5.$

Theoretical observations

* the gradient of $f(x_1, x_2) = x_1 + x_2$ is (1, 1): it is constant and never zero! * the set K determined by the linear constraints is convex * the minimum or maximum cannot be attained in the interior of K, since $\nabla f(x) \neq 0$!

 \star the optimal value is on the boundary of K. Moreover there exists a vertex of the polygon where it can be found! Why?

- start at a point x_0 inside K go against the gradient till you meet an edge
- if the function is constant along an edge then the gradient of the function and the constraint are collinear at that point: Kuhn-Tucker Theorem says that we reached the solution!
- otherwise, follow the direction where the function decreases till reaching a vertex. Then go to the next edge and repeat the previous reasoning.
- the process will finish: finite number of edges!

* same reasoning can be applied in higher dimensions: follow the anti-gradient direction till it is collinear to the gradient of the constraint or no further decrease is possible along further facets!

* The Standard Maximum Problem: Maximize $\mathbf{c}^t \mathbf{x} = c_1 x_1 + ... + c_n x_n$ subject to the constraints

$$a_{11}x_1 + \dots + a_{1n}x_n \leq b_1$$

$$\vdots \qquad \text{or } A\mathbf{x} \leq \mathbf{b}$$

$$a_{m1}x_1 + \dots + a_{mn}x_n \leq b_m$$
and $x_1 \geq 0, x_2 \geq 0, \dots, x_n \geq 0$ or $\mathbf{x} \geq 0$

$$\star \text{ The Standard Minimum Problem: Minimize } \mathbf{y}^t \mathbf{b} = v_1 b_1 + 1$$

* The Standard Minimum Problem: Minimize $\mathbf{y}^t \mathbf{b} = y_1 b_1 + ... + y_m b_m$ subject to the constraints

$$\begin{array}{rl} a_{11}y_1 + ... + a_{1m}y_m & \geq c_1 \\ & \vdots & \text{ or } y^T A \geq \mathbf{c}^T \\ a_{1n}y_1 + ... + a_{mn}y_m & \geq c_n \\ \text{ and } y_1 \geq 0, y_2 \geq 0, ..., y_m \geq 0 \text{ or } \mathbf{y} \geq 0 \end{array}$$

* There are *I* production sites *P*₁, ..., *P_I* which supply a product and *J* markets *M*₁, ..., *M_J* to which the product is shipped.
* the site *P_i* contains *s_i* products and the market *M_j* must recieve *r_j* products.
* the cost of transportation from *P_i* to *M_j* is *b_{ij}** the objective is to minimize the transportation cost while meeting the market requirements!

* denote by y_{ij} the quantity transported from P_i to M_j . Then the cost is

$$\sum_{i=1}^{I}\sum_{j=1}^{J}y_{ij}b_{ij}$$

 \star the constraints are

$$\sum_{j=1}^J y_{ij} \leq s_i \text{ and } \sum_{i=1}^I y_{ij} \geq r_j.$$

* There are I persons available for J jobs. The "value" of person i working 1 day at job j is a_{ij} .

* Objective: Maximize the total "value"

* the variables are x_{ij} : the proportion of person *i*'s time spent on job *j* * the constraints are $x_{ij} \ge 0$

$$\sum_{j=1}^{J} x_{ij} \leq 1, i = 1, ..., I \text{ and } \sum_{i=1}^{I} x_{ij} \leq 1, \ j = 1, ..., J \leq 1$$

- can't spend a negative amount of time at a job
- a person can't spend more than 100% of its time
- no more than one person working on a job

Some Terminology

* a point is said to be feasible if it verifies all the constraints
* the set of feasible points is the constraint set
* a linear programming problem is feasible if the constraint set is non-empty. If this is not the case then the problem is infeasible

 \star every problem involving the minimization of a linear function under linear constraints can be put into standard form

- you can change a "≥" inequality into "≤" by changing the signs of the coefficients
- if a variable x_i has no sign restriction, write it as the difference of two new positive variables $x_i = u_i v_i$, $u_i, v_i \ge 0$

 \star it is possible to pass from inequality constraints to equality constraints (and the other way around)

- Ax = b is equivalent to $Ax \le b$ and $Ax \ge b$
- If $Ax \le b$ then add some slack variables $\mathbf{u} \ge 0$ such that Ax + u = b

Definition 7

```
The dual of the standard maximum problem \begin{cases} \max \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x} \\ \text{s.t. } A \boldsymbol{x} \leq \boldsymbol{b} \text{ and } \boldsymbol{x} \geq \boldsymbol{0} \end{cases} is the standard minimum problem \begin{cases} \min \boldsymbol{y}^{\mathsf{T}} \boldsymbol{b} \\ \text{s.t. } \boldsymbol{y}^{\mathsf{T}} A \geq \boldsymbol{c}^{\mathsf{T}} \text{ and } \boldsymbol{y} \geq \boldsymbol{0} \end{cases}
```

Example

 \star consider the problem

$$\begin{array}{rll} \text{maximize} & x_1 + x_2 \\ \text{such that} & \textbf{x} \ge 0 \\ & x_1 + 2x_2 & \le & 5 \\ & 5x_1 + 2x_2 & \le & 11 \\ & -2x_1 + x_2 & \le & 1 \end{array}$$

 \star the dual problem is

$$\begin{array}{lll} \mbox{minimize} & 5y_1 + 11y_2 + y_3 \\ \mbox{such that} & {\bf y} \geq 0 \\ & y_1 + 5y_2 - 2y_3 & \geq & 1 \\ & 2y_1 + 2y_2 + y_3 & \geq & 1 \end{array}$$

Relation between dual problems

Theorem 8

If ${\bf x}$ is feasible for the standard maximum problem and ${\bf y}$ is feasible for the dual problem then

 $\mathbf{c}^T \mathbf{x} \leq \mathbf{y}^T \mathbf{b}.$

* The proof is straightforward:

$$\mathbf{x}^{\mathsf{T}}\mathbf{x} \leq \mathbf{y}^{\mathsf{T}}\mathbf{A}\mathbf{x} \leq \mathbf{y}^{\mathsf{T}}\mathbf{b}.$$

- * important consequences:
 - if the standard maximum problem and its dual are both feasible, they are bounded feasible: the optimal values are finite!
 - If there exist feasible \mathbf{x}^* and \mathbf{y}^* for the standard maximum problem and its dual such that $\mathbf{c}^T \mathbf{x}^* = \mathbf{y}^{*\,^T} \mathbf{b}$ then both are optimal for their respective problems!

Theorem 9 (Duality)

If a standard linear programming problem is bounded feasible then so is its dual, their optimal values are equal and there exist optimal solutions for both problems.

Beniamin BOGOSEL

 \star the simplex algorithm: travel along vertices of the set defined by the constraints until no decrease is possible

 \star work with the matrix A and with vectors **b** and **c** and modify them using pivot rules: similar to the ones used when solving linear systems

 \star exploit the connection between the standard formulation and its dual

* things get more complicated when we restrict the variables to be integers. This gives rise to integer programming!

* algorithms solving the main types of LP problems are implemented in various Python packages: scipy.optimize.linprog, pulp.

The simplex algorithm

* bring the problem to the case of equality constraints using slack variables

$$\sum_{j=1}^n a_{ij}x_j \leq b_i \Longleftrightarrow \sum_{j=1}^n a_{ij}x_j + s_i = b_i, s_i \geq 0$$

* any free variable $x_j \in \mathbb{R}$ should be replaced with $u_j - v_j$ with $u_j, v_j \ge 0$ * now we can solve

maximize
$$\mathbf{c}^T \mathbf{x}$$

subject to $A\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge 0$

* start from the origin x = 0 and go through the vertices of the polytype Ax = b
* at each step perform an operation similar to the Gauss elimination
* Possible issues: cycling, numerical instabilities.

Practical Example 1

 \star the first example of a standard maximum problem

 $\max(x_1 + x_2)$

such that $x_1 \ge 0, x_2 \ge 0$ and

$$egin{array}{rcl} x_1+2x_2&\leq&5\ 5x_1+2x_2&\leq&11\ -2x_1+x_2&\leq&1 \end{array}$$

 \star we saw geometrically that the solution should be the intersection of $x_1+2x_2=5$ and $5x_1+2x_2=11$

Practical Example 2

 \star An optimal assignment problem: n

	Job 1	Job 2	Job 3
Person 1	100€	120€	€08
Person 2	150€	110€	120€
Person 3	90€	€08	110€

* assign Person *i* to Job *j* in order to minimize the total cost! * we can model the situation as an LP problem with 9 variables: $x_{ij} = 1$ if and only if Person *i* has job *j*, $1 \le i, j \le 3$

* the constraints are as follows:

•
$$\sum_{i=1}^{3} x_{ij} = 1$$
: exactly one Person for Job j

•
$$\sum_{i=1}^{3} x_{ij} = 1$$
: exactly one Job for Person *i*

* we should also impose that $x_i \in \{0, 1\}$: no fractional jobs, but we'll neglect this condition and just suppose $x_i \ge 0$. * the cost is just

$$\sum_{1 \le i,j \le 3} c_{ij} x_{ij}$$

Find the LP parameters

 \star let's look at the matrix of the problem: 9 variables and 6 constraints!

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

 \star the matrix c_{ij} is given by the table shown previously: the cost of every person per function \star the vector b is equal to 1 on every component

* the solution is made of zeros and ones, without imposing this... * this phenomenon always happens: if A is a totally unimodular matrix and b is made of integers then $Ax \le b$ has all its vertices at points with integer coordinates

A matrix is totally unimodular if every square submatrix has determinant in the set $\{0,1,-1\}.$

Practical Example 3

 \star solving a Sudoku with LP

 \star Remember the rules: $\{1,2,3,4,5,6,7,8,9\}$ should be found on every line, column and 3×3 square

* in order to make this solvable via LP a different formulation should be used!
* classical idea: use binary variables

Sudoku in Binary variables

* how to represent a Sudoku puzzle using 0s and 1s?

 \star build a 3D array $X = (x_{ijk})$ of size $9 \times 9 \times 9$ such that

 $x_{ijk} = 1$ if and only if on position (i, j) we have the digit k; else $x_{ijk} = 0$ * what are the constraints in this new formulation?

- $x_{ijk} \in \{0,1\}$: again to be relaxed to $x_{ijk} \ge 0$ 729 constraints
- fixing i, j: $\sum_{k=1}^{9} x_{ijk} = 1$ one number per cell 81 constraints
- fixing $i, k: \sum_{j=1}^{9} x_{ijk} = 1 k$ appears exactly once on line i 81 constraints
- fixing j, k: $\sum_{i=1}^{9} x_{ijk} = 1 k$ appears exactly once on column j 81 constraints
- small 3×3 squares condition: for $u, v \in \{0, 3, 6\}$

$$\sum_{i=1}^{3} \sum_{j=1}^{3} x_{i+u,j+v,k} = 1, \ k = 1, ..., 9 - 81 \text{ constraints}$$

• the initial given information for the puzzle may be written in the form $s_{ij} = k$ for some i, j, k. This gives the constraints $x_{i,j,s_{ij}} = 1$.

 \star we are interested in finding a feasible solution: no objective function is needed!

* a feasible solution can be found using the simplex algorithm
* sometimes we may get non-integer results: apparently, the constraint matrix is not always a Totally Unimodular matrix
* there are LP algorithms which will return integer solutions: integer programming

* before solving we should check that the constraint matrix should be of maximal rank: eliminate redundant constraints
* we could also eliminate fixed variables: the data s_{ij} = k should eliminate all unknowns with first index i, second index j or third index k!

* if the solution is unique: the algorithm will find it
* if the solution is not unique: the algorithm will find one of the solutions. We may repeat with the constraint that the solution should be different than the previous one, until no other solutions are found!
* check out the PuLP Python library: an example of Sudoku solver is given!

- minimize/maximize linear functions under linear constraints
- many practical applications from an industrial point of view!
- there exist optimizers which are vertices of the constraint set
- simplex algorithm: travel along vertices decreasing the objective function
- computational complexity: worst case is exponential: Klee-Minty cube
- polynomial-time average case complexity: most of the LP problems will be solved very fast!

Conclusion of the course

* numerical optimization (unconstrained case):

- derivatives-free algorithms: no-regularity needed, slow convergence
- gradient descent algorithms: linear convergence, sensitive to the condition number
- Newton, quasi-Newton: super-linear convergence in certain cases
- when dealing with large problems use L-BFGS
- Conjugate Gradient: solve linear systems, better than GD
- Gauss-Newton: useful when minimizing a non-linear least squares function
- \star constrained case
 - for simple constraints: use the projected gradient algorithm
 - general smooth constraints: use the tangential part of the gradient and come back to the constraint set using the Newton method
 - other options available: SQP, etc...
 - Linear Programming: use specific techniques: the simplex algorithm → to be continued next year in the course dealing with Convex Optimization!

- know your options when looking at an optimization problem: choose the right algorithm depending on: the size of the problem, the number of variables, the regularity, the conditioning, etc.
- learn how to use existing solutions: scipy.optimize is a good starting point
- know how to code your own optimization algorithm if necessary: use gradients when possible, limit the number of function evaluations, choose a good stopping criterion, limit the number of iterations, etc.