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Motivation

* all algorithms presented before dealt with unconstrained optimization

* Advantage in the unconstrained case: when looking for the next iterate you
can search in any direction you want!

* In practice it may not be possible to include all information in the objective
function!

* Sometimes, a minimization problem does not have non-trivial examples if no
constraints are imposed!

* constraints are necessary and useful in practice: what are the implications
from the theoretical point of view?

* how to deduce what are the relevant optimality conditions and how to solve
practically optimization problems under constraints?
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Example 1

Source: http://people.brunel.ac.uk/~mastjjb/jeb/or/morelp.html

A company makes two products (X and Y) using two machines (A and B). Each
unit of X that is produced requires 50 minutes processing time on machine A and 30
minutes processing time on machine B. Each unit of Y that is produced requires 24
minutes processing time on machine A and 33 minutes processing time on machine B.

At the start of the current week there are 30 units of X and 90 units of Y in stock.
Available processing time on machine A is forecast to be 40 hours and on machine B is
forecast to be 35 hours.

The demand for X in the current week is forecast to be 75 units and for Y is
forecast to be 95 units. Company policy is to maximise the combined sum of the units
of X and the units of Y in stock at the end of the week.

Getting the constraints and objective function...

e 50x + 24y < 40 x 60

@ 30x 4 33y < 35 x 60 Maximize: x + y — 50
e x >45
ey>5
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Example 2

Optimal can

For an aluminum can one can infer that its production cost may be proportional
to its surface area. On the other hand, the can must hold a certain volume ¢ of
juice. Supposing that the can has a cylindrical shape, what are its optimal
dimensions?

* we have two parameters: the height h and the radius r.

* Area of the can (to be minimized): A(h,r) = 27r? + 27rh
* Volume of the can (constraint): V/(h,r) = wr?h

* finally we obtain the problem

in A(h,r).
v A0
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The milkmaid problem

Suppose a person (M) in a large field trying to get to a cow (C) as fast as
possible. Before milking the cow the bucket needs to be cleaned in a river
nearby defined by the equation g(x,y) = 0. What is the optimal point P on the
river such that the total distance traveled MP + PC is minimal?

If M(xo, o) is the initial position and C(xc, yc) is the position of the cow then
the problem becomes

min MP + PC.
g(P)=0
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General formulation

* given functions f, hy, ..., hn, g1, ..., & : R” — R we may consider problems like
(P) minf(x)
st hi(x)=0,i=1,..m
gi(x)<0,j=1,...k

* in the following we assume that functions f, h;, gj are at least C! (even more
regular if necessary)

* the cases where the constraints define a convex set are nice!

* we are interested in finding necessary and sufficient (when possible) optimality
conditions
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Some terminology

* a feasible solution to (P) is any point which verifies all the constraints

* the feasible set is the family of all feasible solutions

x if among feasible solutions of (P) there exists one x* such that f(x*) < f(x)
for all x which are feasible then we found an optimal solution of (P)

* inequality constraints can be turned into equality constraints by introducing
some slack variables: this increases the dimension of the problem...
* keeping the inequality constraints is good in the convex case!

* is good to picture the geometry given by the constraints and only then go to
the analysis results
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Intuitive Example

* Minimize f(x,y) = 2x® + y? under the constraint

h(x,y) = /(x —1)2+(y - 1)2-05=0
* Do the optimization and trace the gradients of f and h at the minimum:

Gradients at the optimum
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* Looks like the gradients are colinear! Why?

Beniamin BOGOSEL Computational Maths 2 9/62



What happens if the gradients are not collinear?

Gradients not at the optimum
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* the gradient Vf has a non-zero component along the tangent line to the
constraint

* Consequence: it should be possible to further decrease the value of f by
moving tangentially to the constraint!
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Optimality condition: equality constraints

* the gradient Vf(x*) should be orthogonal to the tangent plane to the
constraint set h(x*) = 0, otherwise following the non-zero tangential part we
could still decrease the value of f

Questions:
* definition of tangent space: look at the first order Taylor expansion!

The linearization of the constraint h; around x s.t. h;(x) = 0 is given by
Ci(y) = hi(x) + Vhi(x) - (y = x) = Vhi(x) - (y — x)
If h(x) = 0 then the tangent plane at x is defined by
T.={y:(y—x)-Vhi(x)=0,i=1,..,m}.

* existence of well-defined tangent spaces: the function h should be regular
around the minimizer
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Examples

* h(x) = x2 + x3 — 1 around the point p = (v/2/2,v/2/2): we have
Vh(p) = 2(x1,x2) so the tangent plane is
TP = {y : (y - p) . (X17X2) = 0}7
which a well defined 1-dimensional line
x h(x) = x? — x2 at the point p = (0,0): we have Vf(x) = (2x;, —2xp) so
Vf(p) = 0. Using the same definition we have
T,={y:(y—p)-0=0}=R?
which is weird.

Goal: m equality constraints should give rise to a tangent space of dimension
k = n— m! The gradient should be in the orthogonal to the tangent plane at
the optimum: this has dimension equal to the rank of Dh(x*). Two situations
occur:

o rank of Dh(x*) is strictly less than m: Vf(x*) might not be representable
as a linear combination of Vh;(x*)!

@ rank of Dh(x*) is exactly equal to m
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Further Examples

% intersect two spheres in R3: you may end up with a point which is not a set of
dimension 1

x intersect a sphere and a right cylinder: hy(x) = x% + x2 + x% — 1,
hy(x) = x? + x3 — x2. The gradients are Vh;(x) = 2(x1, x2,x3) and
Vhy(x) = (2x1,2x, — 1,0) and they are linearly dependent at (0, 1,0).

We expect an intersection made of a 1D curve, but there are points where the
tangent is not unique!
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Regular points

Definition 1 (Regular points)

Given a family hy, ..., hy, of C! functions, m < n, a solution xy of the system
hi(x)=0,i=1,...,m

is called regular if the gradient vectors (Vhj(xp))", are linearly independent.

Equivalently, the m x n matrix having Vh;j(xo) as rows has full rank m.

* the implicit function theorem implies that around regular points the system
hi(x) = 0 defines a C! surface of dimension k = n — m!

* moreover, you can pick some k = n — m coordinates and express the set h;(x)
in parametric form in terms of these coordinates

* at regular points we can define the notion of tangent space which coincides
with the one given by linearizing the constraints.
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Tangent plane property

Let S be given by hj(x) =0,i = 1,...,m where h; are C? functions and x € S
be a regular solutions. Then the plane T, defined by
T ={(y — x)Dh(x) = 0}
is the tangent plane to S at x. Furthermore, there exists a constant C such that
(1) for every x' € S there exists y' € T, s.t. |x' —y'| < C|x' — x|?
and

(2) for every y' € T, there exists X' € S s.t. |x' —y'| < Cly’ — x|?

* Just look at the Taylor expansion of h; and the linearization ¢; around x!
They coincide up to the second order.

* the statement (2) is false if x is not a regular point: the tangent space defined
by T is larger than the real tangent space!
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More details: tangent plane

x if Dh(x) is of rank m then the linear system Dh(x)y = 0 can be solved in
terms of k = n — m parameters: e.g. Ymi1, -y Vn:

Yi= fi(Yerl» --->Yn)7 i= 17 ceey M.
x implicit function theorem: there exist k = n — m coordinates (say Ymi1, -, ¥n)
such that there exist C! functions ¢ s.t.

Yi = <Pi(}/m+1a "'7yn)7 i = 17 cym
* The gradients of ¢; are given by ¢;!
* Finally, the difference between the surface h(x) = 0 and the linearization
contains only second order terms!

yi =i = 0(x = yP).
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First order optimality conditions

* suppose that x* is a local minimum of f under the constraints h(x) =0

* suppose also that x* is regular so that the tangent space T, to the constraint
gives a good approximation of h(x) = 0.

* it is reasonable to assume that x* also minimizes the linearization of f:

f(y) = f(x*) + (y — x*)VF(x*) on this tangent plane defined by

Dh(x*)(y — x*) =0.

* this would imply that V£ (x*) is orthogonal to (y — x*) for every y such that
Dh(x)(y —x*) = 0.

x in usual notations we have Vf(x*) € (ker Dh(x*))*

* recall an important linear algebra result:

(ker A): = 1mAT.
* finally, we obtain that there exists some A € R™ s.t.
V£(x*) = Dh(x*)A
which translates to the classical relation

Vf(X*) = zm: )\,Vh,(x*)
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Main result: Lagrange multipliers

Theorem 3

Let x* be a local minimizer for the equality constrained problem
min f(x
h(x)=0 ( )
and suppose that x* is a regular point for the system of equality constraints.
Then the following two equivalent facts take place

@ The directional derivative of f in every direction along the space
{y : Dh(x*)(y — x*) = 0} tangent to the constraint at x* is zero:
Dh(x*)d =0 = Vf(x*)-d =0
@ There exist a uniquely defined vector of Lagrange multipliers
AY, i =1,...,m such that

V(") + ) A\ Vhi(x") =0.
i=1
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Proof:

S denotes the set h(x) = 0.

suppose that there exist a direction parallel to the tangent plane
Dh(x*)é = 0 which is not orthogonal to Vf(x*)

by eventually replacing it with —4 we may assume § - Vf(x*) = —a < 0.

denote y; = x* 4 td. For small enough t we have f(y;) < f(x*) — ta/2

@ since x* is regular, for every t small there exists a point x; € S such that
lye = xe| < Clye — X*|2 = Gt?
e f is C! and therefore Lipschitz around x* so
F(x) = Fye)] < Colxe =yl < GGt
o Finally we get that f(x;) < f(x*) — at/2 + G Gt? < f(x*) for t > 0 small
enough, contradicting the optimality of x*

x the second points comes from (ker A)* = ImAT!

Beniamin BOGOSEL Computational Maths 2 19/62



The result may be false at irregular points

Counterexample: Minimize the function f(xi, X2, x3) = xo under the
constraints
0=h(x)=x"—x3, 0=ho(x)=2x5 — x3.
* the constraints define the curve v(x) = (x, x2, x°).
* the minimum of f is attained at (0,0, 0)
* We have V£(0) = (0,1,0)
* on the other hand Vhy(0) = Vhy(0) = (0,0,—-1)
* it is clear that V£(0) is not a linear combination of Vh;(0) and Vhy(0)
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Another counterexample

* come back to the intersection between the sphere and the cylinder:

hi(x) = x¢ + x3 + x5 — 1, ha(x) = x} + x3 — xo. The gradients are

Vhi(x) = 2(x1, x2, x3) and Vh(x) = (2x1,2x; — 1,0) and they are linearly
dependent at (0, 1,0).

* we can obtain that x> = x2 — x§ and xo = 1 — x2 so the curve representing
the intersection between h; and h, has the parametrization

(i\/x32 —x3,1 —x32,X3)

* choose now the function f(x1, X2, x3) = x1 + x3 = x3 £ /x5 — x3. This
function has the minimum value 0 for x; = 0 associated to the point (0,1, 0).
* the gradient of f at the minimum is V£(0,1,0) = (1,0,1)

* again, the conclusion of the theorem is not satisfied since the gradients of the

constraints are not linearly independent at the optimum.
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Example of usage

* min(3x + 2y + 6z) such that x2 + y?> + 22 =1
* obviously, there exists a solution, since x? 4+ y? 4+ z? = 1 is closed and bounded
* write the optimality conditions: there exists A such that
Vi(x*)+ AVh(x*) =0
(3,2,6) = A(2x, 2y, 2z).
* this immediately gives x, y, z in terms of A
* plug these expression in the constraint to get A, and therefore x, y, z
* in this case we get two values of A: one corresponding to the minimum, the
other corresponding to the maximum!

Order one optimality conditions do not indicate whether we are at a minimum
or at a maximum!
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The milkmaid problem

min d(P,x) + d(x, Q).
g(x)=0
* suppose that g is a nice curve in the plane with non-zero gradient
* the gradient of the distance function:
x—P
Vxd(P,x) = d(Px)’

is the unit vector that points from P to the variable point x.
* the optimality condition says that there exists A such that

Vxd(P,x) + V,d(Q,x) + AVg(x) =0
* what does this mean geometrically? The normal vector Vg(x) to g(x) =0
cuts the angle PxQ in half
* we obtain the classical reflection condition using Lagrange multipliers!
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The isoperimetric inequality

What is the curve which has the maximum area for a given perimeter? J

* suppose we have a 2D curve parametrized by (x(t), y(t)) in a
counter-clockwise direction.

@ the perimeter is L = f Vx(t)? + y(t)?

o the area is A= [ L(x(t)y(t) — y(t)x(t))

Problem

Maximize A with the constraint L = p

x L=L(x,y), A= A(x,y) are functions for which variables are other functions.
Sometimes the term functionals is employed!

* how to compute the gradient in such cases? when in doubt just come back to
the one dimensional case using directional derivatives

* the integrals are taken over a whole period of the parametrization
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Derivatives of A and L

* pick two directions v and v and t € R. Then compute the derivative of
t— L(x+tu,y +tv)att=0.
* it is useful to take all derivatives off u and v to get the linear form

! = - X Iu _y Iv
vonten=—[|( ) o+ (7)1

* do the same for A(x, y) to get

Aey)(v) = [ (u—sv)

* in the end we get

Y ) i) - g
VL(X7Y)_<<\/W> 7(\/@))7v’4( a)/) (.ya )
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Optimality condition and conclusion

* when maximizing A under the constraint L = p the solution should verify the

optimality condition
VA(x,y) + AVP(x,y) =0, AeR
* plugging the derivatives found previously we get

/
i) =0
i /
* integrating we obtain

— X —
y—=2A s b

y _
X+>\W*a

* in the end we have
(x—a)’ +(y — b)> = X2,
so the solution should be a circle.
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The Lagrangian

* the optimality conditions obtained involve the gradient of the objective
function and the constraints.
* the optimality condition can be written as the gradient of a function

combining the objective and the constraints called the Lagrangian: £ : R" x R™

L(x, Z)\ hi(x) = f(x) + A - h(x).
x if x* is a local minimum of f on the set {h(x) = 0} then the optimality
condition tells us that there exists A* € R™ such that
oL
—(x*,A*)=0and —(x A*) =

Ox
* moreover, sup L(x,\) = {i(x) I: :Exi ; 8
oo i

AERN
min f = min sup L(x, A
h(x):O ( ) x€ERnM Ae]lg ( )

* the minimizer of f becomes a saddle point for the Lagrangian

which gives
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Another point of view

* for ¢; € R, i =1,..., m consider the problem
in f
pimin_f(x)
* considering the Lagrangian

m
L(x, ) = f(x)+ > Ni(c — hi(x))
i=1
we see that ‘9—L_ = )\; so the Lagrange multipliers represent the rate of change of
the quantity belng optimized as a function of the constraint parameter.
* denote by x*(c), A*(c) the optimizer and the Lagrange multipliers as a

function of ¢. Then

Of (x*(c)) _ OL(x*(c), \*)

8C,‘ 8C,'
787£ . L Ox*(c) oL .
= 5 (AT 4 52 (e), N

!
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Another application: compute derivatives

* how to compute derivatives under constraints?
Example: Compute the derivative of x — f under the constraint f2 = x.
* write the Lagrangian: L(x,f,p) = f + (f> — x)p
x if f = /x then L(x,f,p) =f.
* compute the derivative of f directly from above:
L L df L d

() = GrbxFop) + SE R G+ S )

* cancel the terms which you don't know using the Lagrangian:
oL

oL
—=f—x=0,—~=1+2fp=0.
ap X O’@f +2fp=0
1 1

oL
. . ! _ — = — = —
* what remains is f'(x) = 78X(X’ f,—1/(2f)) 2f  2y/x

* we recover the classical result. This technique is known as the adjoint method
and is useful for computing derivatives in complicated spaces: shape derivatives,
control theory, etc.
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What happens for inequality constraints?

* minimize f(x) such that g1(x) <0,..., gk(x) < 0.

* not all inequality constraints play the same role: at the point x the constraint
i is said to be active if gj(x) = 0.

x if a constraint g; (where g; is C') is inactive at a minimizer x* then g;(x) < 0
in a neighborhood of x*

* if x* is a minimizer of f(x) under the constraints g; and gij(x*) < 0 then g;
does not impose any restriction on f locally: ignoring it produces the same
result (locally)

* equality constraints generally produced surfaces while inequality constraints
can just give bunded regions of R”.
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Qualification of constraints

* denote by /(x) = {i € {1, ..., k} : gi(x) = 0} be the indices of active
constraints at x

* we say that the constraints are qualified at x if the gradients (Vgi(x))ici(x)
are linearly independent!

* geometrically, as in the equality constraints case, if the constraints are
qualified at x then we may define a proper tangent space using the family

(Vgi(x))icix)

* Special case: if all g; are affine constraints then they are automatically
qualified. Why?

@ in this case the constraints also define the tangent space themselves

@ the linear independence of the gradients at a point x is equivalent to the
removal of redundant constraints
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Optimality conditions: inequalities

Let x* be a local minimizer for the inequality constrained problem

min f(x
g(x)<0 (x)

and suppose that the constraints are qualified at x*. Then the following
affirmations are true:

@ There exists a uniquely defined vector of Lagrange multipliers
Af >0, i=1,.., k such that

m
VF(x*)+ > AiVgi(x*) =0.
i=1
o Moreover, if gi(x*) < 0 then \; = 0, also called the complementary
slackness relations. Equivalent formulation: \;gi(x*) = 0.

* why are Lagrange multipliers non-negative in this case? x* would like to " get
out of the constraints” to increase the value of f

* if x* is an interior point for g(x) < 0 then simply Vf(x*) =0
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Example: qualification of constraints

Consider the set
k={x=(x1,%) €ER?: —x; <0, —x0 <0, —(1—x1)*+x2 <0}.
* Maximize J(x) = x1 + x; for x € K.
x making a drawing we find that immediately that the solutions are (0,1) and
(1,0).
* let's check if we can write the optimality condition at the two points:
@ (1,0): constraints not qualified: unable to write the opt. cond

@ (0,1): constraints qualified: the optimality condition can be written!
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The Lagrangian - inequality case

* the optimality conditions obtained involve the gradient of the objective
function and the constraints.

* the optimality condition can be written as the gradient of a function
combining the objective and the constraints called the Lagrangian: £ :R" x RT

K
Lx,A) = f(x)+ Y Nigi(x) = F(x) + A~ g(x).
i=1
* if x* is a local minimum of f on the set {g(x) < 0} then the optimality
condition tells us that there exists \* € R such that
oL oL
a(x*,)\*) =0 and a—)\(x*,/\*) =0
{f(x> ifg(x) <0

. which gives
400 otherwise

* moreover, sup L(x,\) =
AER™

min f(x) = min sup L(x, ).
g(x)<0 CJ XER"AEDS’}: (6 A)

* the minimizer of f becomes a saddle point for the Lagrangian
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Come back to the optimal can problem

x Area of the can (to be minimized): A(h,r) = 2mr? + 2nrh
x Volume of the can (constraint): V/(h,r) = mr?h
* finally we obtain the problem

in A(h,r).
Vihnse (h.r)

* the constraint will be activel!
* write the optimality condition: find r and h in terms of A and finish!

* in the end we find that the optimal can will have the height h equal to two
times its radius r.

* find now the optimal cup: only one of the two ends is filled with material!
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Saddle points

Definition 5

We say that (u, p) € U x P is a saddle point of £ on U x P if
Vge P L(u,q) < L(u,p) < L(v,p) VYvelU

x when fixing p: v — L(b, p) is minimal for v = u
* when fixing u: g — L(u, g) is minimal for g = p

* If J is the objective function and F defines the constraint set K (equality or
inequality) then a saddle point (u, p) for the Lagrangian

L(v,q) =J(v) +q-F(v)
verifies that v is a minimum of J on K.
* moreover, if the Lagrangian is defined on an open neighborhood U of the
constraint set K then we also recover the optimality condition

VJ(u) + Zm: piVFi(u) =0.
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Sufficient conditions

* two options: go to the second order or use convexity

* it is not enough to look at the second order approximation of f on the tangent
space! The curvature of the constraint can also play a role.

* the correct way is to look at the Hessian of the Lagrangian with respect to x,
reduced to the tangent space!

* in the convex case, for inequality constraints things are a little bit easier!

* why only for inequality constraints? Imagine that equality constraints can
produce curved surfaces and the only way to have convexity there is if they are
flat!

* why the choice gj(x) < 0 as the definition of inequality constraints? Because
if all g; are convex functions then

K={x:gi(x)<0,i=1,...,k} is a convex set.
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Sufficient conditions - convex case

Theorem 6 (Kuhn-Tucker)

Suppose that the functions f,g;, i =1,...,k are C* and convex. Define K as
the set K = {x : gi(x) < 0} and introduce the Lagrangian

L(v,q)=f(v)+q-g(v), vER", g R,
Let x* be a point of K where the constraints are qualified. Then the following
are equivalent:

o x* is a global minimum of f on K

o there exists \* € R™ such that (x*, \*) is a saddle point for the Lagrangian
0 g(x*) <0, A" >0, \*- F(x*) =0, VF(x*) + Y, A\ Vgi(x*) = 0.

* why the reverse implication works? When g > 0 the Lagrangian
L(v,q)=f(v)+q-g(v), veER" g€ Ri

is convex when f and g = (g;) are convex!

* particular case: affine equalities! convex and qualified!
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Handle the constraints numerically

* we already saw two methods:
@ projected gradient algorithm:
Xiy1 = ProjK(x,- — tVf(X,'))
@ penalization: include the constraint {g = 0} in the objective
, 1
min f(x) + =g(x)?
€
* we saw that the projection is not explicit in most cases! In the meantime we
learned how to solve non-linear equations. Imagine the following algorithm:

e Compute x; and the projection d; of —Vf(x;) on the tangent space
(orthogonal of (Vgj(xi)))

@ advance in the direction of d;: x;11 = x; + ;d;

@ project x;11 on the set of constraints using the Newton method
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Conclusion on Lagrange multipliers

@ we may obtain necessary optimality conditions involving equality and
inequality constraints: the gradient of f is a linear combination of the
gradients of the constraints

@ the gradients of the constraints need to be linearly independent at the
optimum: proper definition of the tangent space!

o for inequality constraints only the active constraints come into play in the
optimality condition
o sufficient conditions can be found in the convex case: Kuhn-Tucker theorem

@ the theory gives new ways to handle constraints numerically
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Linear programming

* maximizing or minimizing a linear function subject to linear constraints!
* Example:

max(x; + x2)
such that x; > 0, x» > 0 and

x1+2x% < 5
bxi +2x% < 11
—2x1+x < 1

* we have some non-negativity constraints and the main constraints
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Geometric solution

* in dimension 2 we can solve the problem by plotting the objective function on
the admissible set determined by the constraints!

‘ 3
2
. 2
1
1

0 0.5 1 1.5 2

o

0

o

0

* observe that in this case the solution is situated at the intersection of the lines
5X1 + 2X2 =11 and X1 + 2X2 =5.
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Theoretical observations

* the gradient of f(x1,x) = x1 + x2 is (1,1): it is constant and never zero!

* the set K determined by the linear constraints is convex

* the minimum or maximum cannot be attained in the interior of K, since
Vi(x) #£ 0!

* the optimal value is on the boundary of K. Moreover there exists a vertex of
the polygon where it can be found! Why?

@ start at a point xg inside K go against the gradient till you meet an edge

@ if the function is constant along an edge then the gradient of the function
and the constraint are collinear at that point: Kuhn-Tucker Theorem says
that we reached the solution!

@ otherwise, follow the direction where the function decreases till reaching a
vertex. Then go to the next edge and repeat the previous reasoning.

@ the process will finish: finite number of edges!

* same reasoning can be applied in higher dimensions: follow the anti-gradient
direction till it is collinear to the gradient of the constraint or no further
decrease is possible along further facets!

Beniamin BOGOSEL Computational Maths 2 44/62



Standard formulations

* The Standard Maximum Problem: Maximize cx = ¢;x; +
subject to the constraints

ayx1+ ...+ amx, < b
: or Ax<b
amiX1 + ... + amnXn S bm
and x; > 0,x >0,...,x, >00orx>0
* The Standard Minimum Problem: Minimize ytb = y;1 b; +
subject to the constraints

auyr + ...+ ammym =>a
: oryT™A>c’
alny1+~~~+amn}/m > Cn
and 1 Z Ovy2 Z 07 ey Ym Z 0or y Z 0
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Example 1

The Transportation Problem

* There are | production sites Pi, ..., P; which supply a product and J markets
My, ..., M, to which the product is shipped.

* the site P; contains s; products and the market M; must recieve r; products.
* the cost of transportation from P; to M; is b

* the objective is to minimize the transportation cost while meeting the market
requirements!

* denote by yj; the quantity transported from P; to M;. Then the cost is

) J
> yiby

i=1 j=1
* the constraints are

J 1
D vi<siand Y yj >
j=1 i=1
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Example 2

The Optimal Assignment Problem

* There are | persons available for J jobs. The "value” of person i working 1
day at job j is aj.

* Objective: Maximize the total "value”

* the variables are xj;: the proportion of person i's time spent on job j

* the constraints are x;j > 0

J !
d xj<li=1,.,land Y x; <1, j=1,..,J<1
j=1 i=1

@ can't spend a negative amount of time at a job
@ a person can't spend more than 100% of its time

@ no more than one person working on a job
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Some Terminology

* a point is said to be feasible if it verifies all the constraints

* the set of feasible points is the constraint set

* a linear programming problem is feasible if the constraint set is non-empty. If
this is not the case then the problem is infeasible

* every problem involving the minimization of a linear function under linear
constraints can be put into standard form

@ you can change a " >" inequality into " <" by changing the signs of the
coefficients

o if a variable x; has no sign restriction, write it as the difference of two new
positive variables x; = u; — v;, uj,v; >0
x it is possible to pass from inequality constraints to equality constraints (and
the other way around)
@ Ax = b is equivalent to Ax < band Ax > b
o If Ax < b then add some slack variables u > 0 such that Ax + u=0»b
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Duality in LP

Definition 7

The dual of the standard maximum problem

maxc’x
st. Ax<band x>0

is the standard minimum problem

miny b
s.t. yTA >c’ and y>0
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Example

* consider the problem
maximize x1 + X
such that x>0

x1 + 2X2 S 5
5X1 + 2X2 S 11
—2x1+x < 1

* the dual problem is

minimize  5y; + 11y, + y3
such that y >0

y1+5y2 —2y3 >
21 +2p+y3 > 1
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Relation between dual problems

Theorem 8

If x is feasible for the standard maximum problem and'y is feasible for the dual
problem then
c'x<y'b.

* The proof is straightforward:
cx < yTAx < yTb.
* important consequences:
@ if the standard maximum problem and its dual are both feasible, they are
bounded feasible: the optimal values are finite!

o If there exist feasible x* and y* for the standard maximum problem and its
dual such that c¢"x* = y* Tb then both are optimal for their respective
problems!

Theorem 9 (Duality)

If a standard linear programming problem is bounded feasible then so is its dual,
their optimal values are equal and there exist optimal solutions for both
problems.
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Solve LP problems numerically

* the simplex algorithm: travel along vertices of the set defined by the
constraints until no decrease is possible

* work with the matrix A and with vectors b and ¢ and modify them using pivot
rules: similar to the ones used when solving linear systems

* exploit the connection between the standard formulation and its dual

* things get more complicated when we restrict the variables to be integers.
This gives rise to integer programming!

* algorithms solving the main types of LP problems are implemented in various
Python packages: scipy.optimize.linprog, pulp.
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The simplex algorithm

* bring the problem to the case of equality constraints using slack variables

n n
Zauxj < b — Za,'ij+S; = b;,s; >0
Jj=1 Jj=1
* any free variable x; € R should be replaced with u; — v; with uj,v; > 0
* now we can solve
maximize c¢'x
subjectto Ax=b
x>0
* start from the origin x = 0 and go through the vertices of the polytype Ax = b
* at each step perform an operation similar to the Gauss elimination
* Possible issues: cycling, numerical instabilities.
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Practical Example 1

* the first example of a standard maximum problem

max(x1 + x2)
such that x; > 0, x» > 0 and

X1+ 2x2 < 5
bx1 +2x% < 11
—2X1 =+ X7 S 1

* we saw geometrically that the solution should be the intersection of
X1 +2X2 =5 and 5X1 +2X2 =11

scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None,

b_eq=None,bounds=None, method=’simplex’,
callback=None, options=None)
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Practical Example 2

* An optimal assignment problem: n

Job1 | Job2 | Job3
Person 1 | 100€ | 120€ | 80€
Person 2 | 150€ | 110€ | 120€
Person 3 | 90€ 80€ | 110€

* assign Person i to Job j in order to minimize the total cost!

* we can model the situation as an LP problem with 9 variables: xj; = 1 if and
only if Person i has job j, 1 <j,j <3

* the constraints are as follows:

° Z?le,-j = 1: exactly one Person for Job j
° ?:1 xjj = 1: exactly one Job for Person i

x we should also impose that x; € {0,1}: no fractional jobs, but we'll neglect
this condition and just suppose x; > 0.

* the cost is just
E Cij Xij
1<i,j<3

Beniamin BOGOSEL Computational Maths 2 55/62



Find the LP parameters

* let’s look at the matrix of the problem: 9 variables and 6 constraints!

11 100O0O0O0O0
000111000
A:OOOOOOlll
100100100
010010010
001 0O01O0TO0T1

* the matrix ¢ is given by the table shown previously: the cost of every person
per function % the vector b is equal to 1 on every component

* the solution is made of zeros and ones, without imposing this...

* this phenomenon always happens: if A is a totally unimodular matrix and b is
made of integers then Ax < b has all its vertices at points with integer
coordinates

A matrix is totally unimodular if every square submatrix has determinant in the
set {0,1,—1}.
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Practical Example 3

* solving a Sudoku with LP

3 85

1 2

5 7
4 1
9

5 73

2 1
4 9

* Remember the rules: {1,2,3,4,5,6,7,8,9} should be found on every line,
column and 3 x 3 square

* in order to make this solvable via LP a different formulation should be used!
* classical idea: use binary variables
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Sudoku in Binary variables

* how to represent a Sudoku puzzle using Os and 1s?
* build a 3D array X = (x;jk) of size 9 x 9 x 9 such that

xijik = 1 if and only if on position (i, j) we have the digit k; else xjx =0
* what are the constraints in this new formulation?
o x;i € {0,1}: again to be relaxed to xjx > 0 - 729 constraints
o fixing i, J: 22:1 Xjjk = 1 - one number per cell - 81 constraints
o fixing i, k: Z?Zl Xjjk = 1 - k appears exactly once on line i - 81 constraints
e fixing j, k: Z?:l Xjjik = 1 - k appears exactly once on column j - 81 constraints

@ small 3 x 3 squares condition: for u,v € {0, 3,6}

3 3
3> Xiujivk =1, k=1,..,9 - 81 constraints
i=1 j=1
@ the initial given information for the puzzle may be written in the form
sj = k for some i, j, k. This gives the constraints x; ; s, = 1.

* we are interested in finding a feasible solution: no objective function is needed!
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Solving the Sudoku

* a feasible solution can be found using the simplex algorithm

* sometimes we may get non-integer results: apparently, the constraint matrix is
not always a Totally Unimodular matrix

* there are LP algorithms which will return integer solutions: integer
programming

* before solving we should check that the constraint matrix should be of
maximal rank: eliminate redundant constraints

* we could also eliminate fixed variables: the data s; = k should eliminate all
unknowns with first index /, second index j or third index k!

* if the solution is unique: the algorithm will find it

* if the solution is not unique: the algorithm will find one of the solutions. We
may repeat with the constraint that the solution should be different than the
previous one, until no other solutions are found!

* check out the PuLP Python library: an example of Sudoku solver is given!
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Conclusions on LP

minimize/maximize linear functions under linear constraints

many practical applications from an industrial point of view!

there exist optimizers which are vertices of the constraint set

simplex algorithm: travel along vertices decreasing the objective function
computational complexity: worst case is exponential: Klee-Minty cube

polynomial-time average case complexity: most of the LP problems will be
solved very fast!
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Conclusion of the course

* numerical optimization (unconstrained case):

derivatives-free algorithms: no-regularity needed, slow convergence

gradient descent algorithms: linear convergence, sensitive to the condition
number

Newton, quasi-Newton: super-linear convergence in certain cases
when dealing with large problems use L-BFGS
Conjugate Gradient: solve linear systems, better than GD

Gauss-Newton: useful when minimizing a non-linear least squares function

* constrained case

for simple constraints: use the projected gradient algorithm

general smooth constraints: use the tangential part of the gradient and
come back to the constraint set using the Newton method

other options available: SQP, etc...

Linear Programming: use specific techniques: the simplex algorithm — to
be continued next year in the course dealing with Convex Optimization!
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Conclusion of the course

@ know your options when looking at an optimization problem: choose the
right algorithm depending on: the size of the problem, the number of
variables, the regularity, the conditioning, etc.

@ learn how to use existing solutions: scipy.optimize is a good starting
point

@ know how to code your own optimization algorithm if necessary: use
gradients when possible, limit the number of function evaluations, choose a
good stopping criterion, limit the number of iterations, etc.
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