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Motivation

? all algorithms presented before dealt with unconstrained optimization
? Advantage in the unconstrained case: when looking for the next iterate you
can search in any direction you want!
? In practice it may not be possible to include all information in the objective
function!
? Sometimes, a minimization problem does not have non-trivial examples if no
constraints are imposed!

? constraints are necessary and useful in practice: what are the implications
from the theoretical point of view?
? how to deduce what are the relevant optimality conditions and how to solve
practically optimization problems under constraints?
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Example 1

Source: http://people.brunel.ac.uk/~mastjjb/jeb/or/morelp.html

A company makes two products (X and Y) using two machines (A and B). Each
unit of X that is produced requires 50 minutes processing time on machine A and 30
minutes processing time on machine B. Each unit of Y that is produced requires 24
minutes processing time on machine A and 33 minutes processing time on machine B.

At the start of the current week there are 30 units of X and 90 units of Y in stock.
Available processing time on machine A is forecast to be 40 hours and on machine B is
forecast to be 35 hours.

The demand for X in the current week is forecast to be 75 units and for Y is
forecast to be 95 units. Company policy is to maximise the combined sum of the units
of X and the units of Y in stock at the end of the week.

Getting the constraints and objective function...

50x + 24y ≤ 40× 60

30x + 33y ≤ 35× 60

x ≥ 45

y ≥ 5

Maximize: x + y − 50
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Example 2

Optimal can

For an aluminum can one can infer that its production cost may be proportional
to its surface area. On the other hand, the can must hold a certain volume c of
juice. Supposing that the can has a cylindrical shape, what are its optimal
dimensions?

? we have two parameters: the height h and the radius r .
? Area of the can (to be minimized): A(h, r) = 2πr2 + 2πrh
? Volume of the can (constraint): V (h, r) = πr2h
? finally we obtain the problem

min
V (h,r)≥c

A(h, r).
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The milkmaid problem

Suppose a person (M) in a large field trying to get to a cow (C ) as fast as
possible. Before milking the cow the bucket needs to be cleaned in a river
nearby defined by the equation g(x , y) = 0. What is the optimal point P on the
river such that the total distance traveled MP + PC is minimal?

If M(x0, y0) is the initial position and C (xC , yC ) is the position of the cow then
the problem becomes

min
g(P)=0

MP + PC .
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General formulation

? given functions f , h1, ..., hm, g1, ..., gk : Rn → R we may consider problems like

(P) min f (x)
s.t hi (x) = 0, i = 1, ...,m

gj(x) ≤ 0, j = 1, ..., k

? in the following we assume that functions f , hi , gj are at least C 1 (even more
regular if necessary)
? the cases where the constraints define a convex set are nice!
? we are interested in finding necessary and sufficient (when possible) optimality
conditions
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Some terminology

? a feasible solution to (P) is any point which verifies all the constraints
? the feasible set is the family of all feasible solutions
? if among feasible solutions of (P) there exists one x∗ such that f (x∗) ≤ f (x)
for all x which are feasible then we found an optimal solution of (P)

? inequality constraints can be turned into equality constraints by introducing
some slack variables: this increases the dimension of the problem...
? keeping the inequality constraints is good in the convex case!

? is good to picture the geometry given by the constraints and only then go to
the analysis results
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Intuitive Example

? Minimize f (x , y) = 2x2 + y2 under the constraint
h(x , y) =

√
(x − 1)2 + (y − 1)2 − 0.5 = 0

? Do the optimization and trace the gradients of f and h at the minimum:

? Looks like the gradients are colinear! Why?
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What happens if the gradients are not collinear?

? the gradient ∇f has a non-zero component along the tangent line to the
constraint
? Consequence: it should be possible to further decrease the value of f by
moving tangentially to the constraint!
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Optimality condition: equality constraints

? the gradient ∇f (x∗) should be orthogonal to the tangent plane to the
constraint set h(x∗) = 0, otherwise following the non-zero tangential part we
could still decrease the value of f

Questions:
? definition of tangent space: look at the first order Taylor expansion!

The linearization of the constraint hi around x s.t. hi (x) = 0 is given by

`i (y) = hi (x) +∇hi (x) · (y − x) = ∇hi (x) · (y − x)

If h(x) = 0 then the tangent plane at x is defined by

Tx = {y : (y − x) · ∇hi (x) = 0, i = 1, ...,m}.

? existence of well-defined tangent spaces: the function h should be regular
around the minimizer
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Examples

? h(x) = x21 + x22 − 1 around the point p = (
√

2/2,
√

2/2): we have
∇h(p) = 2(x1, x2) so the tangent plane is

Tp = {y : (y − p) · (x1, x2) = 0},
which a well defined 1-dimensional line

? h(x) = x21 − x22 at the point p = (0, 0): we have ∇f (x) = (2x1,−2x2) so
∇f (p) = 0. Using the same definition we have

Tp = {y : (y − p) · 0 = 0} = R2,

which is weird.

Goal: m equality constraints should give rise to a tangent space of dimension
k = n −m! The gradient should be in the orthogonal to the tangent plane at
the optimum: this has dimension equal to the rank of Dh(x∗). Two situations
occur:

rank of Dh(x∗) is strictly less than m: ∇f (x∗) might not be representable
as a linear combination of ∇hi (x∗)!

rank of Dh(x∗) is exactly equal to m
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Further Examples

? intersect two spheres in R3: you may end up with a point which is not a set of
dimension 1

? intersect a sphere and a right cylinder: h1(x) = x21 + x22 + x23 − 1,
h2(x) = x21 + x22 − x2. The gradients are ∇h1(x) = 2(x1, x2, x3) and
∇h2(x) = (2x1, 2x2 − 1, 0) and they are linearly dependent at (0, 1, 0).

We expect an intersection made of a 1D curve, but there are points where the
tangent is not unique!
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Regular points

Definition 1 (Regular points)

Given a family h1, ..., hm of C 1 functions, m ≤ n, a solution x0 of the system

hi (x) = 0, i = 1, ...,m

is called regular if the gradient vectors (∇hi (x0))mi=1 are linearly independent.
Equivalently, the m × n matrix having ∇hi (x0) as rows has full rank m.

? the implicit function theorem implies that around regular points the system
hi (x) = 0 defines a C 1 surface of dimension k = n −m!
? moreover, you can pick some k = n −m coordinates and express the set hi (x)
in parametric form in terms of these coordinates
? at regular points we can define the notion of tangent space which coincides
with the one given by linearizing the constraints.

Beniamin Bogosel Computational Maths 2 14/62



Tangent plane property

Proposition 2

Let S be given by hi (x) = 0, i = 1, ...,m where hi are C 2 functions and x ∈ S
be a regular solutions. Then the plane Tx defined by

Tx = {(y − x)Dh(x) = 0}
is the tangent plane to S at x. Furthermore, there exists a constant C such that

(1) for every x ′ ∈ S there exists y ′ ∈ Tx s.t. |x ′ − y ′| ≤ C |x ′ − x |2

and

(2) for every y ′ ∈ Tx there exists x ′ ∈ S s.t. |x ′ − y ′| ≤ C |y ′ − x |2

? Just look at the Taylor expansion of hi and the linearization `i around x!
They coincide up to the second order.
? the statement (2) is false if x is not a regular point: the tangent space defined
by Tx is larger than the real tangent space!
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More details: tangent plane

? if Dh(x) is of rank m then the linear system Dh(x)y = 0 can be solved in
terms of k = n −m parameters: e.g. ym+1, ..., yn:

y i = `i (ym+1, ..., yn), i = 1, ...,m.

? implicit function theorem: there exist k = n−m coordinates (say ym+1, ..., yn)
such that there exist C 1 functions ϕj s.t.

yi = ϕi (ym+1, ..., yn), i = 1, ...,m

? The gradients of ϕi are given by `i !
? Finally, the difference between the surface h(x) = 0 and the linearization
contains only second order terms!

yi − y i = O(|x − y |2).
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First order optimality conditions

? suppose that x∗ is a local minimum of f under the constraints h(x) = 0
? suppose also that x∗ is regular so that the tangent space Tx to the constraint
gives a good approximation of h(x) = 0.
? it is reasonable to assume that x∗ also minimizes the linearization of f :
f (y) = f (x∗) + (y − x∗)∇f (x∗) on this tangent plane defined by
Dh(x∗)(y − x∗) = 0.
? this would imply that ∇f (x∗) is orthogonal to (y − x∗) for every y such that
Dh(x)(y − x∗) = 0.
? in usual notations we have ∇f (x∗) ∈ (kerDh(x∗))⊥

? recall an important linear algebra result:

(kerA)⊥ = ImAT .

? finally, we obtain that there exists some λ ∈ Rm s.t.

∇f (x∗) = Dh(x∗)λ

which translates to the classical relation

∇f (x∗) =
m∑
i=1

λi∇hi (x∗).
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Main result: Lagrange multipliers

Theorem 3

Let x∗ be a local minimizer for the equality constrained problem

min
h(x)=0

f (x)

and suppose that x∗ is a regular point for the system of equality constraints.
Then the following two equivalent facts take place

The directional derivative of f in every direction along the space
{y : Dh(x∗)(y − x∗) = 0} tangent to the constraint at x∗ is zero:

Dh(x∗)d = 0 =⇒ ∇f (x∗) · d = 0

There exist a uniquely defined vector of Lagrange multipliers
λ∗i , i = 1, ...,m such that

∇f (x∗) +
m∑
i=1

λ∗i ∇hi (x∗) = 0.
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Proof:

S denotes the set h(x) = 0.

suppose that there exist a direction parallel to the tangent plane
Dh(x∗)δ = 0 which is not orthogonal to ∇f (x∗)

by eventually replacing it with −δ we may assume δ · ∇f (x∗) = −α < 0.

denote yt = x∗ + tδ. For small enough t we have f (yt) ≤ f (x∗)− tα/2

since x∗ is regular, for every t small there exists a point xt ∈ S such that

|yt − xt | ≤ C |yt − x∗|2 = C1t
2

f is C 1 and therefore Lipschitz around x∗ so

|f (xt)− f (yt)| ≤ C2|xt − yt | ≤ C1C2t
2.

Finally we get that f (xt) ≤ f (x∗)− αt/2 + C1C2t
2 < f (x∗) for t > 0 small

enough, contradicting the optimality of x∗

? the second points comes from (kerA)⊥ = ImAT !

Beniamin Bogosel Computational Maths 2 19/62



The result may be false at irregular points

Counterexample: Minimize the function f (x1, x2, x3) = x2 under the
constraints

0 = h1(x) = x61 − x3, 0 = h2(x) = x32 − x3.

? the constraints define the curve γ(x) = (x , x2, x6).
? the minimum of f is attained at (0, 0, 0)
? We have ∇f (0) = (0, 1, 0)
? on the other hand ∇h1(0) = ∇h2(0) = (0, 0,−1)
? it is clear that ∇f (0) is not a linear combination of ∇h1(0) and ∇h2(0)
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Another counterexample

? come back to the intersection between the sphere and the cylinder:
h1(x) = x21 + x22 + x23 − 1, h2(x) = x21 + x22 − x2. The gradients are
∇h1(x) = 2(x1, x2, x3) and ∇h2(x) = (2x1, 2x2 − 1, 0) and they are linearly
dependent at (0, 1, 0).
? we can obtain that x21 = x23 − x43 and x2 = 1− x23 so the curve representing
the intersection between h1 and h2 has the parametrization

(±
√

x23 − x43 , 1− x23 , x3)

? choose now the function f (x1, x2, x3) = x1 + x3 = x3 ±
√

x23 − x43 . This
function has the minimum value 0 for x3 = 0 associated to the point (0, 1, 0).
? the gradient of f at the minimum is ∇f (0, 1, 0) = (1, 0, 1)
? again, the conclusion of the theorem is not satisfied since the gradients of the
constraints are not linearly independent at the optimum.

Beniamin Bogosel Computational Maths 2 21/62



Example of usage

? min(3x + 2y + 6z) such that x2 + y2 + z2 = 1
? obviously, there exists a solution, since x2 + y2 + z2 = 1 is closed and bounded
? write the optimality conditions: there exists λ such that
∇f (x∗) + λ∇h(x∗) = 0

(3, 2, 6) = λ(2x , 2y , 2z).

? this immediately gives x , y , z in terms of λ
? plug these expression in the constraint to get λ, and therefore x , y , z
? in this case we get two values of λ: one corresponding to the minimum, the
other corresponding to the maximum!

Order one optimality conditions do not indicate whether we are at a minimum
or at a maximum!
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The milkmaid problem

min
g(x)=0

d(P, x) + d(x ,Q).

? suppose that g is a nice curve in the plane with non-zero gradient
? the gradient of the distance function:

∇xd(P, x) =
x − P

d(P, x)
,

is the unit vector that points from P to the variable point x .
? the optimality condition says that there exists λ such that

∇xd(P, x) +∇xd(Q, x) + λ∇g(x) = 0

? what does this mean geometrically? The normal vector ∇g(x) to g(x) = 0
cuts the angle PxQ in half
? we obtain the classical reflection condition using Lagrange multipliers!
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The isoperimetric inequality

What is the curve which has the maximum area for a given perimeter?

? suppose we have a 2D curve parametrized by (x(t), y(t)) in a
counter-clockwise direction.

the perimeter is L =
∫ √

ẋ(t)2 + ẏ(t)2

the area is A =
∫

1
2 (x(t)ẏ(t)− y(t)ẋ(t))

Problem

Maximize A with the constraint L = p.

? L = L(x , y), A = A(x , y) are functions for which variables are other functions.
Sometimes the term functionals is employed!
? how to compute the gradient in such cases? when in doubt just come back to
the one dimensional case using directional derivatives
? the integrals are taken over a whole period of the parametrization
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Derivatives of A and L

? pick two directions u and v and t ∈ R. Then compute the derivative of

t 7→ L(x + tu, y + tv) at t = 0.

? it is useful to take all derivatives off u and v to get the linear form

L′(x , y)(u, v) = −
∫ [(

ẋ√
ẋ2 + ẏ2

)′
u +

(
ẏ√

ẋ2 + ẏ2

)′
v

]
? do the same for A(x , y) to get

A′(x , y)(u, v) =

∫
(ẏu − ẋv)

? in the end we get

∇L(x , y) =

((
ẋ√

ẋ2 + ẏ2

)′
,

(
ẏ√

ẋ2 + ẏ2

)′)
,∇A(x , y) = (ẏ ,−ẋ).
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Optimality condition and conclusion

? when maximizing A under the constraint L = p the solution should verify the
optimality condition

∇A(x , y) + λ∇P(x , y) = 0, λ ∈ R
? plugging the derivatives found previously we getẏ − λ

(
ẋ√

ẋ2+ẏ2

)′
= 0

−ẋ − λ
(

ẏ
ẋ2+ẏ2

)′
= 0

? integrating we obtain y − λ ẋ√
ẋ2+ẏ2

= b

x + λ ẏ√
ẋ2+ẏ2

= a

? in the end we have

(x − a)2 + (y − b)2 = λ2,

so the solution should be a circle.
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The Lagrangian

? the optimality conditions obtained involve the gradient of the objective
function and the constraints.
? the optimality condition can be written as the gradient of a function
combining the objective and the constraints called the Lagrangian: L : Rn × Rm

L(x , λ) = f (x) +
m∑
i=1

λihi (x) = f (x) + λ · h(x).

? if x∗ is a local minimum of f on the set {h(x) = 0} then the optimality
condition tells us that there exists λ∗ ∈ Rm such that

∂L
∂x

(x∗, λ∗) = 0 and
∂L
∂λ

(x∗, λ∗) = 0

? moreover, sup
λ∈Rn

L(x , λ) =

{
f (x) if h(x) = 0

+∞ if h(x) 6= 0
which gives

min
h(x)=0

f (x) = min
x∈Rn

sup
λ∈Rm

L(x , λ).

? the minimizer of f becomes a saddle point for the Lagrangian
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Another point of view

? for ci ∈ R, i = 1, ...,m consider the problem

min
hi (x)=ci

f (x)

? considering the Lagrangian

L(x , λ) = f (x) +
m∑
i=1

λi (ci − hi (x))

we see that ∂L
∂ci

= λi so the Lagrange multipliers represent the rate of change of
the quantity being optimized as a function of the constraint parameter.
? denote by x∗(c), λ∗(c) the optimizer and the Lagrange multipliers as a
function of c . Then

∂f (x∗(c))

∂ci
=
∂L(x∗(c), λ∗)

∂ci

=
∂L
∂x

(x∗(c), λ∗)
∂x∗(c)

ci
+
∂L
∂ci

(x∗(c), λ∗)

= λ∗i
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Another application: compute derivatives

? how to compute derivatives under constraints?
Example: Compute the derivative of x 7→ f under the constraint f 2 = x .
? write the Lagrangian: L(x , f , p) = f + (f 2 − x)p
? if f =

√
x then L(x , f , p) = f .

? compute the derivative of f directly from above:

f ′(x) =
∂L

∂x
(x , f , p) +

∂L

∂f
(x , f , p)

df

dx
+
∂L

∂p
(x , f , p)

dp

dx
? cancel the terms which you don’t know using the Lagrangian:

∂L

∂p
= f 2 − x = 0,

∂L

∂f
= 1 + 2fp = 0.

? what remains is f ′(x) =
∂L

∂x
(x , f ,−1/(2f )) =

1

2f
=

1

2
√
x

.

? we recover the classical result. This technique is known as the adjoint method
and is useful for computing derivatives in complicated spaces: shape derivatives,
control theory, etc.
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What happens for inequality constraints?

? minimize f (x) such that g1(x) ≤ 0, ..., gk(x) ≤ 0.
? not all inequality constraints play the same role: at the point x the constraint
i is said to be active if gi (x) = 0.
? if a constraint gi (where gi is C 1) is inactive at a minimizer x∗ then gi (x) < 0
in a neighborhood of x∗

? if x∗ is a minimizer of f (x) under the constraints gi and gi (x
∗) < 0 then gi

does not impose any restriction on f locally: ignoring it produces the same
result (locally)
? equality constraints generally produced surfaces while inequality constraints
can just give bunded regions of Rn.
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Qualification of constraints

? denote by I (x) = {i ∈ {1, ..., k} : gi (x) = 0} be the indices of active
constraints at x
? we say that the constraints are qualified at x if the gradients (∇gi (x))i∈I (x)
are linearly independent!
? geometrically, as in the equality constraints case, if the constraints are
qualified at x then we may define a proper tangent space using the family
(∇gi (x))i∈I (x)

? Special case: if all gi are affine constraints then they are automatically
qualified. Why?

in this case the constraints also define the tangent space themselves

the linear independence of the gradients at a point x is equivalent to the
removal of redundant constraints
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Optimality conditions: inequalities

Theorem 4

Let x∗ be a local minimizer for the inequality constrained problem

min
g(x)≤0

f (x)

and suppose that the constraints are qualified at x∗. Then the following
affirmations are true:

There exists a uniquely defined vector of Lagrange multipliers
λ∗i ≥ 0, i = 1, ..., k such that

∇f (x∗) +
m∑
i=1

λ∗i ∇gi (x∗) = 0.

Moreover, if gi (x
∗) < 0 then λi = 0, also called the complementary

slackness relations. Equivalent formulation: λigi (x
∗) = 0.

? why are Lagrange multipliers non-negative in this case? x∗ would like to ”get
out of the constraints” to increase the value of f
? if x∗ is an interior point for g(x) ≤ 0 then simply ∇f (x∗) = 0
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Example: qualification of constraints

Consider the set

k = {x = (x1, x2) ∈ R2 : −x1 ≤ 0, −x2 ≤ 0, −(1− x1)3 + x2 ≤ 0}.
? Maximize J(x) = x1 + x2 for x ∈ K .
? making a drawing we find that immediately that the solutions are (0, 1) and
(1, 0).
? let’s check if we can write the optimality condition at the two points:

(1, 0): constraints not qualified: unable to write the opt. cond

(0, 1): constraints qualified: the optimality condition can be written!
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The Lagrangian - inequality case

? the optimality conditions obtained involve the gradient of the objective
function and the constraints.
? the optimality condition can be written as the gradient of a function
combining the objective and the constraints called the Lagrangian: L : Rn × Rm

+

L(x , λ) = f (x) +
k∑

i=1

λigi (x) = f (x) + λ · g(x).

? if x∗ is a local minimum of f on the set {g(x) ≤ 0} then the optimality
condition tells us that there exists λ∗ ∈ Rm

+ such that

∂L
∂x

(x∗, λ∗) = 0 and
∂L
∂λ

(x∗, λ∗) = 0

? moreover, sup
λ∈Rm

+

L(x , λ) =

{
f (x) if g(x) ≤ 0

+∞ otherwise
which gives

min
g(x)≤0

f (x) = min
x∈Rn

sup
λ∈Rm

+

L(x , λ).

? the minimizer of f becomes a saddle point for the Lagrangian
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Come back to the optimal can problem

? Area of the can (to be minimized): A(h, r) = 2πr2 + 2πrh
? Volume of the can (constraint): V (h, r) = πr2h
? finally we obtain the problem

min
V (h,r)≥c

A(h, r).

? the constraint will be active!
? write the optimality condition: find r and h in terms of λ and finish!

? in the end we find that the optimal can will have the height h equal to two
times its radius r .

? find now the optimal cup: only one of the two ends is filled with material!
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Saddle points

Definition 5

We say that (u, p) ∈ U × P is a saddle point of L on U × P if

∀q ∈ P L(u, q) ≤ L(u, p) ≤ L(v , p) ∀v ∈ U

? when fixing p: v 7→ L(b, p) is minimal for v = u
? when fixing u: q 7→ L(u, q) is minimal for q = p

? If J is the objective function and F defines the constraint set K (equality or
inequality) then a saddle point (u, p) for the Lagrangian

L(v , q) = J(v) + q · F (v)

verifies that u is a minimum of J on K .
? moreover, if the Lagrangian is defined on an open neighborhood U of the
constraint set K then we also recover the optimality condition

∇J(u) +
m∑
i=1

pi∇Fi (u) = 0.
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Sufficient conditions

? two options: go to the second order or use convexity
? it is not enough to look at the second order approximation of f on the tangent
space! The curvature of the constraint can also play a role.
? the correct way is to look at the Hessian of the Lagrangian with respect to x ,
reduced to the tangent space!

? in the convex case, for inequality constraints things are a little bit easier!

? why only for inequality constraints? Imagine that equality constraints can
produce curved surfaces and the only way to have convexity there is if they are
flat!
? why the choice gi (x) ≤ 0 as the definition of inequality constraints? Because
if all gi are convex functions then

K = {x : gi (x) ≤ 0, i = 1, ..., k} is a convex set.
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Sufficient conditions - convex case

Theorem 6 (Kuhn-Tucker)

Suppose that the functions f , gi , i = 1, ..., k are C 1 and convex. Define K as
the set K = {x : gi (x) ≤ 0} and introduce the Lagrangian

L(v , q) = f (v) + q · g(v), v ∈ Rn, q ∈ Rk
+.

Let x∗ be a point of K where the constraints are qualified. Then the following
are equivalent:

x∗ is a global minimum of f on K

there exists λ∗ ∈ Rm such that (x∗, λ∗) is a saddle point for the Lagrangian

g(x∗) ≤ 0, λ∗ ≥ 0, λ∗ · F (x∗) = 0, ∇f (x∗) +
∑k

i=1 λ
∗
i ∇gi (x∗) = 0.

? why the reverse implication works? When q ≥ 0 the Lagrangian

L(v , q) = f (v) + q · g(v), v ∈ Rn, q ∈ Rk
+

is convex when f and g = (gi ) are convex!
? particular case: affine equalities! convex and qualified!
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Handle the constraints numerically

? we already saw two methods:

projected gradient algorithm:

xi+1 = ProjK (xi − t∇f (xi ))

penalization: include the constraint {g = 0} in the objective

min f (x) +
1

ε
g(x)2

? we saw that the projection is not explicit in most cases! In the meantime we
learned how to solve non-linear equations. Imagine the following algorithm:

Compute xi and the projection di of −∇f (xi ) on the tangent space
(orthogonal of (∇gj(xi )))

advance in the direction of di : xi+1 = xi + γidi

project xi+1 on the set of constraints using the Newton method
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Conclusion on Lagrange multipliers

we may obtain necessary optimality conditions involving equality and
inequality constraints: the gradient of f is a linear combination of the
gradients of the constraints

the gradients of the constraints need to be linearly independent at the
optimum: proper definition of the tangent space!

for inequality constraints only the active constraints come into play in the
optimality condition

sufficient conditions can be found in the convex case: Kuhn-Tucker theorem

the theory gives new ways to handle constraints numerically
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Constrained optimization

General theoretical and practical aspects
A quick intro to linear programming
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Linear programming

? maximizing or minimizing a linear function subject to linear constraints!
? Example:

max(x1 + x2)

such that x1 ≥ 0, x2 ≥ 0 and

x1 + 2x2 ≤ 5
5x1 + 2x2 ≤ 11
−2x1 + x2 ≤ 1

? we have some non-negativity constraints and the main constraints
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Geometric solution

? in dimension 2 we can solve the problem by plotting the objective function on
the admissible set determined by the constraints!

? observe that in this case the solution is situated at the intersection of the lines

5x1 + 2x2 = 11 and x1 + 2x2 = 5.
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Theoretical observations

? the gradient of f (x1, x2) = x1 + x2 is (1, 1): it is constant and never zero!
? the set K determined by the linear constraints is convex
? the minimum or maximum cannot be attained in the interior of K , since
∇f (x) 6= 0!
? the optimal value is on the boundary of K . Moreover there exists a vertex of
the polygon where it can be found! Why?

start at a point x0 inside K go against the gradient till you meet an edge

if the function is constant along an edge then the gradient of the function
and the constraint are collinear at that point: Kuhn-Tucker Theorem says
that we reached the solution!

otherwise, follow the direction where the function decreases till reaching a
vertex. Then go to the next edge and repeat the previous reasoning.

the process will finish: finite number of edges!

? same reasoning can be applied in higher dimensions: follow the anti-gradient
direction till it is collinear to the gradient of the constraint or no further
decrease is possible along further facets!
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Standard formulations

? The Standard Maximum Problem: Maximize ctx = c1x1 + ...+ cnxn
subject to the constraints

a11x1 + ...+ a1nxn ≤ b1
...

am1x1 + ...+ amnxn ≤ bm

or Ax ≤ b

and x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0 or x ≥ 0
? The Standard Minimum Problem: Minimize ytb = y1b1 + ...+ ymbm
subject to the constraints

a11y1 + ...+ a1mym ≥ c1
...

a1ny1 + ...+ amnym ≥ cn

or yTA ≥ cT

and y1 ≥ 0, y2 ≥ 0, ..., ym ≥ 0 or y ≥ 0
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Example 1
The Transportation Problem

? There are I production sites P1, ...,PI which supply a product and J markets
M1, ...,MJ to which the product is shipped.
? the site Pi contains si products and the market Mj must recieve rj products.
? the cost of transportation from Pi to Mj is bij
? the objective is to minimize the transportation cost while meeting the market
requirements!

? denote by yij the quantity transported from Pi to Mj . Then the cost is
I∑

i=1

J∑
j=1

yijbij

? the constraints are
J∑

j=1

yij ≤ si and
I∑

i=1

yij ≥ rj .
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Example 2
The Optimal Assignment Problem

? There are I persons available for J jobs. The ”value” of person i working 1
day at job j is aij .
? Objective: Maximize the total ”value”
? the variables are xij : the proportion of person i ’s time spent on job j
? the constraints are xij ≥ 0

J∑
j=1

xij ≤ 1, i = 1, ..., I and
I∑

i=1

xij ≤ 1, j = 1, ..., J ≤ 1

can’t spend a negative amount of time at a job

a person can’t spend more than 100% of its time

no more than one person working on a job
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Some Terminology

? a point is said to be feasible if it verifies all the constraints
? the set of feasible points is the constraint set
? a linear programming problem is feasible if the constraint set is non-empty. If
this is not the case then the problem is infeasible

? every problem involving the minimization of a linear function under linear
constraints can be put into standard form

you can change a ”≥” inequality into ”≤” by changing the signs of the
coefficients

if a variable xi has no sign restriction, write it as the difference of two new
positive variables xi = ui − vi , ui , vi ≥ 0

? it is possible to pass from inequality constraints to equality constraints (and
the other way around)

Ax = b is equivalent to Ax ≤ b and Ax ≥ b

If Ax ≤ b then add some slack variables u ≥ 0 such that Ax + u = b
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Duality in LP

Definition 7

The dual of the standard maximum problem{
max cTx

s.t. Ax ≤ b and x ≥ 0

is the standard minimum problem{
min yTb

s.t. yTA ≥ cT and y ≥ 0
.
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Example

? consider the problem

maximize x1 + x2
such that x ≥ 0

x1 + 2x2 ≤ 5
5x1 + 2x2 ≤ 11
−2x1 + x2 ≤ 1

? the dual problem is

minimize 5y1 + 11y2 + y3
such that y ≥ 0

y1 + 5y2 − 2y3 ≥ 1
2y1 + 2y2 + y3 ≥ 1
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Relation between dual problems

Theorem 8

If x is feasible for the standard maximum problem and y is feasible for the dual
problem then

cTx ≤ yTb.

? The proof is straightforward:

cTx ≤ yTAx ≤ yTb.

? important consequences:

if the standard maximum problem and its dual are both feasible, they are
bounded feasible: the optimal values are finite!

If there exist feasible x∗ and y∗ for the standard maximum problem and its
dual such that cTx∗ = y∗Tb then both are optimal for their respective
problems!

Theorem 9 (Duality)

If a standard linear programming problem is bounded feasible then so is its dual,
their optimal values are equal and there exist optimal solutions for both
problems.
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Solve LP problems numerically

? the simplex algorithm: travel along vertices of the set defined by the
constraints until no decrease is possible
? work with the matrix A and with vectors b and c and modify them using pivot
rules: similar to the ones used when solving linear systems
? exploit the connection between the standard formulation and its dual

? things get more complicated when we restrict the variables to be integers.
This gives rise to integer programming!
? algorithms solving the main types of LP problems are implemented in various
Python packages: scipy.optimize.linprog, pulp.
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The simplex algorithm

? bring the problem to the case of equality constraints using slack variables
n∑

j=1

aijxj ≤ bi ⇐⇒
n∑

j=1

aijxj + si = bi , si ≥ 0

? any free variable xj ∈ R should be replaced with uj − vj with uj , vj ≥ 0
? now we can solve

maximize cTx
subject to Ax = b

x ≥ 0

? start from the origin x = 0 and go through the vertices of the polytype Ax = b
? at each step perform an operation similar to the Gauss elimination
? Possible issues: cycling, numerical instabilities.

Beniamin Bogosel Computational Maths 2 53/62



Practical Example 1

? the first example of a standard maximum problem

max(x1 + x2)

such that x1 ≥ 0, x2 ≥ 0 and

x1 + 2x2 ≤ 5
5x1 + 2x2 ≤ 11
−2x1 + x2 ≤ 1

? we saw geometrically that the solution should be the intersection of
x1 + 2x2 = 5 and 5x1 + 2x2 = 11

scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None,

b_eq=None,bounds=None, method=’simplex’,

callback=None, options=None)
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Practical Example 2

? An optimal assignment problem: n

Job 1 Job 2 Job 3
Person 1 100e 120e 80e
Person 2 150e 110e 120e
Person 3 90e 80e 110e

? assign Person i to Job j in order to minimize the total cost!
? we can model the situation as an LP problem with 9 variables: xij = 1 if and
only if Person i has job j , 1 ≤ i , j ≤ 3
? the constraints are as follows:∑3

i=1 xij = 1: exactly one Person for Job j∑3
j=1 xij = 1: exactly one Job for Person i

? we should also impose that xi ∈ {0, 1}: no fractional jobs, but we’ll neglect
this condition and just suppose xi ≥ 0.
? the cost is just ∑

1≤i,j≤3

cijxij
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Find the LP parameters

? let’s look at the matrix of the problem: 9 variables and 6 constraints!

A =


1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


? the matrix cij is given by the table shown previously: the cost of every person
per function ? the vector b is equal to 1 on every component

? the solution is made of zeros and ones, without imposing this...
? this phenomenon always happens: if A is a totally unimodular matrix and b is
made of integers then Ax ≤ b has all its vertices at points with integer
coordinates

A matrix is totally unimodular if every square submatrix has determinant in the
set {0, 1,−1}.
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Practical Example 3

? solving a Sudoku with LP

? Remember the rules: {1, 2, 3, 4, 5, 6, 7, 8, 9} should be found on every line,
column and 3× 3 square
? in order to make this solvable via LP a different formulation should be used!
? classical idea: use binary variables
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Sudoku in Binary variables

? how to represent a Sudoku puzzle using 0s and 1s?
? build a 3D array X = (xijk) of size 9× 9× 9 such that

xijk = 1 if and only if on position (i , j) we have the digit k; else xijk = 0

? what are the constraints in this new formulation?

xijk ∈ {0, 1}: again to be relaxed to xijk ≥ 0 - 729 constraints

fixing i , j :
∑9

k=1 xijk = 1 - one number per cell - 81 constraints

fixing i , k:
∑9

j=1 xijk = 1 - k appears exactly once on line i - 81 constraints

fixing j , k :
∑9

i=1 xijk = 1 - k appears exactly once on column j - 81 constraints

small 3× 3 squares condition: for u, v ∈ {0, 3, 6}
3∑

i=1

3∑
j=1

xi+u,j+v ,k = 1, k = 1, ..., 9 - 81 constraints

the initial given information for the puzzle may be written in the form
sij = k for some i , j , k. This gives the constraints xi,j,sij = 1.

? we are interested in finding a feasible solution: no objective function is needed!
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Solving the Sudoku

? a feasible solution can be found using the simplex algorithm
? sometimes we may get non-integer results: apparently, the constraint matrix is
not always a Totally Unimodular matrix
? there are LP algorithms which will return integer solutions: integer
programming

? before solving we should check that the constraint matrix should be of
maximal rank: eliminate redundant constraints
? we could also eliminate fixed variables: the data sij = k should eliminate all
unknowns with first index i , second index j or third index k!

? if the solution is unique: the algorithm will find it
? if the solution is not unique: the algorithm will find one of the solutions. We
may repeat with the constraint that the solution should be different than the
previous one, until no other solutions are found!
? check out the PuLP Python library: an example of Sudoku solver is given!
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Conclusions on LP

minimize/maximize linear functions under linear constraints

many practical applications from an industrial point of view!

there exist optimizers which are vertices of the constraint set

simplex algorithm: travel along vertices decreasing the objective function

computational complexity: worst case is exponential: Klee-Minty cube

polynomial-time average case complexity: most of the LP problems will be
solved very fast!
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Conclusion of the course

? numerical optimization (unconstrained case):

derivatives-free algorithms: no-regularity needed, slow convergence

gradient descent algorithms: linear convergence, sensitive to the condition
number

Newton, quasi-Newton: super-linear convergence in certain cases

when dealing with large problems use L-BFGS

Conjugate Gradient: solve linear systems, better than GD

Gauss-Newton: useful when minimizing a non-linear least squares function

? constrained case

for simple constraints: use the projected gradient algorithm

general smooth constraints: use the tangential part of the gradient and
come back to the constraint set using the Newton method

other options available: SQP, etc...

Linear Programming: use specific techniques: the simplex algorithm −→ to
be continued next year in the course dealing with Convex Optimization!
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Conclusion of the course

know your options when looking at an optimization problem: choose the
right algorithm depending on: the size of the problem, the number of
variables, the regularity, the conditioning, etc.

learn how to use existing solutions: scipy.optimize is a good starting
point

know how to code your own optimization algorithm if necessary: use
gradients when possible, limit the number of function evaluations, choose a
good stopping criterion, limit the number of iterations, etc.
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