
MAA209 Numerical Optimization
École Polytechnique

Practical Session #2

Instructions: The codes should be written in Python. The use of notebooks is encouraged and you
may start from the given examples. Collaboration and discussions are encouraged, if they are related to
the subjects concerning the practical sessions.

Important: Upload your work on Moodle (one or multiple notebooks). Only Exercises 1 and 2 are
mandatory. The other ones are supplementary.

Students which in addition to the main subjects solve some supplementary or Challenge questions
will get additional bonus points. Recall however, that the Challenge and supplementary exercises are
not mandatory.

Exercise 1 Curve fitting methods

1. Play with the code Illustration Newton.ipynb available on Moodle and understand all its com-
ponents. In particular:

a) Observe how the algorithm behaves when you change the initialization.

b) Add new functions of your choice in order to test the necessity of all conditions involved in
the quadratic convergence result.

c) Change the code in order to implement the False Position or Secant method. Verify the order
of convergence and the dependence on the initialization.

2. (Challenge) We saw that basic line-search methods like the bisection method are very robust:
they will always approximate the minimum of a unimodal function, but their rate of convergence
is linear. Newton’s method, on the other hand converges quadratically provided we have access to
second derivatives, the minimizer is non-degenerate and we start close enough to the optimum.
Modify the given code implementing Newton’s method so that it will converge regardless of the
starting point.

• at each iteration consider two candidates for the new position: the one given by the bisection
method (the midpoint of the current search interval) and the one given by Newton’s method.

• decide what is the new interval bracketing the minimum and pass to the next iteration

a) Your algorithm should converge even in cases where Newton’s method alone does not work.

b) Observe the convergence rate: you should notice that in the beginning the convergence is
linear due to the eventual use of bisection steps, while towards the end the rate of convergence
becomes the same as for the Newton method.

Exercise 2 Gradient descent with line-search in 1D

1. Write a code implementing the gradient descent with fixed step in 1D. Apply it for various test
functions and observe the convergence rate. Observe also the behavior of the algorithm with
respect to the initial condition and the size of the step.
If you are not sure how to start, just take the Goldstein-Price code and replace the
line-search part by your choice of the fixed descent step t.

2. Implement the gradient descent with line-search based on Armijo’s rule. You may start from the
Notebook related to the Goldstein-Price line-search given on Moodle.

3. (Challenge) Implement the Wolfe line-search starting from the code given for the Goldstein-Price
line-search.

4. Practical questions:

• Test the behavior of the algorithm for various functions and for various choices of the param-
eters m1,m2 ∈ (0, 1).

• Check that for the function f(x) = x2 choosing m1 > 0.5 greatly increases the number of
iterations because the optimal step for a quadratic function cannot be chosen.



Exercise 3 Find the closest point to a curve (Supplementary)

Suppose γ : [0, 2π] → R2 is a closed curve in the plane and A = (a1, a2) is a given point (you may
denote γ(θ) = (x(θ), y(θ))). The objective of this exercise is to write an algorithm which allows you to
find the minimal distance AMθ, where Mθ is the point corresponding to γ(θ).

1. (Optimality condition) Suppose that A is not a point on γ. Prove that if γ is of class C1 and M0

is the point which realizes the minimal distance AMθ then AM0 is a normal vector to the curve γ.

2. Note the minimization of AMθ or AM2
θ gives the same minimizer. If γ(θ) = (x(θ), y(θ)) and A

has coordinates (a, b) give a formula for AM2
θ and for the derivative d

dθ (AM2
θ ).

3. Implement a numerical algorithm which can search for the point realizing the minimal distance
using one of the methods in the previous two exercises. Verify numerically that the minimizer
verifies the optimality conditions.
Note that you can use an algorithm implemented in previous exercises and just change
the objective function.
You may try the following cases:

• the ellipse given by the parametrization γ(θ) = (2 cos θ, sin θ) for various points A in the
plane.

• a curve given in radial coordinates by the following parametrization

γ(θ) = ((1 + 0.3 cos(3θ)) cos θ, (1 + 0.3 cos(3θ)) sin θ).

and various points A in the plane.

Answer of exercise 3

1. The minimal distance is minimized at the same place where its square is minimized. The function
to be minimized is, thus

θ 7→ AM2
θ = (x(θ)− a)2 + (y(θ)− a)2.

At the minimum the derivative of this function is zero, which means that

2(x(θ)− a1)x′(θ) + 2(y(θ)− a2)y′(θ) = 0.

This can also be interpreted as the fact that the following scalar product is zero:

−−−→
AMθ · (x′(θ), y′(θ)) = 0.

Since (x′(θ), y′(θ)) is a tangent vector to γ at θ it follows that AMθ is a normal vector to the curve
γ.

2. We already saw that the derivative of AM2
θ is

2(x(θ)− a1)x′(θ) + 2(y(θ)− a2)y′(θ).

3. Use one of the gradient descent codes implemented in the previous exercise.

Exercise 4 Heron’s algorithm (Supplementary)

Heron’s algorithm computes an approximation of the square root of a strictly positive real number y
using the iteration

x0 > 0, xn+1 =
1

2

(
xn +

y

xn

)
. (1)

1. Show that the previous recurrence relation is Newton’s algorithm for finding a zero of the function
f(x) = x2 − y. Following the results shown in the course show that (xn) converges to

√
y when

x0 is close enough to
√
y. Indicate the order of convergence of the sequence towards its limit.

In the following, we consider the following error estimate:

Ey(x) =
x−√y
x+
√
y
.

This choice simplifies the computations and is an estimation of the half of the relative error when
x→ √y.
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2. Show that (xn) verifies
Ey(xn+1) = Ey(xn)2.

Deduce a formula for Ey(xn) as a function of Ey(x0). Show that the sequence xn converges towards√
y for every initialization x0 > 0.

The choice of the initialization x0 determines Ey(x0) and has an influence on the speed of conver-
gence. In the following we restrict ourselves to the case y ∈ [1/2, 2] and we try to find the best
initial condition. We will suppose that the initial condition x0 depends on y and we will look at
the two following cases: x0 = a, a constant and x0 = a + by, a polynomial of degree 1 in y. In
each case we will minimize ‖g‖L∞([1/2,2]) with g(y) = Ey(x0).

3. Show that if x0 = a then Ma = maxy∈[1/2,2] |Ey(a)| is minimal for a = 1. Find the explicit value
of Ma. (Indication: reresent graphically the function y 7→ |Ey(a)|.)

4. Suppose that x0 = a + by is a polynomial of degree 1 in y. We want to find coefficients a and b
which minimize Ma,b = ‖g‖L∞([1/2,2]) with g(y) = Ey(a+ by).
(a) Show that the maximum of y 7→ |g(y)| is reached for an element in the set {a/b, 1/2, 2}.
We admit that in order to minimize Ma,b it is necessary that a = b and that g(2) = g(1/2) =
−g(a/b).

(b) Conclude that the values of a and b which minimize Ma,b are a = b =
√√

2/6. Find an exact

expression for Ma,b.

5. We admit the following approximations Ma ≈ 0.17157 and Ma,b ≈ 0.01472. For y = 2 compare
the number of iterations necessary to arrive at a demanded precision (Ey(xn) < tol) for the two

initializations studied: x0 = 1 and x0 = ay + b with a = b =
√√

2/6.

6. (Implementation) Implement Heron’s algorithm and observe that it converges quadratically to√
y. Test the two initialization and verify if the one of degree 1 reduces the number of iterations.

Answer of exercise 4

1. We have f ′(x) = 2x and the corresponding Newton algorithm is

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x2n − y
2xn

=
xn
2

+
y

2xn
.

A simple computation shows that f ′′(x) = 2, therefore the positive zero of f is non degener-
ate. Therefore, if x0 is close enough to

√
y Newton’s algorithm converges and the convergence is

quadratic.

2. A direct computation shows that Ey(xn)2 = Ey(xn+1). By induction we get Ey(xn) = (Ey(x0))
2n

.
It is immediate to see that for y > 0 we have |Ey(x0)| < 1. Therefore Heron’s algorithm converges
for every initial condition x0 > 0.

3. Let g(y) = Ey(a) =
a−√y
a+
√
y = 2a

a+
√
y − 1. Then g′(y) > 0 and g is strictly increasing on [1/2, 2]. The

maximum of |g(y)| can be attained for y ∈ {1/2, 2}. We have

g(1/2) =
a−

√
1/2

a+
√

1/2
et g(2) =

a−
√

2

a+
√

2

which are strictly increasing functions in a. We can see, therefore, that the minimal value of
max{|g(1/2)|, |g(2)|} is attained when g(1/2) = −g(2). A quick computation shows that this
implies that a = 1.

4. (a) It is enough to compute the derivative of y 7→ Ey(a+ by) and to observe that this function is
decreasing for y ≤ a/b and increasing for y ≥ a/b.
(b) Direct computation.

5. It is enough to see that M2
a > Ma,b > M4

a . The initialization with a polynomial of degree 1 reduces
the number of iterations by 1.
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