
MAA209 Numerical Optimization
École Polytechnique

Practical Session #4

Instructions: The codes should be written in Python. The use of notebooks is encouraged and you
may start from the given examples. Remove irrelevant cells from the Notebooks if you start from
a code given on Moodle. Write comments regarding your work and the experiments you did with the
code. Remove plotting if the dimension is larger than two.

Upload your work on Moodle (one or multiple notebooks). Solve one of the exercises for a full
activity point. Students doing correctly parts of both exercises will get bonus points.

Students which in addition to the main subjects solve some supplementary or Challenge questions
will get additional bonus points. Recall however, that the Challenge and supplementary exercises are
not mandatory.

Exercise 1 Gauss-Newton Method

1. Observe the notebook concerning the Gauss-Newton Method shown in the course and test it for
the non-linear least square functions proposed below

• Rosenbrock (already implemented)

f(x, y) = 100(y − x2)2 + (1− x)2

with a global minimum at f(1, 1) = 0.

• Beale function defined on [−4.5, 4.5]2 by

f(x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2

with a global minimum at f(3, 0.5) = 0

For all the subsequent questions use the Gauss-Newton implementation to solve the non linear
least-squares problem involved.

2. Implement the triangulation problem shown in the course. As inputs you are given:

• the coordinates (xi, yi), i = 1, 2, 3 of three antennas

• the distances di, i = 1, 2, 3 of a cellphone to the corresponding antenna

Test your algorithm in various cases and compare the convergence speed with the one given by
the gradient descent algorithm.

3. (Challenge: Population model) Take a look at the data regarding the population given in the
.csv file on Moodle (source worldometers.info). Consider the following models:

• exponential model: P (t) = c exp(dt), assuming that the growth rate of the population is
proportional with the population size.

• logistic model: P (t) =
K

1 + ce−dt
, assuming that the growth ratio is influenced not only by

the population size, but also by the fact that the Earth is finite in space and ressources, so
infinite growth cannot occur.

Try to find in each case the parameters which best fit your data using the Gauss-Newton algorithm.
For example, in the first case write

F (c, d) =

N∑
i=1

[Pi − c exp(dti)]
2,

where Pi is the population observed at the moment ti. The non-linear least squares functions ri
are given by

ri(t) = Pi − c exp(dti).

Use these to find the Jacobian matrix (derivatives w.r.t. c and d) and to find parameters which
minimize F . For the exponential model consider the initialization (c, d) = (3, 2). For the logistic
model you have a function depending on K, c and d and consider the initialization (K, c, d) =
(12, 3, 3).

Once you found the optimal parameters plot the functions obtained against the data points to
verify your results. What is the predicted population of the Earth in 2050 and 2100 for the two
models? Which of the two models is more realistic? Which of the two models best fits the data?
What is the interpretation of K in the logistic model?

4. (Temperature model) Consider a temperature model of the form T (t) = A sin(wt + φ) + C
where t is the time in months. The site climate-data.org provides the following averages of
monthly maximal temperatures.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
6 7.3 12.2 15.9 19.8 22.9 24.8 24.3 21.3 15.7 10.1 6.7

Find the parameters A,w, φ and C which best fit your data. You may suppose that the data
points are given at instances ti = i, i = 1, ..., 12. Plot the function obtained against the data
points to test your result. Predict the maximum average temperature on April 1st and April 30th
using your model.

5. (Challenge) Test if a set of four points for which you know the mutual distances between the
points are contained in the same plane. You are given the distances dij > 0, 1 ≤ i < j ≤ 4
between the four points. Suppose that you have the four points Ai(xi, yi), 1 ≤ i ≤ 4 in the plane.
The function to be minimized is

J(xi, yi) =

4∑
i=1

(AiAj − dij)2.

If the solution obtained is gives you a small enough value of J then you can conclude that the
distances may correspond to some coplanar points.
(i) Note that you can fix one point since the whole configuration is translation invariant. For
example, suppose that x4 = y4 = 0 and let the other six coordinates be variable.
(ii) Show that when dij = 1 for all 1 ≤ i < j ≤ 4, the distances cannot correspond to points in the
plane. What is the solution given by your algorithm in this case?

Answer of exercise 1

1. For the Rosenbrock function you have r1 = 10(y − x2) and r2 = 1 − x. The functions ri are
grouped in the vector r. The Jacobian matrix J contains the partial derivatives of ri on line i.
The Gauss Newton direction is

−(JTJ)−1JT r

as noted in the course.
For the second example you have

r1 = 1.5− x+ xy, r2 = 2.25− x+ xy2, r3 = 2.625− x+ xy3.

Once you compute the Jacobian matrix the code remains the same.

2. For the triangulation problem you have

ri(x, y) = di −
√

(x− xi)2 + (y − yi)2.

The partial derivative w.r.t. x is (check it)

∂ri
∂x

= − x− xi√
(x− xi)2 + (y − yi)2

.

In order to find admissible test cases do the following:

• Choose three different coordinates (xi, yi) of the antennas

• Choose coordinates for the desired solution (x0, y0) (preferably in the interior of the triangle
determined by the three points, but you may experiment if you like)

• Compute di as the distance between (xi, yi) and (x0, y0).

• Then test if the solution given by the algorithm is close to (x0, y0).

2

3. Important: If you encounter difficulties here, you can skip this part. If you don’t take care you’ll
encounter overflows in the exponential function, especially if you evaluate it for very large values.
Please follow the indications given below.
You can quickly import the data from the csv file into a Numpy array in the following way:

import csv

data = np.genfromtxt(’WorldPopulation.csv’, delimiter=’,’, names=True)

T = data[’Year’] # for the time series

Pop = data[’Population’]/1e9 # for the population in billions

For the population model note that

ri = Pi − c exp(dt).

Before going further, it is possible to reduce the ill-conditioning of the problem and avoid overflows
in the exponential function by doing the following:

• consider that the population is given in billions (i.e. divide the numbers by 109).

• rescale the times ti to be in [0, 1]: one way of doing this is (ti −m)/(M −m) where m and
M are the smallest and largest time values. Note that such a rescaling can be included in c
and d.

It is straight-forward to find the derivatives of the above function w.r.t. c and d. Here it would
be particularly useful to use a loop to define r and the Jacobian J . You may use the following
syntax:

def r(x):

return np.array([

P[i]-c*np.exp(d*t[i]) for i in range(0,N)

])

where N is the size of the data vectors. You will need to provide also the observed population
vector P of size N and the corresponding times in the vector t. For the Jacobian do the same:

def Jac(x):

return np.array([

np.array([dr_i/dc, dr_i/dd]) for i in range(0,N)

])

For the logistic model the configuration is the same, but you have three variables.

4. For the temperature model do the same as for the population model. Note that you have four
parameters now. The functions ri are given by

ri(A,w, φ,C) = Ti − (A sin(ωti + φ) + C)

and their derivatives w.r.t. the corresponding variables are straight-forward.

5. For the distance model just write the r vector and the jacobian using a loop over the indices [i, j]
with i < j. The rest of the code stays the same.

3

Exercise 2 Newton’s Method

1. Implement Newton’s method presented in the course and test it for various 2D functions. Look at
the following cases:

(a) Recall why for quadratic functions convergence happens in one iteration. Implement one
quadratic function of your choice and test this claim.

(b) Test the method for the Rosenbrock function

f(x, y) = 100(y − x2)2 + (1− x)2.

with the initialization x0 = (2, 1.1). Recall that the global minimum is found at x∗ = (1, 1).
(c) Observe the rate of convergence rate for f(x) = |x|4 and explain the observed behavior.

2. Add one line-search procedure of your choice and observe the behavior of the algorithm.

3. Use the Newton-Rhapson method to solve the following non-linear systems, searching for a root
near an initial choice x0. You may vary the initialization and observe the behavior of the algorithm.

1.

{
x1 − x2 + 1 = 0

x21 + x22 − 4 = 0
, with x0 = (0.8, 1.8). Compare with the analytical solution.

2.

3x1 − cos(x2x3)− 3/2 = 0

4x21 − 625x22 + 2x3 − 1 = 0

20x3 + e−x1x2 + 9 = 0

, with x0 = (1, 1, 1)

3.

x21 − 2x1 + x22 − x3 + 1 = 0

x1x
2
2 − x1 − 3x2 + x2x3 + 2 = 0

x1x
2
3 − 3x3 + x2x

2
3 + x1x2 = 0

, with x0 = (1, 2, 3) and x0 = (0, 0, 0)

4. (Challenge) For more examples of functions for which you can test your algorithm take a look
at the following page: https://en.wikipedia.org/wiki/Test_functions_for_optimization.
This page contains many test cases and in each case you are given the formula, the search domain
and the analytic minimum. Try to validate your algorithm for as many of these function as you
can.

Answer of exercise 2

1. You can start from the Notebook given for the Gauss-Newton Method. Build a function called
Hess which computes the Hessian matrix. Then replace the function GNdir with Newtondir and
compute the Newton direction by solving the linear system D2f(xi)d = −∇f(xi)
Recall that the Hessian matrix contains all combinations of second derivatives. For e.g. in dimen-
sion two:

D2f(x) =

(
∂f2

∂x2
∂f2

∂x∂y
∂f2

∂y∂x
∂f2

∂y2

)
If you want to cheat and avoid computing the Hessian by hand you can do it in Wolfram Alpha:
just type

hessian matrix of 100(y - x^2)^2 + (1 - x)^2

2. This is already done in the Gauss-Newton Notebook.

3. The Newton-Rhapson method is given by

yi+1 = yi −Dg(yi)
−1g(yi)

where g(y) = (g1(y), ..., gn(y)) is a non-linear function and Dg(y) = (∂gi
∂xj

) is the Jacobian matrix.

In each case you should write the function g and compute its Jacobian. For the first example you
have

g1 = x1 − x2 + 1, g2 = x21 + x22 − 4.

The Jacobian matrix is

Dg =

(
1 −1

2x1 2x2

)
.

Note that in this case the solution may also be found analytically (intersection between a line and
a circle). In each case you should check that the solution given by the numerical algorithm verifies
the non-linear system with the desired precision.

4

https://en.wikipedia.org/wiki/Test_functions_for_optimization

