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Abstract

Recently, a great interest has been shown towards the study of partitions of a fixed domain which optimize quantities related to the first eigenvalue of the Dirichlet Laplace operator associated
to each of the cells. There are few situations where exact solutions are known for this type of problems. Therefore, we would like to have algorithms which allow the numerical computation of
such optimal partitions. I present below some recent developpements which allow us to work on complex partitioning problems without demanding high computational resources.
More precisely, I will present results concerning the minimisation of the sum of the eigenvalues

min(λ1(ω1) + ... + λ1(ωn))

where ω1, ..., ωn represent a partition of a fixed domain D. Details and examples concerning partitions of domains D in R2, R3 and on surfaces in R3 will be given.

1. Description of the Problem

Given a fixed domain D in an Euclidean
space or in a manifold we say that ω1, ..., ωn
form a partition of D if these sets are pair-
wise disjoint and their union is D. Let’s de-
note with Pn(D) the family of partitions of
D into n cells. An optimal partitioning prob-
lem has the form

min
(ωi)∈Pn(D)

F(ω1, ..., ωn)

where F is a functional depending on the
cells of the partition.

Recall that given a domain ω one can
consider the spectrum of the Dirichlet-
Laplace operator consisting of an increas-
ing sequence of eigenvalues

0 < λ1(ω) ≤ λ2(ω) ≤ ... ≤ λk(ω)...→ +∞.
For each such eigenvalue λk(ω) there is
an associated eigenfunction uk which sat-
isfies

−∆uk = λkuk in ω, uk = 0 on ∂ω.

In the following I will concentrate on the
case where F is the sum of the fundamen-
tal eigenvalues associated to each of the
cells:

F(ω1, ..., ωn) = λ1(ω1) + ... + λ1(ωn).

It is a classical result that the optimal par-
titioning problem

min
(ωi)∈Pn(D)

λ1(ω1) + ... + λ1(ωn) (1)

has a solution. Moreover, solutions con-
sist of cells whose boundaries are formed
of regular arcs which join at singular points
satisfying the equal angle property.

2. Motivation and basic properties

The minimization of the sum of the eigen-
values of partitions of a certain fixed do-
main appears in the following works:
? dynamic of systems in competition

[Conti, Terracini, Verzini, 05]

?modelling of chemical reaction consist-
ing of mutually annihilating reactants
[Babin, Cybulski, Holyst, 05]

? the study of monotonicity formulas
[Alt, Caffarelli, Friedman 80]

Minimizers of (1) have the following prop-
erties:
? each cell ωi is naturally with non-void. A

cell with void interior has λ1 = +∞.
? each cell ωi is connected
Even if many works address the mini-

mization problem (1) from different points
of view, there are almost no cases in which
the optimal partition is known explicitly. A
famous conjecture due to Caffarelli and Lin
says that it is possible that as the number
of cells n goes to ∞ it is the honeycomb
partition which solves problem (1).

This motivates the developement of nu-
merical algorithms. Various algorithms are
proposed in the literature. In the following
I propose an amelioration of the algorithm
introduced in [1]. This amelioration makes
possible the numerical computation of so-
lutions of problem (1) for large number of
cells in dimension two, on surfaces in R3

and in dimension three.

3. Numerical Framework

Objectives & Challenges
- flexible representation
- move cells without restrictions
- evolution of triple point configurations
- efficient cost function computation
- preserve non-overlapping condition
- compute eigenvalue of each cell
- reasonable simulation time

Main idea. Replace each shape ωi by a
density function ϕi : D → [0, 1].

Advantages
- flexibility, no topology restrictions
- no troubles when moving the cells
- fixed computation grid
- algebraic partition condition:

ϕ1 + ... + ϕn = 1

We need to be able to compute the eigen-
value of each cell starting from the func-
tional representation. In order to do this,
we consider the following

Relaxed Eigenvalue Problem{
−∆u + µu = λ(µ)u in D
u ∈ H1(D)

In this way ω and the Dirichlet condition
are encoded in µ:

- µ large⇒ u = 0
- µ = 0⇒ −∆u = λ(µ)u

Natural choice µ = C(1− ϕ) with C � 1.
Discretization. Consider a finite differ-

ence grid: N × N points on a square. If
A is the discrete finite difference Laplacian
on the grid then for each cell we need to
solve

[A + Cdiag(1− ϕ)]u = λ(C,ϕ)u. (2)

This can be done using eigs in Matlab.
Remarks.
- λk(C(1− χω))→ λk(Ω) as C →∞
- ϕ 7→ λ1(C(1 − ϕ)) is concave therefore
minimizing λ1(C(1 − ϕ)) will make ϕ a
characteristic function

Optimization Algorithm (BBO)
Given n, D
? start from n random densities ϕi :
D → [0, 1] with

∑
ϕi = 1.

? compute λ1(C,ϕi) and the gradient at
each of the grid points (simple ex-
pression of the eigenvector...)

? Evolve each cell:
ϕi← ϕi − α∇λ1(C,ϕi)

?Make sure we still have a partition:
projection

ϕi←
|ϕi|∑
i |ϕi|

preserves sum condition and concavity!

Recall that ∂jλ1(C,ϕi) = −Cu2
j, where

u is the solution of the matrix eigenvalue
problem (2) for ϕ = ϕi.

Reduce computational cost.
The original algorithm of Bourdin, Bucur

and Oudet computed the relaxed eigenval-
ues using the whole grid. This is not ef-
ficient or necessary. Accuracy and com-
putational costs can be improved by using
only points of the grid which are close to
the shape.

This procedure allows us to use the algo-
rithm to solve (1) on surfaces or in 3D.

New Optimization Algorithm.
Given n, D
1. start from n random densities ϕi :
D → [0, 1] with

∑
ϕi = 1.

2. restrict the grid to small neighbour-
hood of {ϕi > 0.01}

3. compute λ1(C,ϕi) and the gradient
on the small sub-grid, using a sub-
matrix of the finite difference Lapla-
cian on the whole grid

4. extend gradient to zero outside the
small grid

5. Evolve each cell:
ϕi← ϕi − α∇λ(C,ϕi)

6. Make sure we still have a partition:
projection

ϕi←
|ϕi|∑
i |ϕi|

Consequences.
? dimension of eigenvalue computation

matrix is greatly reduced
? larger C, fewer penalized points −→ bet-

ter precision
? huge gain in speed
New algorithm works well for many cells:
? use low resolution until we ”see the

cells”
? interpolate and continue computations

on a finer grid

4. Numerical simulations

Very fast for small problems. The im-
proved algorithm is particularly suited to
finding how optimal partitions solving (1)
look like for relatively small n. The results
obtained are reliable and local minima are
almost always efficiently avoided.

Efficient computation for many cells.
Bourdin, Bucur and Oudet used a super
computer to find a numerical candidate for
n = 512 on a 512 × 512 grid. Using the grid
reduction procedure, the same optimiza-
tion can be done on a laptop. One can
even do n = 1000 on a 1000× 1000 grid with
modest resources, in a few hours. Note
that in the last case we have an optimiza-
tion problem with one billion variables.

Computations in 2D for many cells
confirm the honeycomb conjecture for
eigenvalues.

Extension to surfaces.
The sphere:

- up to 160000 discretization points
- Computations for n ≤ 150
- 12 pentagons + n− 12 hexagons

3D computations.

Periodic 3D - simulate partition of R3.
? k = 8 - Weaire-Phelan structure
? k = 16 - Kelvin structure
? k = 32 - Rhombic dodecahedron tiling

5. Perspectives

- handle more complex functionals
- extend the method to other problems
which use density representation
- applications
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More details and other various
computations on my webpage:
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