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Abstract

This work proposes a new approach to solve some classical optimal packing problems for balls. These problems, which are discrete in nature, are tackled using shape optimization techniques
for suitable Γ-converging sequences associated to Cheeger type problems. Different optimal packing problems are found as limit of sequences of optimal clusters associated to the minimization
of energies involving suitable (generalized) Cheeger constants. These theoretical results are then used in order to approximate numerically generalized Cheeger constants, their optimal clusters
and, as a consequence of the asymptotic result, optimal packings. Numerical experiments are carried out in 2D and 3D. The continuous shape optimization approach gives good approximation
of the optimal packings searched, circumventing all the combinatorial difficulties of the associated discrete problem.

1. Description of the Problem

Given a domain ⊂ RN , the objective is to obtain a vari-
ational approach in order to find solutions to the optimal
packing problem

max{r : D1, ..., Dn ⊂ D,Di ∩Dj = ∅}

where D1, ..., Dn are balls of radius r.
One disk: the inradius. The isoperimetric inequality im-

plies that the disk minimizes the isoperimetric ratio I(Ω) =

HN−1(∂Ω)/|Ω|(N−1)/N . The problem is that any disk mini-
mizes I(Ω) so considering

min
Ω⊂D

I(Ω)

does not give us the inscribed disk. If, however, one consid-
ers the modified isoperimetric ratio Iα(Ω) = HN−1(∂Ω)/|Ω|α
for α > (N − 1)/N , then the problem

hα(E) := min
Ω⊂E

Iα(Ω)

admits a solution Ωα. Furthermore, as α → (N − 1)/N the
solutions Ωα converge to a disk of maximal radius contained
in D.

The constant hα(D) is called the α-Cheeger constant. The
classical Cheeger constant is found for α = 1.

Many disks: Cheeger clusters. When dealing with mul-
tiple phases one may consider the following optimal parti-
tioning problems

min{ max
i=1,...,n

hα(Ei) : (E1, ..., En) ∈ Pn(D)} (M)

and
min{

∑
i=1,...,n

hα(Ei) : (E1, ..., En) ∈ Pn(D)} (S)

where Pn(D) denotes the family of partitions of D into n
pairwise disjoint subsets.

Theorem: Limiting behavior

1. Problem (M) admits a solution and as α→
(
N−1
N

)
+

it

converges in L1 to a family of balls solving: max{r : ri ≥
r, Bi = B(xi, ri) ⊂ D,Bi ∩Bj = ∅}
2. Problem (S) admits a solution and as α →

(
N−1
N

)
+

it

converges in L1 to a family of balls solving: max{
∏n
i=1 ri :

Bi = B(xi, ri) ⊂ D,Bi ∩Bj = ∅}

Idea of the proof: Use the equality

HN−1(∂Ωi)

|Ωi|α
= I(Ωi)

1

|Ωi|α−(N−1)/N

which by the isoperimetric inequality favors ball-shaped
sets with large volumes.

The case α → +∞. In this case, up to a subsequence,
solutions of problem (M) converge in L1(D,Rk) to a partition
of D into k mutually disjoint sets of equal measure and this
partition minimizes the product of perimeters. In the case of
problem (S) it can be shown that solutions converge in L1

to a partition of D into k sets of equal volume, but we have
no conjecture by the problem solved in the limit.

2. Phase-field approximation

In [1] a phase-field approach is used to approximate nu-
merically partitions minimizing the sum of perimeters. This
approach is based on a Modica-Mortola approximation of
the perimeter by Γ-convergence.

The approach presented below is of the same nature. The
perimeter term in the numerator of the α-Cheeger ratio is
approximated by the Modica-Mortola theorem. The mea-
sure term in the denominator is approximated by an Lq

norm of the density function for q sufficiently high. It turns
out that the right choice is q = 2N/(N − 1).

The non-overlapping condition can be introduced by
adding an inequality constraint on the sum of the densi-
ties ui or by considering a penalization term (more conve-
nient for numerical purposes). The Γ-convergence result is
stated below.

Theorem: Γ-convergence approximation

Let D be a bounded, open, Lipschitz domain in RN . For
any fixed α > N−1

N and p > 1 the sequence of functionals
defined on L1(D,Rk) by

Fp,ε(u1, ..., uk) =

k∑
i=1

ε ∫D |∇ui|2dx + 9
ε

∫
D u

2
i (1− ui)2dx(∫

D |ui|
2N
N−1dx

)α

p

+
1

ε

∑
1≤i<j≤k

∫
D

u2iu
2
j (GC)

if ui ∈ H1
0(D), 0 ≤ ui ≤ 1 and +∞ if not, Γ-converges as

ε→ 0 in L1(D,Rk) to the functional

Fp(Ω1, ...,Ωk) =

k∑
i=1

(
HN−1(∂∗Ωi)
|Ωi|α

)p
.

Moreover, if for p > 1 we denote (Ω
p
1, ...,Ω

p
k) a minimizer

of Fp in Pk(D) then for p → +∞, up to a subsequence
we have

(Ω
p
1, ...,Ω

p
k)

L1(D,Rk)
−→ (Ω1, ...,Ωk),

where (Ω1, ...,Ωk) is a solution of (M).

3. Numerical Results

The Γ-convergence result shown above is used in order
to obtain numerical approximation of α-Cheeger sets and
α-Cheeger clusters. The functions ui are discretized using
a finite difference grid defined on the unit square. The gra-
dients are approximated by finite differences and the inte-
grals are computed using a basic quadrature method. The
parameter ε is chosen in relation to the step size h of the
grid. In general the choice ε ∈ [h, 4h] gives good results.

Random densities are chosen as initialization so that local
minima are successfully avoided. In order to accelerate the
computations, multiple grid resolutions are considered: an
initial solution is computed on a coarse grid, which is then
interpolated on a finer grid and the process is continued.
When domains D with different shapes are considered, the
finite difference grid points in the exterior of D are simply
discarded in the computations.

We start by computing some α-Cheeger sets for various
domains D by minimizing (GC) for k = 1, p = 1.

Figure 1: The α-Cheeger set for a non-convex set in 2D,
for α ∈ {0.5001, 0.75, 1, 2}.

Figure 2: The α-Cheeger set for a regular tetrahedron in
3D, for α ∈ {0.667, 0.9, 1, 2}.

In the case of 2D polygons Kawohl and Lachand-Robert
[2] gave an explicit characterization for the Cheeger sets.
Below you can see a comparison of the Cheeger sets com-
puted by minimizing (GC) directly and the exact solutions
obtained using [2]. Relative errors for the Cheeger con-
stants are also given.
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Figure 3: Comparison between results obtained when min-
imizing (GC) (red) and the Kawohl & Lachand-Robert for-
mula (dotted-blue).

Next we compute some numerical approximations of
Cheeger clusters, corresponding to the classical case α =
1, p = 1 in the case of the square. It can be observed that
the optimal partition does not seem to be made of convex
sets.

Figure 4: Cheeger clusters in a square: 5 cells, 12 cells, 16
cells (periodical).

Now we arrive to the main objective of our approach: the
computation of optimal circle packings. In order to approx-
imate solutions to problem (M) we use again (GC) with
α = (N − 1)/N + δ (with δ > 0) and p ”large” (p ≤ 100
in our computations). Various two dimensional results are
shown below in the case of the square, the disk and the
equilateral triangle. A very basic refinement procedure is
used starting from the densities obtained when minimizing
(GC), which allows us to compare the results with the best
known packings (see http://www.packomania.com/).
The Γ-convergence approximation behaves well even in
cases where the optimal packing is not unique.

Figure 5: Circle packing examples in 2D: density represen-
tation and local optimization.

Some examples of computations of optimal spherical
packings for domains in R3 are presented below. In this
case, we observe again a good convergence to the best
known configurations.

Figure 6: Sphere packing examples in 3D.

4. Conclusion

The Γ-convergence approach presented here allows us to
approximate solutions to a complex combinatorial problem
using a direct optimization algorithm. The optimal circle
and sphere packings obtained are in accordance with best
known configurations.
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